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An index evaluating the amount of chirality of a mixture of colored random vari-
ables is defined. Properties are established. Extreme chiral mixtures are character-
ized and examples are given. Connections between chirality, Wasserstein distances,
and least squares Procrustes methods are pointed 02002 American Institute

of Physics. [DOI: 10.1063/1.1484559

[. INTRODUCTION

Classifying a set as symmetric or not has been viewed as a dichotomic yes—no decision
process for centuries. Attempts to evaluate the amount of symmetry has received little attention.
Grunbaum(1963 noticed the difficulty to elaborate a rational approach of this problem. Physicists
and chemists proposed various measures of the amount of chirality: see, for instancegtHdurris
(1999, Le Guenned2000 or references cited by Petitjed©997). Most methods handle only
homogeneous solids, or only discrete sets. Many methods are limited to planar or spatial sets, and
continuity properties are often ignored. E.g., for a homogeneous solid, the chiral index of Gilat
(1989 is the normalized volume of the symmetric difference between the solid and its inverted
image. The volume of the symmetric difference is the distance introduced by Dif8, this
distance being itself the square of th2-norm induced distance between the indicator functions
of the solids. In this situation, continuity fails when the set becomes subdimensional. Clearly,
functional distances applied to a set and its inverted image have no adequate continuity property
because they are applied to densities rather than to distribution functions.

Thus, evaluating the degree of chirality of a random vedtdn RY is possible from some
probability metric between the distribution #f and the distribution of its translated and rotated
inverted image. The translation and the rotation are denoted respedtiselyR. We consider
now any two random vectoe$ andY in RY, and we look for a probability metric. For example,

F being the distribution function of, andG being the distribution function of, the quantitywy
[Eq. (1.2)] is issued from the Kolmogorov metric:

=g (SURy [ (X) = G(X)]). (L1

But it was noticed previouslyPetitjean, 1997, and 1999dhat some applications require us
to consider colored mixtures, i.e., mixtures of colored random varidbéssdefinition in the next
section. An example is the algebraic charge density of a molecule or ion, which may be viewed
as a mixture of two charge densities, namely the positive one and the negative one. As shown
below, the quantityuyk is not adequate for colored mixtures, because it is not sensitive to colors,
and an extension of the Wasserstein distance will be preferred.

II. COLORED MIXTURES AND WASSERSTEIN DISTANCES

The assumption that is distributed as a translated and rotated inverted imageishot used
in this section.

A reason to work with the colored model is that, when evaluating the degree of chivaligs
the distribution of a rotated inverted image Xf and thereforeY is a mixture such that each
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componentY retains the color of its associated compon&nand is distributed as the rotated
inverted image oX. In other words, the mirrofin fact, the inversion operatpsees the colors,
e.g., the eight vertices of a cube constitute indeed a chiral figuRé iahen they have all different
colors. Another application needing a probability metric sensitive to colors is the optimal super-
position problem(see Sec. Il B the quantitative chirality evaluation being just an instance of this
problem.

A. Colored mixtures

When X is a mixture of colored random variablé§ the more general formulation of its
distribution is written in Eq(2.1) with the mixing distributionP,, and, similarly, the mixturé/

of colored random variable¥ is written in Eq.(2.2) with the mixing distributionP,:

F(x)=f|~:(x,c)~dPl(c), (2.2

G(y)=f G(y,c)-dP,(c). (2.2

When all the components of a mixture have the same color, it means that there is in fact only
one colored component, and the colored mixture is an ordinary random ved®r i colored
mixture may be viewed as an ordinary mixture of random vectors, for which a supplementary axis
has been addedhe space of colojsthis axis not being of numeric nature.

The joint distributionW of X andY is expressed with the mixing distributidh operating on

the mixed distributiondV [Eq. (2.3)]:

W(x,y)=f fW(x,y.cl,CZ)-dzP(cl,CZ)- (2.3

In Egs. (2.1)—(2.3), the summations are performed over the spaces of the colors. Now, we
assume that the two colored mixtunésaandY are defined on the same space of colors. Moreover,
the distribution of the colors is assumed to be the samfandY, i.e., the respective marginal
distributions ofX andY on the space of colors are identical, and therefore can be fully correlated.
This correlation is indeed assumed noRf{c,,c,) is null whenc,;#c,, i.e., d’P(c,,c,) is
expressed with the Dirac delta function in E8.4), and integration ovec, is performed in(2.3)
to give the expression oV in Eq. (2.5), in which P; is renamedP andc, is renamedC:

dZP(Cl,Cz):dpl(Cl)' 5[02:C1]d02, (24)

W(X,y)= f W(x,y,C)-dP(C). (2.5

Clearly, the independence of the mixtudé¢saandY cannot be assumed now, excepXithas
only one colored component. This “colored model” is such that coupling the colors of a couple of
mixturesX andY induces constraints on the existence of their joint distributdhEEq. (2.4)],
and the set of joint distributions satisfying E@.5) is a nonempty subset of the set of the joint
distributions of the same couple of mixtures discarding colors.

Equations(2.4) and (2.5 are assumed to stand further.

B. Colored Wasserstein distance and Procrustes methods

A probability metric depending on the joint density is sensitive to the constraints arising from
colors [see Eq.(2.5]. The well known Wasserstein metri®obrushin, 1970; Dudley, 1989;
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Rachev, 1991Lis so. The Wasserstein metric is itself an instance of the Kantorovich functional,
which is encountered in the transportation proble@e equation 1.1.25 in Rachev andsBuen-
dorf, 1999.

The distributions associated respectivelyX@ndY are P! and P?, and the matricial trans-
position operator is denoted by the quote. We name here colored Wasserstein diXBhde?)
the extension of th&2 Wasserstein distangeto colored mixtures, for which the lower bound of
the expectatiorE[ (X—Y)'-(X—Y)] is taken for all rotation®R, translationg, and joint distri-

butionsW satisfying(2.5), i.e., such that eactiV belongs to the class of all joint distributions of

X andY:
DAW)=E[(X=Y)"-(X=Y)], (2.6
w(P1,P?)=InfyD(W), 2.7
C(P',P?) =Infg yu(P*,P?). (2.9

In Eqg. (2.6), it should be noticed that the expectation is defined througtd-aiensional
Lebesgue—Stiltjes integral, rather thardalimensional one. On the other hand, for any joint
distributionW, computingE(X’ - X) with the 2d-dimensional integral leads to the same value that
E(X'"-X) computed with thed-dimensional one. The same remark is valid Eq{X), E(Y), and
E(Y'-Y).

Data analysis methods performing an optimal superposition of a set on another one via a least
squares method were named Procrustes methods by Hurley and A&&3| and the sum of the
least squares is named the Procrustes distance. These methods are classified with the type of
transformation allowed to superpose the moving set on the fixed set: general linear transformation,
orthogonal transformation, or pure rotation. The 3D instance of this latter is usually encountered in
physics, chemistry and bioinformatics: see references on the RMS algorithm cited in Petitjean
(1998. The translation is optional, and it is always shown that the optimal translation is obtained
when the mean points are superposed at the origin before further optimizations. The null expec-
tation condition is not required in Procrustes methods.

Clearly, minimizing theL2 Wasserstein distance(P*,P?) [Eq. (2.7)], for some class of
affine transformations oY, generalizes the Procrustes method, because the usual one is its in-
stance wheiX andY are finite mixtures oh colored almost constant vectors, such that there is a
one to one correspondence betweenrthectorsX; andY; . In this discrete situation, the unique
feasible joint distribution is a bistochastic matrix equal o, | being the identity matriXcolors
are supposed to be enumerated in the same ordeK fand Y), and the Procrustes distance
Min(D?) is just the minimized sum of the squared distances between fiairs of vectors. The
Procrustes distance is the minimum of the distance induced by the norm itself induced by the
scalar producfTr(Zy-Zy), whereZy and Zy are two (,d) rectangular matrices. The optimal
rotation is analytically known whed=2 (see Section 3 in Petitjean, 199and wherd=3 (see
appendix in Petitjean, 1999bThe optimal orthogonal transformation is analytically known for
anyd (Golub and van Loan 1985

For the noncolored model, i.e., when theolors are identical, we get the Procrustes method
without prefixed correspondence, for which the minimizatioDéfinvolves the enumeration of at
mostn! possible correspondences between the two sets. Looking at the probabilistic formulation,
the optimal joint distribution exists and is a bistochastic matrix equalridifries a permutation
matrix, because it is an extreme point of the convex polytope of the feasible solutions of the
associated linear programming problem.

To summarize, the Procrustes distance becomes an instance lo? tiidasserstein distance
when this latter is extended to colored mixtures and minimized for a class of affine transforma-
tions of Y. Using the colored Wasserstein distar€dEq. (2.8)] assumes that we work in the
space of finite inertia colored mixtures, but the finite inertia condition could be relaxed if other
adequate Wasserstein distan¢ese Rachev, 199%re extended to colored mixtures. For clarity,
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we restrict the affine transformations to rotations. In this situatibis in fact a metric for classes
of equivalence of colored mixtures, the colored mixtures being in the same class when their
distributions are rotate@nd optionally translategdmages of one of them. It is pointed out that the
colored Wasserstein distance is not defined when the mixtures have different marginal distribu-
tions in the space of colors. In this situation, an attempt to work with the “maximal common
substructure” concept rather than with distances has been done for finite discreteetijsan,
1998. Of course, when the mixtur¥ is distributed asp(X), ¢ being any transform leaving
unchanged the marginal &f in the space of colors is indeed defined.

Some immediate properties 6f P*,P?) follow.

Let my and My, be the respective expectations ®¥f and Y attached to the axis, i

e[1,...d], and(rxi and(rYi be their respective standard deviations. The covariance attached to the
i axis isc;, and the respective inertia afg and Ty . Equation(2.6) is now expandable as

D?= 2 [(of,+mi)+(0F, +mY) = 2(ci+ myxmy) .
And, after rearrangement,
D2=TX+TY+Ei [(my,—my)?—2¢]. (2.9

The inertias and the covariances do not depend on the expectations. Thus the optimal trans-
lation t is such thaE(X)=E(Y), and the expression @? becomes

D2=Ty+Ty—2>, c;. (2.10

Although the optimal joint distribution is not ensured to exiBachev and Rechendorf,
1998, the optimal rotation is shown to exist, but may be not uni¢ependix A). The optimal
general transformation and the optimal orthogonal transformation are k(fpgendix A).

Ill. PROPERTIES OF THE CHIRAL INDEX

Let X andY be colored mixtures ifRY, Y having the distribution of a translated and rotated
inverted image oK. W is the joint distribution of the coupl¥, Y andT is the inertia ofX or Y,
i.e., T=E[(X—E(X))"-(X—=E(X))] andT=E[(Y—E(Y))'-(Y—E(Y))]. We define the chiral
index y as follows:

d
_ 2/pl p2
x=27C*(P1.P?). 3.0

In Eq. (3.1), P? being function ofP!, y depends only on the law of. In other wordsy is
the normalized squared colored Wasserstein distance between the mixtamedyY, Y being
distributed as a translated and rotated inverted imagé. athe chiral index is restricted to finite
non-null inertia distributions. The situatioh=0 arises wherX is almost surely equal to some
constantxy, and offers little interest. We neglect it. The chiral index is insensitive to isometries
and is size free. As noticed in the preceding section, the optimal translation is obtained when
E(X)=E(Y), meaning thaK andY should be centered.

For clarity, we assume without loss of generality that the condiE(X)=E(Y)=0 is satis-
fied in all this section.

The correlation coefficient attached to thexis isr;. Assuming the existence of the corre-
lation coefficients, we get from Eq&.10), (3.1) and(2.8):
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D2=2T-2>, ¢, (3.2

d 1 Suprwy(Zci)

X=3 - (3.3

Whend=1,R=1,Y is distributed as- X, and there is only one standard deviatigrand one
correlation coefficient. Equations(3.2) and(3.3) become

D2=20%(1-r), (3.9
1-S
1 SURw(r) o5

In Eq. (3.5 the chiral index depends on one parameter only. For the noncolored model, this
parameter is the maximal correlation of Gebel€if52, applied toX and — X.

Now we return back to thd-dimensional space, and we look for a joint distribution ensured
to exist. As noticed in the previous section, the independence of the mixuaeslY cannot be
assumed, except X has only one colored component. The chiral index is proportional to the
colored Wasserstein distance between the colored mixXiragd Y, Y being distributed as a
rotated inverted imag¥ (which does not mean thatis a rotated inverted image of). WhenY
is indeed the image oK through rotationR and inversionQ, the joint distribution of ¥,Y)

expressed from the mixed joint distributiodé(x,y,C) in Eq. (3.6) is ensured to exist:
d?W(x,y,C)=dF(x,C)-hy—r.q.xdY- (3.6)

In Eq. (3.6), h[y=yo] denotes the product of thieDirac delta functions associated to the point

Yo. Expression(3.6) is reported in(2.5) for integration overC, and, using Eq(2.1), the final
expression of the joint distribution is, as for a noncolored model:

dZW(X,y)IdF(X)'h[y:RAQ.X]dy. (37)

Equation(2.6) is expanded for this particular joint distribution to get E8.8), in which the
expectation is calculated throughdadimensional integral:

D2=2T—2E(X'-R-Q-X). (3.9

The chiral index being insensitive to isometries, we assume now that the covariance matrix of
X is diagonal, and thaY is the image ofX through the inversion of the coordinate associated to
the smallest variance axis. We taRe=1. The inertia being the sum of the variances, E219
becomes

D?=407. (3.9

The ratio of the smallest variance to the inertia is upper bounded dyythiis y is upper
bounded by 1. This bound is the best possible because it is reached for some particular random
variables, as shown in Sec. (gee also the colored Bernoulli distribution in Appendix B

Osys=L1. (3.10
We consider now the finite discrete situation. The joint distribution is expressed with the

square bistochastic matrix of the probabilitéé; of each couple of valuegx;,y;}. Using Eq.
(2.6), the chiral index is rewritten
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D2=20 2 Wi~ (=) (06 ), (311

d
X= 77 nfw, ryDZ. (3.12

Equationg3.11) and(3.12 were proposed previously to evaluate the amount of chirality of a
fnite d-dimensional set, and thus our present approach generalizes the previdse®iks(3)
and (4) in Petitiean(2001)]. It was also shown that, for the mass-uniform discrete case, the
bistochastic matrix associated to the joint distribution is a permutation matrix. This particular
situation means that there is a one-to-one mapping between the points of the set and those of its
inverted image. In general, this mapping is not symmetric.

IV. CONVERGENCE

Obtaining the convergence of the chiral index from the convergence of the random variables
is desirable to ensure some kind of continuity property of the chiral index. The weakest usual type
of convergence possible for random variables is the convergence itidadistribution, e.g.,
convergence of densities is a stronger assumption because this latter implies convergence in law
[see Scheffe theorem in Billingsley(1995].

We consider the noncolored model. ¢t be a sequence of random vectors converging to
in law. We assume also the convergenc&pX; - X,,] to E[ X’ - X], this latter quantity being finite.
Apart from whenX is almost surely constant, the convergence properties of the chiral index will
arise from the convergence of |af(u*(Py,PR))=Infy (D7) to Infir(u’(P,P?)
=Inf{W,R}(D2), where . denotes the Wasserstein distarisee Eq.(2.7)]. We use the triangle
inequality to write

w(PLPH<u(PYLPY+ u(Ph P2+ u(P2,P?),
w(Py,PO<u(PL,PY+u(PYP?)+ u(P?,P3),
| (P}, P2) = w(PY,P?)|<pu(Ph,PY+u(P3,P). (4.2)

The inversion matriXQ being constant, inequatidd.1) stands for any rotatioR common to
Y, andY. For clarity, we name, the second member of inequati¢hl). Obviously,e, does not
depend orR. We note respectivelyun(R)=M(P,11,Pﬁ) and u..(R) = u(P,P?). Inequation(4.1)
is rewritten

|Mn(R)_Moc(R)|$€n- 4.2

Let R, andR,, be optimal rotationgwhich are shown to exist in Appendix)Arespectively
associated thﬁ andD?. Inequation(4.2) stands for anyR, and then stands fd®, andR.. :

| = kn(Ro) + po(Ro)[< €, (4.3
| un(Re) = ool Re) | < € - (4.9

We deduce from addition af.3) and (4.4)
|Lan(Re) = (R 1+ [ s (Rn) — s (R) 1| < 265 - (4.5

We know from optimality of rotations that each of the two quantities in brackets is non-
negative. Thus both quantities are upper bounded &y 2

|Mn(Rx)_Mn(Rn)|<2€nv (4.6)

|Mw(Rn)_,Uvoc(Roo)|$2€n- 4.7
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Then, adding4.3) and (4.7),
| (R = 1 (Re) | = [ 0 Rn) = e (R) + o Ry) — e (Re0) | < By -
This inequation is rewritten in terms of Wasserstein distances:
|C(P},P3)—C(PL,P?)|<3¢,. (4.9

It was assumed tha{, is converging taX in distribution, and that there was convergence of
E[X]-X,] to E[X"-X], with E[X’-X]<e. These convergences are preserved through affine
transformations. Thus, the distribution 6§, is also converging to that of, discarding or not the
common rotation used in inequati@d.2), andE[Y,-Y,] is converging toE[Y'-Y] We know
from theorem 6.2.1 in Rachg®991) that thelL 2 Wasserstein distancgg P} ,P*) andu (P2 ,P?)
are tenging to zero. Thens,—0, and we get from(4.8) the convergence oC(Pﬁ,Pﬁ) to
C(PL,P?).

Looking to the definition of the chiral index in E@3.1) shows that we need also to establish
the convergence of the inertia, i.e., the centered two-order moment. The convergence of the
two-order moment was assumed, thus it suffices to get the convergeB¢X gfto E[ X]. Let A
be any almost surely constant random vector, BAdts distribution. We have from the triangle
inequality:

| w(P5,PA) = w(PLPA) < u(P}, PY
and therefore
|E[X,- Xn]—E[X"-X]—2E[A]" - (E[X,]—E[X])|—0.

Setting the constant successively equal to each ofl ttenonical base vectors lead to get the
desired convergence for each of théeomponents of the first order moment.

The convergence theorem follows now for the chiral index:

Theorem: If the sequencégP,) of probability distributions converges to P and X, - X,]
—E[X"-X]<w, and H(X—E[X])"-(X—=E[X])]>0, thenx(P,,)— x(P) .

V. EXTREME CHIRALITY RANDOM VARIABLES

The chiral index map¥X onto the interval 0;1]. AssumingE(X)=E(Y) =0, we look first to
the minimum of the chiral index. Let us define a mixti¢es achiral when it has the distribution
of one of its rotated and inverted images. In this situatmndY can be identically distributed,
and thus they can be fully correlated, iE(X'-Y)=E(X'-X)=E(Y'-Y), andy=0. Conversely,
whenyx=0, X is almost surely equal t¥, Y having the distribution of a rotated inverted image of
X, meaning thak is achiral.

Now we look to the maximum of the chiral index. We assume ¥éias a diagonal covari-
ance matrix, and that is the image ofX through inversion of the coordinate associated to the
smallest variance axis. We reuse the joint distribution in E8}3) and(3.8), andR=1 is set, such
that Eq.(3.9) stands. The ratio of the smallest variance to the inertia being upper bounded by 1/
x cannot be equal to 1 unless all tHevariances are equal. Therefore, the covariance matrk of
is proportional to the identity matrix. This covariance matrix is insensitive to isometries, and any
rotationR is optimal for the joint distribution. Equatiof®.1) expresses thus a necessary condition
to gety=1:

E(X-X')=02-1. (5.1

Thed-dimensional finite mixture af almost surely constant equiprobable colored variables is
such that the joint distribution in Eq§3.7) and (3.8) is the only one feasible when all colors are
different. It has been showPetitiean, 1999bthat the lower bound ob? in Eq. (3.9 is indeed
that of Eq.(3.9), and the chiral index of the mixture @stimes the percentage of inertia associated
to the smallest eigenvalue of the covariance matriXof
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X=d‘0'§/ E 0'i2. (5.2

Thus, x=0 when the set of tha equiprobable points is subdimensional, aned 1 when Eq.

(5.1) is satisfied. Well-known figures satisfy E&.1), including regular planar polygons, cube and
hypercubes, octahedron and higher dimensional analogs. Regular simplices fall also in this cat-
egory. It should be pointed out that when thecolors are identical, these mixtures have a null
chiral index because there is a symmetdy-(1)-hyperplane.

Some maximal chirality random variables can be exhibited for the noncolored model. The
joint distribution of the convolution product always exists, and from B¢, it comes that the
chiral index is upper bounded /2. Whend=1, this bound is optimal, because it cannot be
lowered for the Bernoulli distributiofsee Appendix B Whend=2, finding the upper bound for
the noncolored model is an open problem. The distribution of three equiprobable points in the
plane maximizingy has been exhibite@Petitjean, 199y

VI. DISCUSSION AND CONCLUSION

In the definition ofy, the division by the inertid was needed to get a size free chiral index.
Thus the degenerate random variaKlevith a null inertia has no chiral index, because bbth
andT are null. Viewing this degenerate situation via the limit of a family of parametrized random
variables makes no sense, in general, because the result depends on how the parameters are used
to get a null inertia, and because no convergence exists around the singhafity

Conditions under which the convergence theo(&mc. I\) could be extended to any colored
mixture are to be investigated. A consequence of this convergence theorem is that the chiral index
associated to the sample converges to that of the random variable. This could be used to get Monte
Carlo approximations of when the analytical solution is unreachable, but building consistent
estimators is outside the scope of this article. Computing the chiral index of a sample is equivalent
to compute it in the finite discrete mass-uniform distribution. For the latter, the unidimensional
case is solved analytically, and suitable numerical techniques have been buildwtZandd
=3 (Petitjean, 1997, 1999a,.bComputingy for a general finite discrete distribution is a non
linearly constrained optimization problefeee Eqs(3.11) and(3.12]. Constraints arising from
the joint distribution are linear equalities and inequalities, because the matrix associated to the
joint distribution is bistochastic. Constraints arising from the rotation are quadraticRI.eR
=1, and there is the polynomial constraint on the determinam.of

For the noncolored model, when the rotation is fixed, our optimization problem is an instance
of the transportation problem, which is a linear programming one. For the latter, solving algo-
rithms and existence conditions of optimal joint distributions have been recently reviewed in
Rachev and Rschendorf(19989 (see also Anderson and Nash, 198¥nd numerous results are
available in the monodimensional case.

Compared to the noncolored model, the colored model introduces additional constraivits on
These constraints are handled by th2 Wasserstein metric. Extending our present approach to
other color sensitive probability metrics potentially gives rise to a family of similarity measures
between colored mixtures, which seems not yet to be investigated, and from which the associated
family of chiral indices could be derived.

It should be noticed that monodimensional distributions, such as the Gaussian, are confusingly
called symmetric in most books. They are in fact achiral. Evaluating the amount of chirality is a
different concept from evaluating the amount of direct symmetry. How to extend the present
approach to direct symmetry is an open problem.
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APPENDIX A: OPTIMAL PROCRUSTES TRANSFORMATIONS

The results in this appendix are valid for colored mixtures, and therefore stand for random
vectors. We consider the colored Wasserstein dist@{&,P?) [Egs.(2.6—(2.8)], and we look
for the lower bound oD? when the mixtureY is submitted to a linear transformatignand a
translationt:

D2=E[(X—(A-Y+1)) - (X—(A-Y+1))], (A1)
C?=1InfawyD2. (A2)

The gradient int is null whent=E(X)—A-E(Y). It means that both mixtures should be
centered before looking to the optimal valuefofThe optional translation is further ignored, such
that all results listed in this appendix remain valid, whether orhandY are centered prior any
optimization. Now we look to the lower bound BP for A. We have a quadratic expression/f
except ifA is orthogonal:

D2=E[(X—A-Y) - (X—A-Y)], (A3)
C?=Inf(awD?. (A4)
1. The optimal general linear transformation
Derivating in(A3), we get:
E[2-A-Y-Y'—2-X-Y']=0, (A5)
A=E[X-Y']-(E[Y-Y']D L (AB)

When the noncentered covariance matrix Yofis not inversible, we can try to solve by
interchanging andY. If both noncentered covariance matrices are singular, the problem is in fact
subdimensional.

2. The optimal orthogonal transformation

The solution given by Golub and van Lo&h985 is restricted to finite sets of equiprobable
points (in a nonprobabilistic contektlt is extended here to colored mixtures. For clarity, we set
A=Q. Equation(A7) shows thaD? is an affine expression @:

D2=E[X'-X+Y'-Y—2-X"-Q-Y]. (A7)
Now we look for the upper bound of:
E[X'-Q-Y]=Tr(E[Y-X']-Q). (A8)

Let us write in Eq.(A9) the singular value decomposition of the square md&fiX-X'], i.e.,
S being the diagonal matrix containing the singular valugésheing the orthonormal matrix of
eigenvalues oE[ X-Y']-E[Y-X'], andV being the associated orthonormal matrix of eigenvalues
of E[Y-X']-E[X-Y'], we have

E[Y-X']=V-S-U". (A9)

We look for the upper bound ofr(V-S-U"-Q)=Tr(U'-Q-V-S). The coefficients of the
diagonal matrixS are non-negative, thus the trace is maximized when the coefficients of the
orthogonal matriXxJ’-Q-V are all equal to 1, meaning thidt' - Q-V=1. The optimal matrixQ is

Q=U-V'. (A10)
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WhenS is nonsingular, the determinant @ is obtained from(A9) and (A10):
de{ Q) =sign(def(E[Y-X'])). (A11)

The sense of the eigenvectorsldfandV are not independant, because the non-normalized
matrix of eigenvalues oE[Y-X']-E[X-Y'] (which becomed/ after normalizationis equal to
E[Y-X']-U. Thus, changing the sense of any eigenvectotJois still possible, but does not
affect Q.

The optimalQ is unique, except whe8 has at least one null diagonal element.

3. The optimal d-dimensional rotation

As for the general orthogonal transformatifgee Eqs(A7) and (A8) in which we setQ
=R for clarity], we look to the upper bound dfr(E[ Y- X']-R), which is a linear expression of

the unknown rotation. The set of rotations is closed and boundaﬂ'z'mOur constrained maxi-

mization problem of a linear form iR% has indeed a solution, but it may be not unique. The
general expression of the solution is unknown, except in some particular situations. When
det@[Y-X'])>0, the optimal rotation is given in E§A10).

4. The optimal planar rotation
The planar rotation matrix is parametrized with the angle

R=1I-cogr)+1II-sin(r), (A12)

wherel is the identity matrix, andl the antisymmetric matrix associated to the rotation of angle
/2. Reporting(A12) in (A3) and derivating for gives the minimum and the maximum Bf.
The minimum is

cogr)=E[X'-Y]/E, (A13)
sin(r)=E[X’-TI-Y]/E, (A14)
E=[(E[X"-Y])*+(E[X'-IT-Y])*]"2, (A15)
D?=E[X'-X]+E[Y'-Y]-2-E. (A16)

5. The optimal spatial rotation

The spatial rotatiorR is parametrized with the unit quaternion Its first component is the
cosinus of the half rotation angle, and its other three components are the rotation axis, with length
equal to the sinus of the half rotation angle. The quaternipasd — q are associated to the same
rotation. The optimal quaternion maximizes the quadratic fqfrB- q in Eq.(A17) and the proof
is essentially that established in the appendix of Petitj@@99b for finite sets of equiprobable
points(in a nonprobabilistic contektlt is extended here to colored mixtures. The optimal quater-
nion is the unit eigenvector associated to the highest eigenvalue of the symmetric Bnatrix

D2=D2-2.q'-B-q, (A17)
DI=E[(X=Y)"-(X=Y)], (A18)

0 c'
5=lc (Z+2'—1-Tr(z+2"))’ (A19)
Z=ElY-X'], (A20)
c=E[YOX]. (A21)
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Note that the elements af are computable from those &f.

APPENDIX B: THE BERNOULLI DISTRIBUTION

The Bernouilli distribution is translated here to get a null expectation, i.e., the vatue Has
probability P(1—m)=m and the value-m has probabiltyP(—m)=1—m. The rotationR=1,
and the joint distributions betweefiandY distributed as— X, are conveniently parametrized by
only one parametep=P(X=-mNY=m—1). Therefore,P(X=1-mNY=m—-1)=m—p,
P(X=—-mNY=m)=1-m-p, and P(X=1-mNY=m)=p. The covariance ic=p—m(1
—m), and the maximal correlation coefficient is reached gjerm whenme[0;3], and forp
=1-mwhenme[31], i.e.,r=m/(1—m) andr= (1—m)/m, respectively. According to Eq.
(2.2), x=1— (3)/(1—m) whenme]0;3], and y=1— (1/2)/m whenme[ 3;1[. The chiral index
is null whenm= 3, and is tending tg whenm is tending to O or to 1. The linen= 3 is a symmetry
axis for the graph of the functiog(m).

The colored Bernoulli distribution is, as for the noncolored one, a mixture of two random
variables almost surely constant, with mixing proportiomand 1—m. As previously, the mixture
is translated to get a null expectation. However, the two components of the mixture are colored,
and thus P(X=—mNY=m-1)=0 and P(X=1-mNY=m)=0. Setting now p=P(X
=—-mNY=m), the covariance i€=—p-m?—(1—p)-(1—m)?, and the maximal correlation
coefficient is reached fop=1 whenme[0;3], and forp=0 whenme[3;1], i.e.,r=—m/(1
—m) andr= (m—1)/m, respectively. According to Ed2.1), x= (3)/(1—m) whenme]0;3],
andy= 1/2m whenme[ ;1[. The chiral index is equal to 1 when= 3, and is tending tg¢ when
m is tending to 0 or to 1. The linen=3 is a symmetry axis for the graph of the functiggm).
This graph is the image of the previous one through the symmetryyaxis
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