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An index evaluating the amount of chirality of a mixture of colored random vari-
ables is defined. Properties are established. Extreme chiral mixtures are character-
ized and examples are given. Connections between chirality, Wasserstein distances,
and least squares Procrustes methods are pointed out. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1484559#

I. INTRODUCTION

Classifying a set as symmetric or not has been viewed as a dichotomic yes–no de
process for centuries. Attempts to evaluate the amount of symmetry has received little att
Grünbaum~1963! noticed the difficulty to elaborate a rational approach of this problem. Physi
and chemists proposed various measures of the amount of chirality: see, for instance, Harret al.
~1999!, Le Guennec~2000! or references cited by Petitjean~1997!. Most methods handle only
homogeneous solids, or only discrete sets. Many methods are limited to planar or spatial se
continuity properties are often ignored. E.g., for a homogeneous solid, the chiral index of
~1989! is the normalized volume of the symmetric difference between the solid and its inv
image. The volume of the symmetric difference is the distance introduced by Dinghas~1957!, this
distance being itself the square of theL2-norm induced distance between the indicator functio
of the solids. In this situation, continuity fails when the set becomes subdimensional. Cl
functional distances applied to a set and its inverted image have no adequate continuity p
because they are applied to densities rather than to distribution functions.

Thus, evaluating the degree of chirality of a random vectorX in Rd is possible from some
probability metric between the distribution ofX and the distribution of its translated and rotat
inverted image. The translation and the rotation are denoted respectivelyt and R. We consider
now any two random vectorsX andY in Rd, and we look for a probability metric. For exampl
F being the distribution function ofX, andG being the distribution function ofY, the quantitymK

@Eq. ~1.1!# is issued from the Kolmogorov metric:

mK5Inf$R,t%~Sup$x%uF~x!2G~x!u!. ~1.1!

But it was noticed previously~Petitjean, 1997, and 1999a!, that some applications require u
to consider colored mixtures, i.e., mixtures of colored random variables~see definition in the nex
section!. An example is the algebraic charge density of a molecule or ion, which may be vi
as a mixture of two charge densities, namely the positive one and the negative one. As
below, the quantitymK is not adequate for colored mixtures, because it is not sensitive to co
and an extension of the Wasserstein distance will be preferred.

II. COLORED MIXTURES AND WASSERSTEIN DISTANCES

The assumption thatY is distributed as a translated and rotated inverted image ofX is not used
in this section.

A reason to work with the colored model is that, when evaluating the degree of chirality,Y has
the distribution of a rotated inverted image ofX, and thereforeY is a mixture such that eac

a!Electronic mail: petitjean@itodys.jussieu.fr
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componentỸ retains the color of its associated componentX̃ and is distributed as the rotate
inverted image ofX̃. In other words, the mirror~in fact, the inversion operator! sees the colors
e.g., the eight vertices of a cube constitute indeed a chiral figure inR3 when they have all differen
colors. Another application needing a probability metric sensitive to colors is the optimal s
position problem~see Sec. II B!, the quantitative chirality evaluation being just an instance of
problem.

A. Colored mixtures

When X is a mixture of colored random variablesX̃, the more general formulation of it
distribution is written in Eq.~2.1! with the mixing distributionP1 , and, similarly, the mixtureY
of colored random variablesỸ is written in Eq.~2.2! with the mixing distributionP2 :

F~x!5E F̃~x,c!•dP1~c!, ~2.1!

G~y!5E G̃~y,c!•dP2~c!. ~2.2!

When all the components of a mixture have the same color, it means that there is in fac
one colored component, and the colored mixture is an ordinary random vector inRd. A colored
mixture may be viewed as an ordinary mixture of random vectors, for which a supplementar
has been added~the space of colors!, this axis not being of numeric nature.

The joint distributionW of X andY is expressed with the mixing distributionP operating on
the mixed distributionsW̃ @Eq. ~2.3!#:

W~x,y!5E E W̃~x,y,c1 ,c2!•d2P~c1 ,c2!. ~2.3!

In Eqs. ~2.1!–~2.3!, the summations are performed over the spaces of the colors. Now
assume that the two colored mixturesX andY are defined on the same space of colors. Moreo
the distribution of the colors is assumed to be the same forX andY, i.e., the respective margina
distributions ofX andY on the space of colors are identical, and therefore can be fully correl
This correlation is indeed assumed now:P(c1 ,c2) is null when c1Þc2 , i.e., d2P(c1 ,c2) is
expressed with the Dirac delta function in Eq.~2.4!, and integration overc2 is performed in~2.3!
to give the expression ofW in Eq. ~2.5!, in which P1 is renamedP andc1 is renamedC:

d2P~c1 ,c2!5dP1~c1!•d [c25c1]dc2 , ~2.4!

W~x,y!5E W̃~x,y,C!•dP~C!. ~2.5!

Clearly, the independence of the mixturesX andY cannot be assumed now, except ifX has
only one colored component. This ‘‘colored model’’ is such that coupling the colors of a coup
mixturesX andY induces constraints on the existence of their joint distributionsW @Eq. ~2.4!#,
and the set of joint distributions satisfying Eq.~2.5! is a nonempty subset of the set of the joi
distributions of the same couple of mixtures discarding colors.

Equations~2.4! and ~2.5! are assumed to stand further.

B. Colored Wasserstein distance and Procrustes methods

A probability metric depending on the joint density is sensitive to the constraints arising
colors @see Eq.~2.5!#. The well known Wasserstein metric~Dobrushin, 1970; Dudley, 1989
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Rachev, 1991! is so. The Wasserstein metric is itself an instance of the Kantorovich functio
which is encountered in the transportation problem~see equation 1.1.25 in Rachev and Ru¨schen-
dorf, 1998!.

The distributions associated respectively toX andY are P1 andP2, and the matricial trans-
position operator is denoted by the quote. We name here colored Wasserstein distanceC(P1,P2)
the extension of theL2 Wasserstein distancem to colored mixtures, for which the lower bound o
the expectationE@(X2Y)8•(X2Y)# is taken for all rotationsR, translationst, and joint distri-
butionsW satisfying~2.5!, i.e., such that eachW̃ belongs to the class of all joint distributions o
X̃ and Ỹ:

D2~W!5E@~X2Y!8•~X2Y!#, ~2.6!

m~P1,P2!5Inf$W%D~W!, ~2.7!

C~P1,P2!5Inf$R,t%m~P1,P2!. ~2.8!

In Eq. ~2.6!, it should be noticed that the expectation is defined through a 2d-dimensional
Lebesgue–Stiltjes integral, rather than ad-dimensional one. On the other hand, for any jo
distributionW, computingE(X8•X) with the 2d-dimensional integral leads to the same value t
E(X8•X) computed with thed-dimensional one. The same remark is valid forE(X), E(Y), and
E(Y8•Y).

Data analysis methods performing an optimal superposition of a set on another one via
squares method were named Procrustes methods by Hurley and Cattell~1962!, and the sum of the
least squares is named the Procrustes distance. These methods are classified with the
transformation allowed to superpose the moving set on the fixed set: general linear transform
orthogonal transformation, or pure rotation. The 3D instance of this latter is usually encounte
physics, chemistry and bioinformatics: see references on the RMS algorithm cited in Pe
~1998!. The translation is optional, and it is always shown that the optimal translation is obt
when the mean points are superposed at the origin before further optimizations. The null
tation condition is not required in Procrustes methods.

Clearly, minimizing theL2 Wasserstein distancem(P1,P2) @Eq. ~2.7!#, for some class of
affine transformations ofY, generalizes the Procrustes method, because the usual one is
stance whenX andY are finite mixtures ofn colored almost constant vectors, such that there
one to one correspondence between then vectorsX̃i andỸi . In this discrete situation, the uniqu
feasible joint distribution is a bistochastic matrix equal toI /n, I being the identity matrix~colors
are supposed to be enumerated in the same order forX and Y!, and the Procrustes distanc
Min(D2) is just the minimized sum of the squared distances between then pairs of vectors. The
Procrustes distance is the minimum of the distance induced by the norm itself induced
scalar productTr(ZX8•ZY), whereZX and ZY are two (n,d) rectangular matrices. The optima
rotation is analytically known whend52 ~see Section 3 in Petitjean, 1997!, and whend53 ~see
appendix in Petitjean, 1999b!. The optimal orthogonal transformation is analytically known
any d ~Golub and van Loan 1985!.

For the noncolored model, i.e., when then colors are identical, we get the Procrustes meth
without prefixed correspondence, for which the minimization ofD2 involves the enumeration of a
mostn! possible correspondences between the two sets. Looking at the probabilistic formu
the optimal joint distribution exists and is a bistochastic matrix equal to 1/n times a permutation
matrix, because it is an extreme point of the convex polytope of the feasible solutions o
associated linear programming problem.

To summarize, the Procrustes distance becomes an instance of theL2 Wasserstein distanc
when this latter is extended to colored mixtures and minimized for a class of affine transf
tions of Y. Using the colored Wasserstein distanceC @Eq. ~2.8!# assumes that we work in th
space of finite inertia colored mixtures, but the finite inertia condition could be relaxed if o
adequate Wasserstein distances~see Rachev, 1991! are extended to colored mixtures. For clari
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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we restrict the affine transformations to rotations. In this situation,C is in fact a metric for classes
of equivalence of colored mixtures, the colored mixtures being in the same class when
distributions are rotated~and optionally translated! images of one of them. It is pointed out that th
colored Wasserstein distance is not defined when the mixtures have different marginal di
tions in the space of colors. In this situation, an attempt to work with the ‘‘maximal com
substructure’’ concept rather than with distances has been done for finite discrete sets~Petitjean,
1998!. Of course, when the mixtureY is distributed asf(X), f being any transform leaving
unchanged the marginal ofX in the space of colors,C is indeed defined.

Some immediate properties ofC(P1,P2) follow.
Let mXi

and mYi
be the respective expectations ofX and Y attached to thei axis, i

P@1,...,d#, andsXi
andsYi

be their respective standard deviations. The covariance attached
i axis isci , and the respective inertia areTX andTY . Equation~2.6! is now expandable as

D25(
i

@~sXi

2 1mXi

2 !1~sYi

2 1mYi

2 !22~ci1mXi
mYi

!#.

And, after rearrangement,

D25TX1TY1(
i

@~mXi
2mYi

!222ci #. ~2.9!

The inertias and the covariances do not depend on the expectations. Thus the optima
lation t is such thatE(X)5E(Y), and the expression ofD2 becomes

D25TX1TY22( ci . ~2.10!

Although the optimal joint distribution is not ensured to exist~Rachev and Ru¨schendorf,
1998!, the optimal rotation is shown to exist, but may be not unique~Appendix A!. The optimal
general transformation and the optimal orthogonal transformation are known~Appendix A!.

III. PROPERTIES OF THE CHIRAL INDEX

Let X andY be colored mixtures inRd, Y having the distribution of a translated and rotat
inverted image ofX. W is the joint distribution of the coupleX, Y andT is the inertia ofX or Y,
i.e., T5E@(X2E(X))8•(X2E(X))# and T5E@(Y2E(Y))8•(Y2E(Y))#. We define the chiral
index x as follows:

x5
d

4T
C2~P1,P2!. ~3.1!

In Eq. ~3.1!, P2 being function ofP1, x depends only on the law ofX. In other words,x is
the normalized squared colored Wasserstein distance between the mixturesX and Y, Y being
distributed as a translated and rotated inverted image ofX. The chiral index is restricted to finite
non-null inertia distributions. The situationT50 arises whenX is almost surely equal to som
constantx0 , and offers little interest. We neglect it. The chiral index is insensitive to isome
and is size free. As noticed in the preceding section, the optimal translation is obtained
E(X)5E(Y), meaning thatX andY should be centered.

For clarity, we assume without loss of generality that the conditionE(X)5E(Y)50 is satis-
fied in all this section.

The correlation coefficient attached to thei axis is r i . Assuming the existence of the corre
lation coefficients, we get from Eqs.~2.10!, ~3.1! and ~2.8!:
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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D252T22( ci , ~3.2!

x5
d

2 S 12
Sup$R,W%~(ci !

T D . ~3.3!

Whend51, R51, Y is distributed as2X, and there is only one standard deviations, and one
correlation coefficientr . Equations~3.2! and ~3.3! become

D252s2~12r !, ~3.4!

x5
12Sup$W%~r !

2
. ~3.5!

In Eq. ~3.5! the chiral index depends on one parameter only. For the noncolored mode
parameter is the maximal correlation of Gebelein~1952!, applied toX and2X.

Now we return back to thed-dimensional space, and we look for a joint distribution ensu
to exist. As noticed in the previous section, the independence of the mixturesX andY cannot be
assumed, except ifX has only one colored component. The chiral index is proportional to
colored Wasserstein distance between the colored mixturesX and Y, Y being distributed as a
rotated inverted imageX ~which does not mean thatY is a rotated inverted image ofX!. WhenY
is indeed the image ofX through rotationR and inversionQ, the joint distribution of (X,Y)
expressed from the mixed joint distributionsW̃(x,y,C) in Eq. ~3.6! is ensured to exist:

d2W̃~x,y,C!5dF̃~x,C!•h[ y5R•Q•x]dy. ~3.6!

In Eq. ~3.6!, h[ y5y0] denotes the product of thed Dirac delta functions associated to the po
y0 . Expression~3.6! is reported in~2.5! for integration overC, and, using Eq.~2.1!, the final
expression of the joint distribution is, as for a noncolored model:

d2W~x,y!5dF~x!•h[ y5R•Q•x]dy. ~3.7!

Equation~2.6! is expanded for this particular joint distribution to get Eq.~3.8!, in which the
expectation is calculated through ad-dimensional integral:

D252T22E~X8•R•Q•X!. ~3.8!

The chiral index being insensitive to isometries, we assume now that the covariance ma
X is diagonal, and thatY is the image ofX through the inversion of the coordinate associated
the smallest variance axis. We takeR5I . The inertia being the sum of the variances, Eq.~3.8!
becomes

D254sd
2. ~3.9!

The ratio of the smallest variance to the inertia is upper bounded by 1/d, thus x is upper
bounded by 1. This bound is the best possible because it is reached for some particular
variables, as shown in Sec. V~see also the colored Bernoulli distribution in Appendix B!:

0<x<1. ~3.10!

We consider now the finite discrete situation. The joint distribution is expressed with
square bistochastic matrix of the probabilitiesWi j of each couple of values$xi ,yj%. Using Eq.
~2.6!, the chiral index is rewritten
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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D25(
i

(
j

Wi j •~xi2yj !8•~xi2yj !, ~3.11!

x5
d

4T
Inf$Wi j ,R,t%D

2. ~3.12!

Equations~3.11! and~3.12! were proposed previously to evaluate the amount of chirality o
fnite d-dimensional set, and thus our present approach generalizes the previous one@see Eqs.~3!
and ~4! in Petitjean~2001!#. It was also shown that, for the mass-uniform discrete case,
bistochastic matrix associated to the joint distribution is a permutation matrix. This parti
situation means that there is a one-to-one mapping between the points of the set and thos
inverted image. In general, this mapping is not symmetric.

IV. CONVERGENCE

Obtaining the convergence of the chiral index from the convergence of the random var
is desirable to ensure some kind of continuity property of the chiral index. The weakest usua
of convergence possible for random variables is the convergence in law~in distribution!, e.g.,
convergence of densities is a stronger assumption because this latter implies convergence
@see Scheffe´’s theorem in Billingsley~1995!#.

We consider the noncolored model. LetXn be a sequence of random vectors converging toX
in law. We assume also the convergence ofE@Xn8•Xn# to E@X8•X#, this latter quantity being finite
Apart from whenX is almost surely constant, the convergence properties of the chiral index
arise from the convergence of Inf$R%(m

2(Pn
1 ,Pn

2))5Inf$Wn ,R%(Dn
2) to Inf$R%(m

2(P1,P2))
5Inf$W,R%(D

2), wherem denotes the Wasserstein distance@see Eq.~2.7!#. We use the triangle
inequality to write

m~P1,P2!<m~P1,Pn
1!1m~Pn

1 ,Pn
2!1m~Pn

2 ,P2!,

m~Pn
1 ,Pn

2!<m~Pn
1 ,P1!1m~P1,P2!1m~P2,Pn

2!,

um~Pn
1 ,Pn

2!2m~P1,P2!u<m~Pn
1 ,P1!1m~Pn

2 ,P2!. ~4.1!

The inversion matrixQ being constant, inequation~4.1! stands for any rotationR common to
Yn andY. For clarity, we nameen the second member of inequation~4.1!. Obviously,en does not
depend onR. We note respectivelymn(R)5m(Pn

1 ,Pn
2) andm`(R)5m(P1,P2). Inequation~4.1!

is rewritten

umn~R!2m`~R!u<en . ~4.2!

Let Rn andR` be optimal rotations~which are shown to exist in Appendix A!, respectively
associated toDn

2 andD2. Inequation~4.2! stands for anyR, and then stands forRn andR` :

u2mn~Rn!1m`~Rn!u<en , ~4.3!

umn~R`!2m`~R`!u<en . ~4.4!

We deduce from addition of~4.3! and ~4.4!

u@mn~R`!2mn~Rn!#1@m`~Rn!2m`~R`!#u<2en . ~4.5!

We know from optimality of rotations that each of the two quantities in brackets is n
negative. Thus both quantities are upper bounded by 2en :

umn~R`!2mn~Rn!u<2en , ~4.6!

um`~Rn!2m`~R`!u<2en . ~4.7!
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Then, adding~4.3! and ~4.7!,

umn~Rn!2m`~R`!u5umn~Rn!2m`~Rn!1m`~Rn!2m`~R`!u<3en .

This inequation is rewritten in terms of Wasserstein distances:

uC~Pn
1 ,Pn

2!2C~P1,P2!u<3en . ~4.8!

It was assumed thatXn is converging toX in distribution, and that there was convergence
E@Xn8•Xn# to E@X8•X#, with E@X8•X#,` . These convergences are preserved through a
transformations. Thus, the distribution ofYn is also converging to that ofY, discarding or not the
common rotation used in inequation~4.2!, andE@Yn8•Yn# is converging toE@Y8•Y# We know
from theorem 6.2.1 in Rachev~1991! that theL2 Wasserstein distancesm(Pn

1 ,P1) andm(Pn
2 ,P2)

are tending to zero. Then,en→0, and we get from~4.8! the convergence ofC(Pn
1,Pn

2) to
C(P1,P2) .

Looking to the definition of the chiral index in Eq.~3.1! shows that we need also to establi
the convergence of the inertia, i.e., the centered two-order moment. The convergence
two-order moment was assumed, thus it suffices to get the convergence ofE@Xn# to E@X# . Let A
be any almost surely constant random vector, andPA its distribution. We have from the triangl
inequality:

um~Pn
1,PA!2m~P1,PA!u<m~Pn

1,P1!

and therefore

uE@Xn8•Xn#2E@X8•X#22E@A#8•~E@Xn#2E@X# !u→0 .

Setting the constant successively equal to each of thed canonical base vectors lead to get t
desired convergence for each of thed components of the first order moment.

The convergence theorem follows now for the chiral index:
Theorem: If the sequence(Pn) of probability distributions converges to P and E@Xn8•Xn#

→E@X8•X#,` , and E@(X2E@X#)8•(X2E@X#)#.0 , thenx(Pn)→x(P) .

V. EXTREME CHIRALITY RANDOM VARIABLES

The chiral index mapsX onto the interval@0;1#. AssumingE(X)5E(Y)50, we look first to
the minimum of the chiral index. Let us define a mixtureX as achiral when it has the distributio
of one of its rotated and inverted images. In this situation,X andY can be identically distributed
and thus they can be fully correlated, i.e.,E(X8•Y)5E(X8•X)5E(Y8•Y), andx50. Conversely,
whenx50, X is almost surely equal toY, Y having the distribution of a rotated inverted image
X, meaning thatX is achiral.

Now we look to the maximum of the chiral index. We assume thatX has a diagonal covari
ance matrix, and thatY is the image ofX through inversion of the coordinate associated to
smallest variance axis. We reuse the joint distribution in Eqs.~3.7! and~3.8!, andR5I is set, such
that Eq.~3.9! stands. The ratio of the smallest variance to the inertia being upper bounded bd;
x cannot be equal to 1 unless all thed variances are equal. Therefore, the covariance matrix oX
is proportional to the identity matrix. This covariance matrix is insensitive to isometries, and
rotationR is optimal for the joint distribution. Equation~5.1! expresses thus a necessary condit
to getx51:

E~X•X8!5s2
•I . ~5.1!

Thed-dimensional finite mixture ofn almost surely constant equiprobable colored variable
such that the joint distribution in Eqs.~3.7! and~3.8! is the only one feasible when all colors a
different. It has been shown~Petitjean, 1999b! that the lower bound ofD2 in Eq. ~3.8! is indeed
that of Eq.~3.9!, and the chiral index of the mixture isd times the percentage of inertia associat
to the smallest eigenvalue of the covariance matrix ofX:
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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x5d•sd
2Y (

i
s i

2. ~5.2!

Thus,x50 when the set of then equiprobable points is subdimensional, andx51 when Eq.
~5.1! is satisfied. Well-known figures satisfy Eq.~5.1!, including regular planar polygons, cube an
hypercubes, octahedron and higher dimensional analogs. Regular simplices fall also in th
egory. It should be pointed out that when then colors are identical, these mixtures have a n
chiral index because there is a symmetry (d21)-hyperplane.

Some maximal chirality random variables can be exhibited for the noncolored model
joint distribution of the convolution product always exists, and from Eq.~3.3!, it comes that the
chiral index is upper bounded byd/2. Whend51, this bound is optimal, because it cannot
lowered for the Bernoulli distribution~see Appendix B!. Whend>2, finding the upper bound fo
the noncolored model is an open problem. The distribution of three equiprobable points
plane maximizingx has been exhibited~Petitjean, 1997!.

VI. DISCUSSION AND CONCLUSION

In the definition ofx, the division by the inertiaT was needed to get a size free chiral inde
Thus the degenerate random variableX with a null inertia has no chiral index, because bothD2

andT are null. Viewing this degenerate situation via the limit of a family of parametrized ran
variables makes no sense, in general, because the result depends on how the parameters
to get a null inertia, and because no convergence exists around the singularityT50.

Conditions under which the convergence theorem~Sec. IV! could be extended to any colore
mixture are to be investigated. A consequence of this convergence theorem is that the chira
associated to the sample converges to that of the random variable. This could be used to ge
Carlo approximations ofx when the analytical solution is unreachable, but building consis
estimators is outside the scope of this article. Computing the chiral index of a sample is equ
to compute it in the finite discrete mass-uniform distribution. For the latter, the unidimens
case is solved analytically, and suitable numerical techniques have been built whend52 andd
53 ~Petitjean, 1997, 1999a, b!. Computingx for a general finite discrete distribution is a no
linearly constrained optimization problem@see Eqs.~3.11! and ~3.12!#. Constraints arising from
the joint distribution are linear equalities and inequalities, because the matrix associated
joint distribution is bistochastic. Constraints arising from the rotation are quadratic, i.e.,R8•R
5I , and there is the polynomial constraint on the determinant ofR.

For the noncolored model, when the rotation is fixed, our optimization problem is an ins
of the transportation problem, which is a linear programming one. For the latter, solving
rithms and existence conditions of optimal joint distributions have been recently review
Rachev and Ru¨schendorf~1998! ~see also Anderson and Nash, 1987!, and numerous results ar
available in the monodimensional case.

Compared to the noncolored model, the colored model introduces additional constraintsW.
These constraints are handled by theL2 Wasserstein metric. Extending our present approac
other color sensitive probability metrics potentially gives rise to a family of similarity meas
between colored mixtures, which seems not yet to be investigated, and from which the ass
family of chiral indices could be derived.

It should be noticed that monodimensional distributions, such as the Gaussian, are confu
called symmetric in most books. They are in fact achiral. Evaluating the amount of chirality
different concept from evaluating the amount of direct symmetry. How to extend the pr
approach to direct symmetry is an open problem.
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APPENDIX A: OPTIMAL PROCRUSTES TRANSFORMATIONS

The results in this appendix are valid for colored mixtures, and therefore stand for ra
vectors. We consider the colored Wasserstein distanceC(P1,P2) @Eqs.~2.6!–~2.8!#, and we look
for the lower bound ofD2 when the mixtureY is submitted to a linear transformationA and a
translationt:

D25E@~X2~A•Y1t !!8•~X2~A•Y1t !!#, ~A1!

C25Inf$A,W,t%D
2. ~A2!

The gradient int is null when t5E(X)2A•E(Y). It means that both mixtures should b
centered before looking to the optimal value ofA. The optional translation is further ignored, su
that all results listed in this appendix remain valid, whether or notX andY are centered prior any
optimization. Now we look to the lower bound ofD2 for A. We have a quadratic expression ofA,
except ifA is orthogonal:

D25E@~X2A•Y!8•~X2A•Y!#, ~A3!

C25Inf$A,W%D
2. ~A4!

1. The optimal general linear transformation

Derivating in ~A3!, we get:

E@2•A•Y•Y822•X•Y8#50, ~A5!

A5E@X•Y8#•~E@Y•Y8# !21. ~A6!

When the noncentered covariance matrix ofY is not inversible, we can try to solve b
interchangingX andY. If both noncentered covariance matrices are singular, the problem is in
subdimensional.

2. The optimal orthogonal transformation

The solution given by Golub and van Loan~1985! is restricted to finite sets of equiprobab
points ~in a nonprobabilistic context!. It is extended here to colored mixtures. For clarity, we
A5Q. Equation~A7! shows thatD2 is an affine expression ofQ:

D25E@X8•X1Y8•Y22•X8•Q•Y#. ~A7!

Now we look for the upper bound of:

E@X8•Q•Y#5Tr~E@Y•X8#•Q!. ~A8!

Let us write in Eq.~A9! the singular value decomposition of the square matrixE@Y•X8#, i.e.,
S being the diagonal matrix containing the singular values,U being the orthonormal matrix o
eigenvalues ofE@X•Y8#•E@Y•X8#, andV being the associated orthonormal matrix of eigenval
of E@Y•X8#•E@X•Y8#, we have

E@Y•X8#5V•S•U8. ~A9!

We look for the upper bound ofTr(V•S•U8•Q)5Tr(U8•Q•V•S). The coefficients of the
diagonal matrixS are non-negative, thus the trace is maximized when the coefficients o
orthogonal matrixU8•Q•V are all equal to 1, meaning thatU8•Q•V5I . The optimal matrixQ is

Q5U•V8. ~A10!
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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WhenS is nonsingular, the determinant ofQ is obtained from~A9! and ~A10!:

det~Q!5sign~det~E@Y•X8# !!. ~A11!

The sense of the eigenvectors ofU andV are not independant, because the non-normali
matrix of eigenvalues ofE@Y•X8#•E@X•Y8# ~which becomesV after normalization! is equal to
E@Y•X8#•U. Thus, changing the sense of any eigenvector ofU is still possible, but does no
affect Q.

The optimalQ is unique, except whenS has at least one null diagonal element.

3. The optimal d -dimensional rotation

As for the general orthogonal transformation@see Eqs.~A7! and ~A8! in which we setQ
5R for clarity#, we look to the upper bound ofTr(E@Y•X8#•R), which is a linear expression o
the unknown rotation. The set of rotations is closed and bounded inRd2

. Our constrained maxi-
mization problem of a linear form inRd2

has indeed a solution, but it may be not unique. T
general expression of the solution is unknown, except in some particular situations.
det(E@Y•X8#).0, the optimal rotation is given in Eq.~A10!.

4. The optimal planar rotation

The planar rotation matrix is parametrized with the angler :

R5I •cos~r !1P•sin~r !, ~A12!

whereI is the identity matrix, andP the antisymmetric matrix associated to the rotation of an
p/2. Reporting~A12! in ~A3! and derivating forr gives the minimum and the maximum ofD2.
The minimum is

cos~r !5E@X8•Y#/E, ~A13!

sin~r !5E@X8•P•Y#/E, ~A14!

E5@~E@X8•Y# !21~E@X8•P•Y# !2#1/2, ~A15!

D25E@X8•X#1E@Y8•Y#22•E. ~A16!

5. The optimal spatial rotation

The spatial rotationR is parametrized with the unit quaternionq. Its first component is the
cosinus of the half rotation angle, and its other three components are the rotation axis, with
equal to the sinus of the half rotation angle. The quaternionsq and2q are associated to the sam
rotation. The optimal quaternion maximizes the quadratic formq8•B•q in Eq. ~A17! and the proof
is essentially that established in the appendix of Petitjean~1999b! for finite sets of equiprobable
points~in a nonprobabilistic context!. It is extended here to colored mixtures. The optimal qua
nion is the unit eigenvector associated to the highest eigenvalue of the symmetric matrixB:

D25D0
222•q8•B•q, ~A17!

D0
25E@~X2Y!8•~X2Y!#, ~A18!

B5S 0 c8

c ~Z1Z82I •Tr~Z1Z8!!
D , ~A19!

Z5E@Y•X8#, ~A20!

c5E@Y∧X#. ~A21!
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Note that the elements ofc are computable from those ofZ.

APPENDIX B: THE BERNOULLI DISTRIBUTION

The Bernouilli distribution is translated here to get a null expectation, i.e., the value 12m has
probability P(12m)5m and the value2m has probabiltyP(2m)512m. The rotationR51,
and the joint distributions betweenX andY distributed as2X, are conveniently parametrized b
only one parameterp5P(X52mùY5m21). Therefore,P(X512mùY5m21)5m2p,
P(X52mùY5m)512m2p, and P(X512mùY5m)5p. The covariance isc5p2m(1

2m), and the maximal correlation coefficient is reached forp5m when mP@0; 1
2#, and for p

512m when mP@ 1
2;1#, i.e., r 5 m/(12m) and r 5 (12m)/m, respectively. According to Eq

~2.1!, x512 (1
2)/(12m) whenmP]0; 1

2], andx512 (1/2)/m whenmP@ 1
2;1@ . The chiral index

is null whenm5 1
2, and is tending to12 whenm is tending to 0 or to 1. The linem5 1

2 is a symmetry
axis for the graph of the functionx(m).

The colored Bernoulli distribution is, as for the noncolored one, a mixture of two ran
variables almost surely constant, with mixing proportionsm and 12m. As previously, the mixture
is translated to get a null expectation. However, the two components of the mixture are co
and thus P(X52mùY5m21)50 and P(X512mùY5m)50. Setting now p5P(X
52mùY5m), the covariance isc52p•m22(12p)•(12m)2, and the maximal correlation

coefficient is reached forp51 whenmP@0; 1
2#, and forp50 whenmP@ 1

2;1#, i.e., r 5 2m/(1

2m) and r 5 (m21)/m, respectively. According to Eq.~2.1!, x5 (1
2)/(12m) when mP]0; 1

2],

andx5 1/2m whenmP@ 1
2;1@ . The chiral index is equal to 1 whenm5 1

2, and is tending to12 when
m is tending to 0 or to 1. The linem5 1

2 is a symmetry axis for the graph of the functionx(m).
This graph is the image of the previous one through the symmetry axisx5 1
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