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ABSTRACT

Describing the relationship between a weather event and climate change –

a science usually termed event attribution – involves quantifying the extent

to which human influence has affected the frequency or the strength of an

observed event. In this study we show how event attribution can be imple-

mented through the application of non-stationary statistics to transient simu-

lations, typically covering the 1850-2100 period. The use of existing CMIP-

style simulations has many advantages, including their availability for a large

range of coupled models, and the fact that they are not conditional to a given

oceanic state. We develop a technique for providing a multi-model synthe-

sis, consistent with the uncertainty analysis of long-term changes. Lastly, we

describe how model estimates can be combined with historical observations

to provide a single diagnosis accounting for both sources of information. The

potential of this new method is illustrated using the 2003 European Heat Wave

and under a Gaussian assumption. Results suggest that (i) it is feasible to per-

form event attribution using transient simulations and non-stationary statis-

tics, even for a single model, (ii) the use of multi-model synthesis in event

attribution is highly desirable given the spread in single model estimates, and

(iii) merging models and observations substantially reduces uncertainties in

human-induced changes. Investigating transient simulations also enables us

to derive insightful diagnoses of how the targeted event will be affected by

climate change in the future.
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1. Introduction33

Describing the relationship between a given weather or climate event and anthropogenic climate34

change is a growing area of activity in the field of climate science (National Academies of Sciences35

and Medicine 2016). Since the pioneering studies of (Allen 2003; Stott et al. 2004), the concept of36

event attribution has been applied to a wide variety of events, as synthesized in the annual special37

issues of BAMS “Explaining extreme events in a climate perspective” (Peterson et al. 2012, and38

subsequent issues1).39

Multiple approaches have been introduced to address this question. Beyond issues related to the40

definition of the event of interest, the most commonly used approach is probabilistic, and involves41

a comparison of the distributions of extreme events in the factual vs counterfactual worlds (Stott42

et al. 2004; Pall et al. 2011, e.g.,). Particular attention is paid to changes in probability of the event43

associated with human influence. Various alternatives have been proposed in the literature; one44

of these involves focusing on the thermodynamic component of human influence (Trenberth et al.45

2015; Cattiaux et al. 2010, e.g.,). However, this study will focus on the probabilistic approach46

and its statistical implementation, i.e. how estimating changes in occurrence frequency and the47

corresponding uncertainty.48

At least two methods are commonly used to derive such probabilities.49

First, large ensembles of simulations are used to sample the factual and counter-factual statisti-50

cal distributions (Pall et al. 2011; Massey et al. 2015; Christidis et al. 2013; Ciavarella et al. 2018;51

Wehner et al. 2018). Such ensembles are typically produced with atmospheric-only models forced52

by prescribed sea surface temperatures (SSTs); factual SSTs are usually taken from observations,53

while counterfactual SSTs are derived by subtracting an estimate of the anthropogenic influence.54

Such ensembles can be very large, typically from a few hundred to more than 10.000 simulations55

1see https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-from-a-climate-perspective/
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of one year or one season. One important advantage of using such large ensembles is that the sig-56

nal to noise ratio is increased (sampling noise is reduced), and probabilities can be estimated very57

straightforwardly by counting exceedances, i.e. using a minimal statistical inference – although58

more complex treatments have also been proposed (Paciorek et al. 2018). Several disadvantages59

should also be mentioned: the computational cost is relatively high (large number of simulations,60

which have to be redone on an annual basis at least), processes involving ocean-atmosphere cou-61

pling are missing (Dong et al. 2017), results are conditional on the particular pattern of SSTs62

considered (Risser et al. 2017), model bias or reliability issues can affect results (Bellprat and63

Doblas-Reyes 2016), and lastly, modelling uncertainty is usually not assessed comprehensively64

due to the lack of coordinated exercise (Wehner et al. 2018, is a noticeable exception).65

Second, occurrence probabilities can be inferred from observations and observed trends, assum-66

ing that the trends are entirely related to human influence on climate (van Oldenborgh et al. 2015;67

Vautard et al. 2015, e.g.,). This approach eliminates all concerns related to model bias and/or error68

in representing climate change. However, one strong limitation is that the signal to noise ratio69

is usually limited in observations – climate change to date might be relatively small compared to70

internal variability. In many cases, observations do not provide evidence for any significant trend,71

while models do suggest sensitivity to anthropogenic forcings. Even if a significant trend is found,72

uncertainty in the trend estimate might lead to very wide uncertainty in the risk ratio or other di-73

agnoses of the human influence. Further, this techinque is highly dependent on the availability of74

a long, homogeneous historical record – and such data are not always available.75

A few attempts have been made to consider these two approaches simultaneously (Uhe et al.76

2016; Eden et al. 2016; Hauser et al. 2017). These studies provide very helpful comparisons77

of methods for selected case studies. However, to the best of our knowledge, there has been78
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no real attempt to combine the two available sources of information together (i.e. models and79

observations) in order to provide one single estimate of human influence.80

In this paper, we tackle several of these issues. First, we propose to base event attribution on81

transient CMIP-style simulations – typically a combination of historical and RCP scenarios. This82

is done through the use of non-stationary statistics (Section 3). Second, we propose a statistical83

procedure to create a rigorous multi-model synthesis. This question has not been fully addressed in84

previous event attribution literature, primarily because no large multi-model ensemble was avail-85

able. We show that, if such an ensemble were available, the assumptions and techniques used86

to construct multi-model syntheses for large scale mean variables could be extented to event at-87

tribution (Section 4). Third, we introduce a statistical framework for merging information from88

models and observations. The proposed method is essentially Bayesian, in the sense that available89

observations are used to constrain the model range further (Section 5).90

Using transient CMIP-style simulations for event attribution is not a new idea (Lewis and Karoly91

2013; King et al. 2015). The main issue with such simulations is that the sample size is limited92

– usually to no more than 10 members. This is at least partly compensated by the fact that these93

simulations include a period of time (near the end of the 21st century) in which the human influ-94

ence is much more pronounced than in the current climate, resulting in a higher signal to noise95

ratio. Another potential concern is related to the capacity of CMIP models to simulate extreme96

events adequately – a point that we carefully discuss below. Regardless, there are tremenduous97

advantages in using such simulations: they are already available (dragging the computational cost98

down to almost zero), performed with fully-coupled models (i.e. accounting for coupled processes,99

and also not conditional on a specific oceanic state), and available for many models (allowing the100

possibility to account for modelling uncertainty in a comprehensive way, consistent with IPCC101

practice).102
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In addition to the statistical inference itself, we promote the use of two additional diagnoses in103

describing the relationship between a particular event and climate change. First, the human influ-104

ence is quantified both in terms of probability and intensity of the event. Although highlighting105

this duality is not new, using one point of view or the other may have contributed to past controver-106

sies (Otto et al. 2012; Trenberth et al. 2015), although both quantities can be derived from the same107

statistical analysis. Second, we describe how the characteristics of the event (frequency, intensity)108

evolve with time. This allows us to describe not only the human influence to date – the main109

diagnosis of event attribution studies – but also how a similar event will be affected by climate110

change in the future (Christidis et al. 2015, took a first step in this direction). This type of outcome111

is another benefit of using transient simulations, and might be very helpful for communicating the112

relationship between an event and climate change in a comprehensive way.113

The main goal of this paper is to describe the entire proposed statistical method, and to provide114

a first illustration of its potential. The proposed algorithm is flexible and could be improved in115

several ways, without significantly affecting its general structure. Such improvements could be116

considered in future work.117

2. Framing and data118

a. Event definition and indicators of the human influence119

Although a relatively wide biodiversity of events (or classes of events) has been considered in120

event attribution, in this study we focus on simple events such as121

E =
{

y > s
}
, (1)

where y is a univariate random climate variable – typically temperature, rainfall or wind speed,122

averaged over a given time window and spatial domain – and s a predetermined threshold. We123
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assume that this event has happened at a time te in the factual (F) world2. The attribution analy-124

sis involves describing the characteristics of a similar event happening in the counterfactual (C)125

world3. As we consider transient simulations where climate changes with time, describing how126

the characteristics of the event vary with time, e.g. in the factual world, is also of interest.127

Changes in occurrence frequency / probability can be assessed by comparing the probability128

of the event E happening in (F) vs (C), considering the same threshold s. Denoting FF, t and129

FC, t the cumulative distribution functions of y at time t in the factual and counterfactual worlds,130

respectively, we define131

pF (t) = PF, t(E) = 1−FF, t(s), pC(t) = PC, t(E) = 1−FC, t(s). (2)

Human influence is then typically characterized through the risk-ratio (RR) and the fraction of132

attributable risk (FAR, Stott et al. 2004)133

RR(t) =
pF (t)
pC(t)

, FAR(t) =
pF (t)− pC(t)

pF (t)
= 1− 1

RR(t)
. (3)

As they are of critical importance, we will denote pF = pF (te), and pC = pC(te) the probabilities134

at time te.135

Changes in intensity are assessed by comparing the magnitude of events with the same occur-136

rence probability; this value is set to pF , consistent with the observed event:137

iC(t) = F−1
F, t (1− pF ), iC(t) = F−1

C, t (1− pF ), then δ i(t) = iF (t)− iC(t). (4)

In other words, iF and iC are the quantiles of order pF of FF, t and FC, t , respectively. The definition138

of pF implies that iF (te) = s. δ i tells how much more/less intense the event with exactly the139

same frequency would have been in the counterfactual world. Note that, according to the climate140

2The factual world, or world as it is, is the world where all external forcings, including the anthropogenic ones, have influenced climate.
3The counterfactual world, or world that might have been, is the world where anthropogenic influence is removed, while natural forcings still

vary through time.
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variable considered, using a relative difference, rather than absolute difference, in δ i might be141

appropriate.142

Two important remarks can be added. First, conventional attribution studies only calculate RR,143

FAR or δ i at time te, i.e. the exact date at which the event was observed. Calculation of RR,FAR144

or δ i at a different date allows us to quantify the human influence, had the event occurred at that145

date. Second, describing how the characteristics of the event are changing through time, e.g. in146

the factual world, is also helpful (see e.g. Christidis et al. 2015). This can be done using relative147

indices, e.g.148

RRrel(t) =
pF (t)
pF (te)

, or δ irel(t) = iF (t)− iF (te). (5)

All these diagnoses are calculated and illustrated subsequently.149

b. Case study: 2003 European Heatwave150

In order to illustrate the method presented in this paper, we focus on the 2003 European Heat-151

Wave (EHW03), an event which has long been scrutinized in event attribution studies (Stott et al.152

2004; Schär et al. 2004; Christidis et al. 2015). We define EHW03 (variable y) as a 1-month153

event occurring in August 2003 near Paris, France. The spatial domain considered is a 5◦× 5◦154

square surrounding Paris, i.e. [45N–50N] and [0E–5E]. The choice of this space-time window is155

debatable (see e.g. Cattiaux and Ribes 2018). A monthly value was considered – a convenient156

choice in order to involve as many CMIP5 models as possible, and illustrate their (dis-)agreement.157

The threshold used, s, corresponds to a 5◦C anomaly with respect to the 1961-1990 mean. This158

temperature anomaly was effectively exceeded in 2003 (+5.38◦C), but not overtaken in any other159

year in the instrumental record.160
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As further discussed below, our technique also requires the use of a covariate x, which is as-161

sumed to be representative of climate change magnitude over time. We consider the summer mean162

tempreature over Western Europe ([35N-70N] and [10W–30E]) in this respect.163

c. Data164

We use data from a collection of climate models from the 5th Coupled Model Intercomparison165

Project (CMIP5) – all 24 models considered are listed in Figure 5. For each model, we combine166

historical simulations (1850–2005) and RCP8.5 simulations (2006–2100). We use all available167

runs in cases where ensembles have been performed – using a different number of historical and168

RCP8.5 simulations is not problematic. Pre-industrial control simulations are also used at some169

point to quantify internal variability and derive confidence intervals.170

Our method also requires using observed data. We use HadCRUT4 (Morice et al. 2012,171

https://crudata.uea.ac.uk/cru/data/temperature/) to provide historical summer mean172

temperatures over Western Europe (1850–2016, [10W,30E]x[35N,70N]), and August mean tem-173

peratures in the vicinity of Paris, France (1850–2016, [0E,5E]x[45N,50N]).174

3. Statistical analysis of transient simulations175

In this section, we consider data from one single climate model, and describe how changes in risk176

can be calculated from such data. By construction, transient simulations exhibit a non-stationary177

climate, so using non-stationary statistics is a key component of our approach. Therefore, we178

consider a covariate x which is assumed to be representative of climate change magnitude over179

time. The covariate will typically be a temperature, averaged either globally or over a large region,180

on a seasonal or annual basis. Several studies already used the global mean temperature as such181

a covariate (van Oldenborgh et al. 2015; van der Wiel et al. 2017). Here we use summer mean182
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European average temperature, and refer to 6 for further discussion on this choice. Once this183

covariate x has been selected, our procedure is as follows.184

a. ANT and NAT contributions to changes in x185

As a first step, we need to estimate the forced responses in the covariate x, and in particular the186

contributions of natural vs anthropogenic forcings to changes in x. This is typically the purpose187

of detection and attribution techniques. However, these techniques are not usually designed to188

provide smooth time-series as a result. We therefore propose a hybrid approach using Generalised189

Additive Models (GAM).190

We assume that191

xt = µx + βet︸ ︷︷ ︸ + f (t)︸ ︷︷ ︸ + εt , (6)

= xnat
t + xant

t + εt , (7)

where µx is a constant, et is an EBM (Energy Balance Model, see Held et al. 2010) response to192

natural forcings only at the global scale, β is an unknown scaling factor, f (t) is a smooth temporal193

function, and εt is a random term describing internal variability.194

Within this framework, estimation of the response to natural forcing is quite consistent with195

usual D&A practice, as it involves the estimation of an unknown scaling factor β . The main inno-196

vation is the consideration of the response et derived from an EBM, rather than a more complex197

model. In doing this, we take advantage of the information provided by forcing time-series, and198

avoid involving additional noise (i.e. internal variability) from a climate model run. As a result,199

the estimated response to natural forcings is much more constrained; for instance, the impact of200

major volcanic eruptions is clearly noticeable. A similar variant was previously used by Huber201

and Knutti (2012). In practice, we calculate the EBM solution following Geoffroy et al. (2013).202
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Our best estimate is derived using a multi-model mean of EBM parameters. Other combinations203

of these parameters are used to quantify uncertainty in a resampling approach.204

Estimation of the response to anthropogenic forcing relies on the assumption that the time re-205

sponse to anthropogenic forcing is smooth over time. This can be regarded as a sensible assump-206

tion, as greenhouse gas and aerosols, i.e. the two dominant drivers, vary quite slowly over time.207

In addition, anthropogenic influence has been shown to be largely dominant on mean temperature208

changes over recent decades (Bindoff et al. 2013). Anthropogenically induced changes are com-209

puted with respect to a reference date tre f , implying that f (tre f ) = 0; we consider tre f = 1850,210

consistent with CMIP protocol, but another reference could be used. As the shape of f is not211

further constrained, our estimate might be influenced by low-frequency internal variability; it will212

be necessary to account for this component in the uncertainty analysis.213

Estimation within model (6) can be made using standard GAM tools. Here we chose to estimate214

f using smoothing splines with 6 equivalent degrees of freedom – this number was tuned using215

cross-validation.216

Quantifying uncertainty in this decomposition is more difficult, since it is important to account217

for dependencies in εt . It is assumed that εt ∼ N(0,Σ), where Σ is known (derived from pre-218

industrial control simulations, as usual in D&A) but not equal to identity. Uncertainties on xnat
t219

and xant
t are assessed by using (i) perturbed values of et (using EBM parameters fitted to individual220

CMIP models), and (ii) parametric uncertainty on β (resp. f ()) given ( f (),et) (resp. (β ,et)).221

This decomposition procedure is illustrated in Figure 1 for one particular CMIP5 model222

(CNRM-CM5). Response to major volcanic eruptions can be easily identified in both the factual223

world (all forcings combined) and the counter-factual world (natural forcings only). The human224

influence emerges from noise near 1970 in this model. This is not necessarily contradictory with225

the fact that human influence is not attributable at that date in the instrumental record – 10 model226
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runs are used, while only one observed realization is available, implying different signal to noise227

ratios.228

This decomposition produces two major outputs: the estimated response to natural forcings only,229

xnat
t , corresponding to the expected value of x in the counterfactual world, and xall

t = xant
t + xnat

t ,230

describing the state of x in the factual world.231

b. Fitting a non-stationary distribution to yt232

As a second step, a non-stationary distribution is fitted to the variable of interest y. xall
t is used233

as a covariate in this non-stationary fit. Two types of distributions are considered:234

• Gaussian distribution:235

yt ∼ N
(

µ0 +µ1 xall
t , σ0(1+σ1 xall

t )
)
. (8)

The parameters γ = (µ0,µ1,σ0,σ1) can be estimated via maximum likelihood. However, no236

closed formula is available in this case, and an optimization algorithm is needed. We used237

the nlminb R routine, chosen from other possible options. Confidence regions on γ can be238

derived by bootstrapping (xall
t ,yt) and simultaneously considering uncertainty on xall

t , derived239

from the previous step.240

• Non-parametric distributions, assuming that the quantile of order α at time t, qα
t , satisfies:241

qα
t = µ

α
0 + µ

α
1 xall

t . (9)

In this case, the parameters γ = (µα
0 ,µ

α
1 ) can be estimated, for a collection of α , using242

quantile regression (Koenker and Bassett Jr 1978; Koenker and Hallock 2001). Given typical243

sample sizes (a few hundreds to thousands of data) and the computational cost of resampling,244

a fast algorithm is needed, and we used the Frisch-Newton approach after preprocessing (see245

Portnoy et al. 1997, implemented in R under “pfn”). Another potential issue comes from246
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the use of quantile regression for a set of values of α . Quantile regression is done separately247

for each α , and there is no guarantee that the obtained quantiles are properly sorted over the248

entire considered range of xall
t . We deal with this issue by re-arranging the obtained quantiles249

(Dette and Volgushev 2008). Searching for a regularised quantile regression able to cope with250

this issue, e.g. where µα
0 and µα

1 are smooth functions of α , would be very attractive but is251

beyond the scope of this paper. As in the Gaussian case, uncertainty on (µα
0 ,µ

α
1 ) is assessed252

through a bootstrap procedure.253

This list of distributions is obviously not exhaustive, and other families might be used. For in-254

stance, Generalized Extreme Value (GEV) distributions could be of interest when the focus is on255

annual maxima. The use of non-parametric distribution still offers a lot of flexibility. As an ex-256

ample, Generalized Pareto Distribution (GPD) can be adjusted to the tails of such distributions257

in order to improve estimation of rare values4. In the remainder of this paper, we focus on non-258

stationnary Gaussian distribution only for illustrating our method. Non-parametric distributions259

were also used with success to analyze transient simulations, and they provided results consistent260

with the Gaussian case for our case study. However, their use in subsequent steps (such as multi-261

model synthesis and observational constraints, see Sections 4 and 5) is beyond the scope of this262

paper.263

The fit of a non-stationary Gaussian distribution is illustrated in Figure 2. This figure suggests264

that xall
t is an appropriate covariate for yt , as the linear relationship is well-supported by the data.265

More generally, this type of diagnosis can be used to check if the choice of the covariate is appro-266

4Non-stationary GPD-distribution could be used as such to modelize threshold exceedances. However, in many practical situations, it might be

useful to obtain an estimate of the entire distribution, not only the tail. In particular, in the case of temperature, an event in the tail of the distribution

in the counter-factual world can become quite common in the course of the 21st century, requiring an estimation of the entire distribution in order

to derive standard attribution statistics.
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priate. The fact that the three regression lines (corresponding to mean and quantiles) are almost267

parallel indicates that there is almost no changes in variance for these particular model and vari-268

able.269

In the following, γ will be split into (γ0,γ1), where γ0 are parameters describing the distribution270

of y at a reference time (or in a stationary climate), while γ1 are parameters describing how y is271

sensitive to changes in x. For instance, in the Gaussian case, γ0 = (µ0,σ0) and γ1 = (µ1,σ1).272

c. Estimating changes in probability / intensity273

Once a non-stationary distribution has been fitted on y, all attribution diagnoses introduced in274

Section 2 can be derived easily. In particular, frequency (i.e. probability) and intensity can be275

calculated in the factual and counterfactual world at time te, and RR and δ i can be derived from276

there.277

Changes in frequency and intensity, as estimated from one particular CMIP5 model, are illus-278

trated in Figures 3 and 4, respectively. The event frequency moves from about 10−4 in 1850 to279

more than 1/2 in 2100 in the factual world. These numbers differ, but are not inconsistent with280

Stott et al. (2004), as we consider a smaller space-time domain, implying a much smaller signal-to-281

noise ratio. Over the same period, the magnitude of the event increases by about 6◦C in response282

to human influence. Frequency and intensity diagnoses complement each other well, and show283

that recent changes are large in terms of risk ratios (RR near 10 in 2003) while remaining lim-284

ited in terms of magnitude (near 1◦C in 2003) in that model. The influence of natural forcings285

is clearly discernible, and mainly driven by large volcanic eruptions. Consistent with Figure 1,286

both frequency and intensity exhibit a discernible human influence as early as 1970 in this model.287

Human influence becomes huge during the 21st century, with RR higher than 104 in 2100. Over-288

all, confidence intervals might be found to be relatively narrow, but they are consistent with the289
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estimated changes in x (which exibits limited uncertainty, Figure 1), and the fact that there is a290

clear relationship between x and y (Figure 2). The latter implies that any significant change in x291

translates into a significant change in y.292

4. Multi-model perspective and synthesis293

a. Results from CMIP5 models294

In order to give a broader picture, this procedure can then be applied to other CMIP models295

(Figure 5). This reveals that model uncertainty is large – unlike estimation (or sampling) uncer-296

tainty which remains very limited. Models’ best estimates of RR vary from 1.8 to more than 400297

at the date of the event. The lower bound goes down to 1 considering estimation uncertainty (i.e.298

confidence intervals). Discrepancies among models are also very large in terms of δ i, from .2 to299

3◦C in 2003. Similar findings are made on the other parameters involved: pC , pF , iC , iF – keeping300

in mind that model biases contribute substantially to discrepancies in iC , iF .301

Unlike CNRM-CM5, some individual models exhibit a singificant cooling trend (e.g. FGOALS-302

g2, ACCESS1-3, all versions of MIROC and CMCC) or warming trend (e.g. BCC-CSM1-1-M,303

INMCM4, GISS-E2-R) in xall
t prior to 1950 (Figure 6a) – a period over which the anthropogenic304

forcings are limited. Most of this trend is interpreted as resulting from human influence (i.e., falls305

into xant
t ) according to the simple decomposition described in Sub-section 3a. Such trends typ-306

ically result in RR (resp. δ i) becoming significantly different from 1 (resp. 0) soon after 1850307

(Figure 6d,g). At this stage it is unclear whether these trends (i) are related to low frequency308

internal variability inappropriately taken into account, (ii) can be explained by a long-term re-309

gional drift in (imbalanced) pre-industrial control simulations, or (iii) highlight an early onset of310

the anthropogenic influence (i.e. appropriately taken into account), either dominated by aerosols311
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(inducing a cooling) or GHG (inducing a warming) at the regional scale. This will require further312

investigations which go beyond the methodological scope of this paper.313

Though large, discrepancies among models, e.g. in terms of RR and δ i estimates in 2003, can be314

easily understood. Models disagree on the magnitude of the changes in the covariate x (different315

global or local sensitivity), the variance of y (which strongly influences the probability to exceed316

a high threshold), and the strength of the relationship between y and x. Each model exhibits some317

bias in one of these characteristics. This highlights the need for a multi-model synthesis.318

b. Building a multi-model synthesis319

Techniques for building a multi-model synthesis have received much attention in both the litera-320

ture and IPCC review, due to their importance in providing climate change projections for the next321

century, including an assessment of uncertainty (Collins et al. 2013). Literature on the subject of322

how to use an ensemble of opportunity such as the CMIP ensemble, i.e. where no particular design323

effort is made to cover the range of uncertainty (Tebaldi and Knutti 2007; Knutti et al. 2010a,b),324

is particularly abundant. These attempts to combine several models into one single uncertainty325

range have not been translated into event attribution thus far. In this section we introduce one pos-326

sible method for conducting such a synthesis in the context of the statistical framework described327

above. The proposed technique is similar to that outlined in Ribes et al. (2017); we review the328

main concepts here, but refer to that publication for a more detailed discussion.329

Following Section 3, the parameters describing the response of one single model are: θ =330

(xall
t ,xnat

t ,γ) – all diagnoses can be derived from θ . The key idea behind the multi-model syn-331

thesis is to assume that (θi)i=1,...,m (where m is the number of models) are realizations of one332

multi-model distribution. Then, it is further assumed that the truth, say θ ∗, is also a realization333

of this multi-model distribution – a paradigm known as models are statistically indistinguishable334
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from the truth (Annan and Hargreaves 2010). It is necessary to estimate this distribution in order335

to derive multi-model statistics such as confidence regions. In the following, this distribution is336

assumed to be Gaussian, but the procedure could be extended to other types of distributions.337

In more detail, we assume that:338

θi ∼ N
(
µ,Σm

)
, and θ̂i|θi ∼ N

(
θi,Σθ ,i

)
, (10)

leading to:339

θ̂i ∼ N
(
µ,Σm +Σθ ,i

)
, (11)

where θi is the value of θ for model i, θ̂i its estimate, µ and Σm are the mean and variance of the340

multi-model population (i.e. Σm respresents modelling uncertainty on θ ), and Σθ ,i describes the341

uncertainty related to internal variability in the estimation of θi. For each model, θ̂i can be derived342

from the estimation procedure described in Section 3. Estimates of Σθ ,i can also be derived from343

the uncertainty analysis conducted there – the resampling was intended to explore uncertainty re-344

lated to internal variability. It is important to account for this uncertainty component because, for345

some class of extreme events, the signal-to-noise ratio is low, which makes the estimate θ̂i rela-346

tively inaccurate. In such a case, the estimation uncertainty (i.e. Σθ ,i) can substantially contribute347

to the spread in the estimated values θ̂i (in addition to the spread in θi). The next step is to esti-348

mate µ,Σm from the available sample of θi – we refer to (Ribes et al. 2017) for this technical step.349

Lastly, confidence regions for the truth θ ∗ can be derived from µ,Σm.350

Given a collection of CMIP models such as in Figure 5, our procedure can be used to derive351

multi-model statistics and confidence regions (Figure 6, and ’MULTI’ confidence ranges in Figure352

5). The fitted multi-model distribution can also be used to sample new realizations (using Monte-353

Carlo simulations) corresponding to virtual climate models (Figure 6) – this is a way to check that354

the fitted distribution is consistent with the model sample.355
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Multi-model uncertainty is found to be much larger than the sampling uncertainty related to356

internal variability in one given model. This is not surprising for a month-long temperature event357

such as the one investigated here, and is consistent with many other studies (e.g. Hawkins and358

Sutton 2009). The multi-model confidence range for RR is about [1.4,230] in 2003, which better359

reflects the overall uncertainty than single model estimates. It is worth noting that the reported360

multi-model confidence regions are not equal to the range of single model results. Some models361

can be excluded from the final confidence region if they are outliers in terms of θ . And, in the362

presence of a very large sample of models, the bounds of the multi-model confidence region would363

converge to the corresponding quantiles of the model sample.364

The uncertainties reported above appear larger than in previous studies. In particular, our confi-365

dence range for RR is larger than reported by (Stott et al. 2004). Discrepancies in the methods and366

event definitions can explain or contribute to this gap. Among these, two important features of our367

approaches should be highlighted. First, the ensemble of models considered here is larger than in368

any other attribution study, enabling a more comprehensive exploration of uncertainties. Second,369

the attribution performed here is less constrained than other approaches. The most widespread370

event attribution procedure relies on prescribed SSTs where an estimate of the anthropogenic in-371

fluence is removed (Pall et al. 2011). The latter usually involves observations to some extent,372

leading to a climate change signal in SSTs which is more constrained than that simulated by (un-373

constrained) coupled models. This highlights the benefit of incorporating observed information in374

our procedure – a path explored in the next section. However, a large part of the model spread375

shown in Figure 5 cannot be explained by the use of coupled rather than atmospheric-only mod-376

els. For instance, the reported spread in pF is almost entirely related to spread in the variance377

of y, which also strongly contributes to the spread in RR. Therefore, our results suggest that it is378
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critical to consider a large ensemble of models, with a careful assessment of uncertainty, for event379

attribution – as for assessing many other features of climate change.380

5. Merging models and observations381

In this section we introduce two options which can be used to combine observations and infor-382

mation provided by climate models, using the multi-model synthesis as a starting point. Among383

other possible approaches, we focus on using observations to constrain changes in x and estimate384

the distribution of y. Other options are briefly discussed in Section 6.385

a. Observed changes in x386

Detection and attribution studies have long illustrated that observations might be used to derive387

information on, e.g., human induced warming to date (Bindoff et al. 2013), in particular in cases388

where the investigated variable exhibits a high signal to noise ratio (SNR, i.e. response to anthro-389

pogenic forcings with respect to the magnitude of internal variability). As the selected covariate x390

typically exhibits high SNR, historical records of x are likely to be insightful with respect to both391

past and future changes in x. Taking our case study as an example, in Figure 6a-b, models exhibit392

large differences in the simulated regional warming to date (0.5 to 2◦C in 2015). Observations393

available over the same period of time suggest that the uncertainty range in the past warming is394

in fact much smaller (Figure 7). It is thus natural to investigate which changes in x are consistent395

with available observations.396

In mathematical terms, real observations of covariable x, say x̃, can be written as397

x̃t = xall
t
∗
+ εt , (12)

where xall
t
∗ is the real world response to external forcings and εt is the contribution of internal vari-398

ability, considered to be random. Using a Bayesian perspective, multi-model uncertainty on xall
399

19



(derived from the multi-model synthesis, e.g., Figure 6b) can be considered as a prior distribution400

for xall
t
∗, say π(xall

t
∗
). If both this prior distribution and the distribution of εt are known (sensible401

assumption), then it is possible to derive the posterior distribution of xall
t
∗|x̃, using a conventional402

Bayesian technique. This derivation is particularly easy under the assumption made in Section 4,403

as all distributions involved (i.e. π(xall
t
∗
) and the distribution of ε) are assumed to be Gaussian.404

In fact the same technique can be employed to derive the distribution of θ ∗|x̃ (θ ∗ is the value of405

θ in the real world; θ ∗ contains xall∗ but is larger). Then, this distribution (i.e. constrained by406

observations) can be used instead of that of θ ∗ (unconstrained) to derive all results, following the407

same procedure as in Section 4.408

Application of this procedure to summer mean temperature over Europe (i.e. our covariate409

x) suggests that some model responses to historical forcings are inconsistent with observations410

(Figure 7). This phenomenon can be explained as follows. Intuitively, xall
t
∗ is the expectation of x̃t411

at time t, so observed values x̃t should be distributed around xall
t
∗. An xall

t
∗ is not quite plausible412

if it lies far away from most observed values x̃t . In Figure 7, the upper and lower bounds of413

the multi-model distribution π(xall
t
∗
) fall almost outside the set of observations over the beginning414

(before 1900) or the end (after 2000) of the observed period, suggesting some inconsistency. Using415

observational information therefore leads to a substantial reduction of the multi-model uncertainty416

in changes in x. This reduction is particularly clear over the historical period: the multi-model417

5–95% confidence range of total 1850–2015 warming is [0.50◦C, 2.00◦C] without the use of any418

observations (i.e. in π(xall
t
∗
)), but shrinks to [0.87◦C, 1.41◦C] after applying the observational419

constraint (i.e. in xall
t
∗|x̃). But the spread in future warming is also substantially reduced – [3.82◦C,420

7.69◦C] and [4.41◦C, 6.88◦C] for the corresponding 5–95% confidence ranges before and after421

applying the observational constraint, respectively.422
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The impact on event attribution dignoses is also very clear, with a sharp reduction of uncertain-423

ties in RR or δ i (Figure 9). The lower bound of RR is particularly affected (3.1 after accounting for424

observations, as opposed to 1.4 without), because some model responses exhibit almost no human-425

induced warming in 2003, while observations suggest that such weak responses are unlikely. The426

effect on δ i is even bigger: uncertainty reduces from [+0.1◦C,+2.3◦C] before accounting for ob-427

servations to [+0.5◦C,+1.5◦C] after. Overall, these results suggest that taking observational in-428

formation into account is very helpful, even if done only through the covariate x, i.e. at a large429

spatio-temporal scale.430

b. Observed distribution of y431

Another way of merging climate models outputs with real world observations is to estimate the432

distribution of y, e.g., at the time of the event. Climate models exhibit all sorts of biases (e.g. biases433

in the mean climate, biases in the variability, other biases affecting the tails of the distribution,434

etc), which can make the simulated pF (and, more generally, the entire probability distribution)435

erroneous (Bellprat and Doblas-Reyes 2016). Figure 5 shows that estimates of pF vary widely,436

and are inconsistent among models. In many cases, even a limited observational record can be437

sufficient to estimate pF more accurately than using the multimodel synthesis. In practice, most438

national weather services do rely on observations rather than climate model simulations in order439

to estimate the return period of a specific event (and return periods in general, see e.g. Tank et al.440

2009).441

Here, we illustrate how observations of the investigated variable y, say ỹ, can be used to in-442

fer pF and, more generally, the distribution of y at time te. We assume that both changes in the443

covariate x and the non-stationary coefficients γ1 are known from climate models, with some un-444

certainty. Observations are therefore only used to estimate γ0, taking into account the influence445
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of climate change on the observational record. Note that this treatment is distinct from (and po-446

tentially more appropriate than) a common practice in which occurrence probability is estimated447

using observations, but ignoring their climate change component. In the proposed procedure, γ0448

is fully determined by observations, i.e. there is no use of models’ prior distribution of γ0; in this449

respect, the proposed treatment cannot be considerd as an observational constraint. But this is still450

a combination of models and observations, as models are used to estimate some parameters (xall
451

and γ1) while observations are used to estimate others (γ0).452

Under the Gaussian assumption, the parameters (µ0,σ0) of Eq. (8) have to be estimated. Given453

estimates of γ1 and xall
t , µ0 can be naturally estimated by454

µ̂0 = ỹt−µ1xall
t , (13)

where z denotes the average of z, ỹt are the available observations of y, and ỹt ,µ1 and xall
t are all455

known. Then, σ0 can be estimated by456

σ̂0 = sd

(
ỹt−µ1xall

t − µ̂0

1+σ1xall
t

)
, (14)

where sd is the sample standard deviation, denoting again that every term in the right hand side is457

known, and that (ỹt −µ1xall
t − µ̂0)∼ N

(
0,σ0(1+σ1xall

t )
)
. Note that these estimators (µ̂0, σ̂0) do458

not necessarily coincide with the Maximum Likelihood Estimators, but are however quite natural459

and attractive for computational reasons. Uncertainty on these parameters can be assessed by460

extending the bootstrap procedure to ỹt (i.e. resampling observations ỹt , as would be done in a461

stationary context), and considering simultaneously uncertainty in µ1,σ1 and xall
t , as derived from462

the multimodel synthesis.463

Our procedure is illustrated in Figure 8. As the CanESM2 model simulates a larger change µ1xall
t464

than CNRM-CM5, the 2003 event is relatively less abnormal according to that model, resulting465

in a much larger estimate of pF . Note that changes in variance are small and do not substantially466
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influence the results in this particular example. Model discrepancies in estimating pA are therefore467

largely related to spread in the non-stationary term µ1xall
t in this approach.468

Applying this procedure to all single models and/or to the multi-model synthesis leads to much469

reduced uncertainties in the estimate of pF , which might be attractive for several purposes (Figure470

9). This makes sense, as γ0 contains the key parameters of the distribution of y, and pF is just471

one feature of that distribution. Estimates of pC are similary improved. However, the impact on472

attribution diagnoses, i.e. RR and δ i, is very limited. In fact, the proposed procedure refines473

the estimation of the y-distribution, but does not affect the estimation of human influence, and so474

coefficients measuring that influence are only marginally impacted.475

c. Applying the two constraints together476

The two constraints presented above can also be applied simultaneously. If so, observations are477

used to constrain changes in x first; then parameters γ0 are estimated using observations of y, given478

(x,γ1). Therefore, observed information is used in both x and γ0, in addition to model information.479

As they combine all sources of information, results obtained in this way can be considered as the480

final results of the attribution procedure described in this paper (Figures 9 and 10 for the multi-481

model synthesis only; results obtained applying these constraints with single-model estimates of x482

and/or γ1 are shown in Supplementary Material).483

Applying the two constraints simultaneously leads to a real narrowing of uncertainties in es-484

timating probabilities pF or pC (where estimation of γ0 is critical), but also the standard human485

influence diagnoses RR and δ i (where constraining x is critical), if compared to the unconstrained486

multi-model estimates (Figure 9). In terms of attribution diagnoses, uncertainty in RR shrinks487

from [1.4, 230] (multimode synthesis, no use of observations) to [4,95] (applying the two con-488

straints). Uncertainty in δ i is also strongly reduced, from [+0.1◦C,+2.3◦C] to [+0.5◦C,+1.5◦C]489
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(i.e. roughly by a factor of 2). Similar findings are made for pC and pF . In all cases considered,490

applying the two constraints together reduces model spread further than using one single constraint491

or no observations at all.492

Remarkably, time series of attribution dignoses, RR and δ i, can still be derived after applying493

these constraints (Figure 10). Beyond estimates of RR and δ i in 2003, several conclusions can494

be derived from there. First, human influence on an event like EWH03 has been significant since495

the mid 1980’s (Figure 10a,c). Second, the odds of observing an event such as EWV03 (in the496

sense of the same magnitude) have strongly increased since 2003; they were 3 to 9 times larger in497

2018 than in 2003 (qualitatively consistent with Christidis et al. 2015). Third, an event similar to498

EHW03 (in the sense of the same frequency) occurring in 2100 under an RCP8.5 scenario would499

imply a human contribution as large as +7.7◦C [+4.7, +11.1] (Figure 10c). Lastly, a very large500

fraction of this human-induced warming is expected to take place after 2003: +6.8◦C [+4, +9.8].501

Overall, these results suggest that our approach, in addition to covering a wide range of uncer-502

tainties through the use of a large ensemble of models, can lead to relatively constrained attribution503

results. They also suggest that, in the particular case under consideration, the unconstrained pa-504

rameters γ1 do not exhibit a large spread among models.505

6. Discussion506

In this section we reivew several aspects of our proposed method which deserve particular at-507

tention.508

(i) Choice of the covariate x Selecting an appropriate covariate x is a key step in our method. Ob-509

viously, the choice of this covariate is at least partly subjective, and can impact the final results. In510

our view, using a global or regional temperature may be appropriate, as changes in many variables511

have been described to scale with temperature (e.g. Collins et al. 2013; Tebaldi and Arblaster512
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2014). Pattern scaling, however, works better if only the GHG forcing is playing. In practice,513

other forcings, and anthropogenic aerosols in particular, also contributed to recent changes. As the514

strength of the aerosols forcing varies considerably over space, using a regional temperature as a515

covariate might better reflect the regional balance between various external forcings. In any case,516

relying on a covariate x is a strong assumption of our method, which much be properly acknowl-517

edged. Replicating the analysis with a different covariate might be one way to explore sensitivity518

to this choice. Incorporating a covariate uncertainty to the overall algortihm might be attractive as519

well, but goes beyond the scope of this paper.520

(ii) Limitations in using non-stationary statistics The use of non-stationary statistics is central in521

this approach, and some limitations must be pointed out. First, a sufficiently large SNR is needed522

in model data in order to allow fitting of the non-stationary model. The entire procedure can523

fail if non-stationnary coefficients cannot be estimated properly. In this respect, the temperature524

event considered in this study was an easy one. The method will have to be tested on other525

events / variables (e.g. precipitation, wind), to determine the extent of its field of application.526

Second, further statistical developments might improve the fit of the statistical model. In the527

current analysis, y-data were limited to a specific space-time domain – we ignore any information528

available outside this domain. Using further spatial (e.g. a borader region than that of the event) or529

temporal (e.g. modelling the an entire seasonal cycle) information might be particularly attractive,530

but would involve a sharp increase in the complexity of the statistical model and inference.531

(iii) Climate model evaluation and reliability Using CMIP models, the resolution of which is532

typically limited, brings into question the model’s reliability in simulating events comparable to533

the one under scrutiny – given that model biases do impact event attribution results (Bellprat and534

Doblas-Reyes 2016). The model reliability issue has sometimes been tackled through implement-535
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ing model selection (e.g. King et al. 2015) – an approach which could become ineffective for536

non-temperature small-scale events. A common and more general recommendation is to use high-537

resolution models (National Academies of Sciences and Medicine 2016, and references therein).538

However, in both cases, limiting the analysis to a small number of models can have undesirable539

effects on the uncertainty analysis.540

In our study, we did not perform any model evaluation nor selection. However, at least two options541

can be mentioned to cope with this issue. First, our method could be easily applied to Cordex-style542

experiments, offering the possiblity of exploring the modelling uncertainty using higher-resolution543

models. Second, bias correction techniques could be applied to model outputs before implement-544

ing the statistical analysis. Some very simple bias correction is in fact already applied in our545

method – although not explicitly stated – through defining the event as an anomaly with respect546

to a given reference period. In our view, using more formal bias correction techniques might547

reconcile event attribution with the use of coarse resolution CMIP-style models.548

(iv) Uncertainty quantification and modelling uncertainty One key outcome of our analysis is549

that considering modelling uncertainty is critical in event attribution. Uncertainty ranges vary550

greatly in size if derived using one model only vs a multi-model ensemble, with ranges far too551

narrow in the former case. The technique used to build the multi-model synthesis is very simple552

and could be improved in many ways, e.g. by using a link function for some parameters in θ , a553

non-Gaussian dependence structure, another paradigm than the model truth exchangeability, etc.554

In the current form, the uncertainty derived from the multi-model synthesis is typically relatively555

large, but it might still be necessary to check that it is consistent with observations – no such check556

was implemented here.557
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(v) Role of observations In the case of the EHW03, observations are found to substantially re-558

duce uncertainties in RR and δ i estimates (Section 5). However, this case might be quite unusual559

because (i) a long observational record is available, and (ii) SNR is relatively large. In many other560

cases, observational constraints will have much less impact on the final results. Attribution re-561

sults might even be made artificially sensitive to the region where the event occurred through the562

influence of the length of the historical record.563

(vi) Additional observational constraints Section 5 explored two possible ways to use observa-564

tions to constrain attribution results. With respect to y, observations are only used to estimate the565

stationary parameters γ0. A natural extension of this work would be to constrain both γ0 and γ1,566

i.e. to use observational information to constrain the magnitude of changes in y. Among other pos-567

sible implementations, this could be done using a Bayesian approach, in which the mutli-model568

uncertainty on γ is used as a prior distribution. Other strategies for blending model information569

with observations could also be valid.570

(vii) Consistency with other approaches Assessing the consistency of our results with previous571

studies which also focused on the EWH03 event is not easy, primarily because variations in the572

event definition can contribute to discrepancies in the results (Cattiaux and Ribes 2018). Roughly573

speaking, our results in terms of RR lie somewhere between Stott et al. (2004) and Christidis et al.574

(2015) – two studies which used similar methods but led to quite different results. Results in terms575

of δ i seems consistent with the figures in Christidis et al. (2015), although this diagnosis was not576

given explicitly. Providing closer comparisons between our approach and other event attribution577

methods, potentially single model results, will be of primary interest in the future.578

(viii) Consistency with IPCC reports Several similarities between our approach and typical IPCC579

practice can be noted. Indeed, our results are based on a collection of CMIP models, and the treat-580
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ment of modelling uncertainty is consistent with Collins et al. (2013). Furthermore, uncertainty581

plumes describing future changes under a given emission scenario, such as shown in Figure 6h,582

are qualitatively similar to typical IPCC projections. In this respect, this approach could be con-583

sidered to be an adaptation of IPCC projections for a singular weather or climate event. It is also584

important to note that the model information used after applying observational constraints, i.e. γ1,585

is very similar to that used in Collins et al. (2013, see, e.g., their Figure 12.27 for precipitation586

extremes) to describe long-term changes in extremes.587

7. Conclusion588

This study describes and illustrates a new statistical method for event attribution which can be589

decomposed into three steps. First, event attribution diagnoses are derived from transient CMIP-590

style experiments using non-stationary statistics and an approriate covariate. Single model results591

derived from this step typically exhibit large discrepancies. Second, a multi-model synthesis is592

performed, assuming model / truth exchangeability. Evidence suggests that this synthesis might593

represent uncertainty better than single model analyses. Third, multi-model information is com-594

bined with historical observations in order to account for all sources of information available. This595

blending typically reduces uncertainty in the final attribution diagnoses, while providing a more596

comprehensive description of the event and human influence on it.597

This study illustrates that it is possible to perform event attribution using available CMIP-style598

simulations, although this goal might have been considered challenging at first glance. This is599

an important result because the use of such experiments offers several advantages. In particular,600

it offers the possiblity of characterizing the human influence on a singular event in a way that601

is consistent with long-term projections, i.e. using the same data and a similar quantification of602

uncertainty. The calculation of uncertainty plumes covering both the past and future also provides603
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a new perspective on the human influence on a singular event. And, obviously, re-using available604

simulations could save much of computation time and efforts.605

Overall, this method could facilitate communication about the human influence on a particular606

event, as the diagnoses it provides are, by construction, consistent with other long-term indicators607

of climate change. The method is also promising in that it allows a rapid analysis of events, as all608

input data are already available. Testing this approach on a broad range of event types and scales609

will be necessary before any systematic application.610
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LIST OF FIGURES737

Fig. 1. ANT and NAT influences in covariate x. Changes in covariate x (raw data are shown as738

black points) are decomposed into changes related to all forcings combined (top, red), an-739

thropogenic forcings only (middle, green), and natural forcings only (bottom, blue). Shaded740

area corresponds to 5–95% confidence regions. All data are from CNRM-CM5, including741

all runs available from this model (10 historical, 5 RCP8.5). . . . . . . . . . . 38742

Fig. 2. Fit of a non-stationnary Gaussian distribution. Illustration of the non-stationnary fit743

for data from the CNRM-CM5 model, assuming Gaussian distribution. Black points: data744

(xall
t ,yt), where xall

t has been estimated following Section a, and yt is the raw y data. Several745

simulations are considered, leading to several values of yt at each time t. Many points lie in746

the bottom-left corner, corresponding to the quasi-stationnary climate of the period before747

1980. Red lines: change in the mean of yt (solid) or 5% - 95% quantiles (dashed lines) as748

estimated from the non-stationary fit. . . . . . . . . . . . . . . . . 39749

Fig. 3. Changes in Frequency. Changes in the frequency of the event, as diagnosed from the750

analysis of transient historical and RCP8.5 scenarios, in terms of occurrence probability in751

the factual world (pF , top panel), occurrence probability in the counter-factual world (pC ,752

middle top), RR/FAR
(
RR =

pF
pC

, middle bottom
)
, and RR relative to year 2003

(
RRrel =753

pF (t)
pF (te)

)
, i.e. the year on which the event occurred (vertical bar). Shaded areas correspond to754

5%–95% confidence regions. All results are for the CNRM-CM5 model only. . . . . . 40755

Fig. 4. Changes in Intensity. Changes in the intensity of the event, as diagnosed from the analysis756

of transient historical and RCP8.5 scenarios, in terms of intenisty in the factual world (iF , top757

panel), intensity in the counter-factual world (iC , middle top), difference between these two758 (
δ i = iF (t)− iC(t), middle bottom

)
, or difference in the factual world with respect to year759

2003
(
δ irel = i(t)− i(te), bottom

)
, i.e. the year on which the event occurred (vertical bar).760

Shaded areas correspond to 5%–95% confidence regions. All results are for the CNRM-761

CM5 model only. . . . . . . . . . . . . . . . . . . . . . 41762

Fig. 5. Diagnoses in year 2003. . . . . . . . . . . . . . . . . . . . 42763

Fig. 6. Multi-model statistics and synthesis. Results for the 23 individual CMIP5 models consid-764

ered (left) are shown in terms of changes in covariate x (degrees with respect to the reference765

year 2003, top), risk ratio (RR, middle), and δ i (bottom). The multimodel distribution es-766

timated from this sample of models is illustrated through: the mean and 90% confidence767

region (i.e. confidence region of θ ∗, or resulting diagnoses, using the “models are statis-768

tically indistinguishable from the truth” paradigm; center), or new realisations drawn from769

that distribution (which can be interpreted as virtual climate models; right). . . . . . . 43770

Fig. 7. Observational constraint on covariate x. Observation of covariate x (here European sum-771

mer mean temperature since 1850, black points), are compared to the multi-model distribu-772

tion of externally forced changes in x, i.e. π(xall
t
∗
) (light pink, 5–95% confidence region,773

identical to Figure 6b). Uncertainty in changes in x decreases after applying the observa-774

tional constraint, i.e. xall
t
∗ |̃x (dark pink, 5–95% confidence region). Best estimates before775

(light brown) and after (brown) applying the observational constraint are almost indistin-776

guishable in this case, as observations are consistent with the multi-model mean estimate.777

All values are temperature anomalies with respect to the 1961-1990 period. . . . . . . 44778
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Fig. 8. Use of corrected observations to estimate pF . Top panel: observed record̃ yt (black line)779

is compared to the changes in y (i.e. µ1xall
t ) as simulated by two climate models (CNRM-780

CM5 and CanESM2, color lines). Temperatures are anomalies with respect to the 1961-781

1990 average. Other panels: Observed time-series after correction for the mean change782

simulated by the models, i.e. ỹt − µ1xt . Correction is made such that the 2003 value is783

unchanged. pF denotes the probability of exceeding the threshold (dotted line), as estimated784

from these corrected records. Uncertainty analysis and correction for changes in variance785

are not represented. . . . . . . . . . . . . . . . . . . . . . 45786

Fig. 9. Impact of (combined) constraints on pC (a), pF (b), RR/FAR (c) and δ i (d). All results787

correspond to the multi-model synthesis (Section 4). NO OBS: only model outputs (no788

observations) are used; results are identical to those presented in Figure 5 for the MULTI789

synthesis. C0: γ0 is estimated from observations̃ y (see subsection 5.b). CX: Estimates790

of changes in x are constrained by observatioñ x (see subsection 5.a). CX+C0: the two791

constraints are applied simultaneously. . . . . . . . . . . . . . . . . 46792

Fig. 10. Attribution diagnoses as estimated after applying observational constraints CX and793

C0. Changes in frequency (RR and RRrel , left) and intensity (δ i and δ irel , right) are used to794

quantify the human influence on an EHW03-like event. All results are shown as a function795

of time, had the event occurred at that time. The vertical bar indicates the year 2003. Results796

are for the multimodel synthesis only, after applying the two observational constraints CX797

and C0 simultaneously. . . . . . . . . . . . . . . . . . . . . 47798
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FIG. 1. ANT and NAT influences in covariate x. Changes in covariate x (raw data are shown as black points)

are decomposed into changes related to all forcings combined (top, red), anthropogenic forcings only (middle,

green), and natural forcings only (bottom, blue). Shaded area corresponds to 5–95% confidence regions. All

data are from CNRM-CM5, including all runs available from this model (10 historical, 5 RCP8.5).
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FIG. 2. Fit of a non-stationnary Gaussian distribution. Illustration of the non-stationnary fit for data

from the CNRM-CM5 model, assuming Gaussian distribution. Black points: data (xall
t ,yt), where xall

t has been

estimated following Section a, and yt is the raw y data. Several simulations are considered, leading to several

values of yt at each time t. Many points lie in the bottom-left corner, corresponding to the quasi-stationnary

climate of the period before 1980. Red lines: change in the mean of yt (solid) or 5% - 95% quantiles (dashed

lines) as estimated from the non-stationary fit.
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FIG. 3. Changes in Frequency. Changes in the frequency of the event, as diagnosed from the analysis of

transient historical and RCP8.5 scenarios, in terms of occurrence probability in the factual world (pF , top panel),

occurrence probability in the counter-factual world (pC , middle top), RR/FAR
(
RR =

pF
pC

, middle bottom
)
, and

RR relative to year 2003
(
RRrel =

pF (t)
pF (te)

)
, i.e. the year on which the event occurred (vertical bar). Shaded areas

correspond to 5%–95% confidence regions. All results are for the CNRM-CM5 model only.
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FIG. 4. Changes in Intensity. Changes in the intensity of the event, as diagnosed from the analysis of

transient historical and RCP8.5 scenarios, in terms of intenisty in the factual world (iF , top panel), intensity in

the counter-factual world (iC , middle top), difference between these two
(
δ i = iF (t)− iC(t), middle bottom

)
, or

difference in the factual world with respect to year 2003
(
δ irel = i(t)− i(te), bottom

)
, i.e. the year on which the

event occurred (vertical bar). Shaded areas correspond to 5%–95% confidence regions. All results are for the

CNRM-CM5 model only.
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FIG. 6. Multi-model statistics and synthesis. Results for the 23 individual CMIP5 models considered (left)

are shown in terms of changes in covariate x (degrees with respect to the reference year 2003, top), risk ratio

(RR, middle), and δ i (bottom). The multimodel distribution estimated from this sample of models is illustrated

through: the mean and 90% confidence region (i.e. confidence region of θ ∗, or resulting diagnoses, using the

“models are statistically indistinguishable from the truth” paradigm; center), or new realisations drawn from that

distribution (which can be interpreted as virtual climate models; right).
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FIG. 7. Observational constraint on covariate x. Observation of covariate x (here European summer mean

temperature since 1850, black points), are compared to the multi-model distribution of externally forced changes

in x, i.e. π(xall
t
∗
) (light pink, 5–95% confidence region, identical to Figure 6b). Uncertainty in changes in x de-

creases after applying the observational constraint, i.e. xall
t
∗|x̃ (dark pink, 5–95% confidence region). Best

estimates before (light brown) and after (brown) applying the observational constraint are almost indistinguish-

able in this case, as observations are consistent with the multi-model mean estimate. All values are temperature

anomalies with respect to the 1961-1990 period.
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FIG. 8. Use of corrected observations to estimate pF . Top panel: observed record ỹt (black line) is compared

to the changes in y (i.e. µ1xall
t ) as simulated by two climate models (CNRM-CM5 and CanESM2, color lines).

Temperatures are anomalies with respect to the 1961-1990 average. Other panels: Observed time-series after

correction for the mean change simulated by the models, i.e. ỹt − µ1xt . Correction is made such that the 2003

value is unchanged. pF denotes the probability of exceeding the threshold (dotted line), as estimated from these

corrected records. Uncertainty analysis and correction for changes in variance are not represented.
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FIG. 9. Impact of (combined) constraints on pC (a), pF (b), RR/FAR (c) and δ i (d). All results correspond

to the multi-model synthesis (Section 4). NO OBS: only model outputs (no observations) are used; results are

identical to those presented in Figure 5 for the MULTI synthesis. C0: γ0 is estimated from observations ỹ (see

subsection 5.b). CX: Estimates of changes in x are constrained by observation x̃ (see subsection 5.a). CX+C0:

the two constraints are applied simultaneously.
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FIG. 10. Attribution diagnoses as estimated after applying observational constraints CX and C0.

Changes in frequency (RR and RRrel , left) and intensity (δ i and δ irel , right) are used to quantify the human

influence on an EHW03-like event. All results are shown as a function of time, had the event occurred at that

time. The vertical bar indicates the year 2003. Results are for the multimodel synthesis only, after applying the

two observational constraints CX and C0 simultaneously.
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