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Abstract. To take into account nuclear quantum effects on the dynamics of atoms, the path 

integral molecular dynamics (PIMD) method used since 1980s is based on the formalism 

developed by R. P. Feynman. However, the huge computation time required for the PIMD 

reduces its range of applicability. Another drawback is the requirement of additional techniques 

to access time correlation functions (ring polymer MD or centroid MD). We developed an 

alternative technique based on a quantum thermal bath (QTB) which reduces the computation 

time by a factor of ~20. The QTB approach consists in a classical Langevin dynamics in which 

the white noise random force is replaced by a Gaussian random force having the power spectral 

density given by the quantum fluctuation-dissipation theorem. The method has yielded 

satisfactory results for weakly anharmonic systems: the quantum harmonic oscillator, the heat 

capacity of a MgO crystal, and isotope effects in 7LiH and 7LiD. Unfortunately, the QTB is 

subject to the problem of zero-point energy leakage (ZPEL) in highly anharmonic systems, 

which is inherent in the use of classical mechanics. Indeed, a part of the energy of the high-

frequency modes is transferred to the low-frequency modes leading to a wrong energy 

distribution. We have shown that in order to reduce or even eliminate ZPEL, it is sufficient to 

increase the value of the frictional coefficient. Another way to solve the ZPEL problem is to 

combine the QTB and PIMD techniques. It requires the modification of the power spectral 

density of the random force within the QTB. This combination can also be seen as a way to speed 

up the PIMD.  

1.  Introduction 

Molecular dynamics (MD) simulation is frequently used to investigate and predict the properties of 

condensed matter in the classical limit. For a crystal, these calculations are valid for temperatures higher 

than the Debye temperature [1] (940 K for MgO). As shown in figure 1, the experimental heat capacity 

decreases when the temperature decreases and vanishes at T = 0 K, while MD simulation leads to a 

nearly constant value, corresponding to 3kB per atom. The arrow in figure 1 points out this disagreement. 

Standard MD ignores the nuclear quantum effects (NQE), which are at the origin of the shape of the 

experimental heat capacity curve. This behavior is a direct consequence of the quantization of the energy 

of the vibration modes. Another example is the evolution as a function of temperature of the lattice 

parameter in lithium hydride (LiH) given in figure 2. At low temperature, the crystal rapidly reaches its 

ground state upon cooling, generating a freezing (saturation) of the lattice parameter whereas the 

standard MD predicts a linear behavior. The arrow in figure 2 emphasizes this discrepancy due to the 

quantization of the energy of the vibration modes and due to the total energy of the ground state, called 
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zero-point energy (ZPE), which is larger than the potential energy minimum. In addition, the lattice 

parameter of lithium deuteride (LiD) behaves similarly but is shifted (see double arrow) with respect to 

the LiH one. This isotope effect, which is a particular case of NQE, is due to the change of the vibrational 

frequencies, in turn due to the difference in the atomic masses of H and D. In fact, the average energy 

of the quantum oscillator, at a given temperature, is frequency dependent. In the harmonic 

approximation, the average energy is given by the well-known expression: 

 

𝜃(𝜔, 𝑇) = ℏ𝜔 [
1

2
+

1

exp(𝛽ℏ𝜔)−1
] (1) 

 

where 𝜔 is the angular frequency of the oscillator, ℏ is the reduced Planck constant and 𝛽 the statistical 

temperature (1 𝑘𝐵𝑇⁄ ). Figure 3 shows the evolution of this energy as a function of temperature compared 

to the classical limit (𝑘𝐵𝑇). One can note the freezing of the energy at low temperature (𝑇 < ℏ𝜔 𝑘𝐵⁄ ) 

corresponding to the ZPE, ℏ𝜔 2⁄ . In contrast, in the classical description, the average energy does not 

depend on the frequency of the oscillator.  

 

 

 

 

Figure 1. Heat capacity per molecule of the 

MgO crystal as a function of the 

temperature, T [2]. The full line is the 

Debye model [1]. 

 Figure 2. Experimental lattice parameters of LiH 

and LiD crystals as a function of the temperature, 

T [3]. The straight dashed line is the standard MD 

result.  

 

These examples show that the quantum nature of nuclei can play a major role at low temperatures 

and/or in systems that contain light atoms. In this case, NQE cannot be neglected and must be taken into 

account especially in MD simulation, which is the focus of this paper. The historical method including 

NQE is based on Feynman’s path integral [4] (PIMD or path integral Monte Carlo). It can provide exact 

results − under the assumption of distinguishable nuclei − but at the price of a high computational cost. 

An (approximate) alternative method includes the quantum fluctuations through a random force, whose 

power spectral density is related to 𝜃(𝜔, 𝑇) by the quantum mechanical fluctuation-dissipation theorem 

[5]. This is the quantum thermal bath (QTB) MD introduced in 2009 by Dammak et al. [6]. The two 

methods can be combined, as QTB-PIMD [7], to improve the efficiency of the PIMD.  
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Figure 3. Normalized energy of the quantum 

and classical harmonic oscillators as a 

function of the reduced temperature. 

 

In the following section, these three methods including NQE in MD simulation will be presented and 

applied to the problem of ferroelectric phase transitions in BaTiO3 (BTO), taken as a prototypical case. 

BTO is an anharmonic ferroelectric crystal in which the polar degrees of freedom evolve in a complex 

multiple-well energy landscape. Quantum effects have been shown to influence its structural properties 

[8,9]. It undergoes a complex sequence of structural phase transitions [10] as temperature increases: 

from rhombohedral (R), to orthorhombic (O), tetragonal (T), and cubic (C) structures. The last section 

will discuss the adequacy of each method. 

2.  Simulation of nuclear quantum effects 

2.1.  Path Integral Molecular Dynamics (PIMD) 

NQE can be accounted for by using the path-integral (PI) formalism [4]. In this formulation of quantum 

statistical mechanics, the canonical partition function Z is written as a discretized imaginary time path 

integral. For a quantum system containing N (discernible) particles of mass m (assumed as identical for 

simplicity), Z can be expressed according to: 

 

𝑍 = lim
𝑃→∞

(
2𝜋 𝑚 𝑃 𝑘𝐵𝑇

ℎ2 )
3𝑁𝑃/2

×

∫ ⋯ ∫ exp (−𝛽𝑉𝑒𝑓𝑓({𝒓𝑁}(1), … , {𝒓𝑁}(𝑃))) {𝑑𝒓𝑁}(1) ⋯ {𝑑𝒓𝑁}(𝑃)
{𝐫𝑁}(𝑃){𝐫𝑁}(1)  (2) 

 

The integral is over P (Trotter number) replicas of the system, labeled by the integer s, each replica 

being a set of N positions of the atoms {𝒓𝑁}(𝑠) = (𝐫1
(𝑠)

, … , 𝐫𝑁
(𝑠)

). These replicas result from the 

discretization of the PI in imaginary time (imaginary time slices). The effective potential 𝑉𝑒𝑓𝑓 which 

depends on all atomic positions of all replicas is composed of two terms, the physical potential energy, 

𝑉, computed in each replica (and averaged over them), and a harmonic coupling term, of angular 

frequency 𝜔𝑃 = √𝑃/𝛽ℏ, between replicas: 

 

𝑉𝑒𝑓𝑓({𝒓𝑁}(1), … , {𝒓𝑁}(𝑃)) = ∑ [
1

𝑃
𝑉({𝒓𝑁}(𝑠)) + ∑

1

2
𝑚𝜔𝑃

2 (𝐫𝑖
(𝑠)

− 𝐫𝑖
(𝑠+1)

)
2

𝑁
𝑖=1 ]𝑃

𝑠=1 . (3) 

 

Each particle 𝑖 of the replica 𝑠 is thus interacting through harmonic forces with the particles 𝑖 of the 

replicas (𝑠 + 1) and (𝑠 − 1), forming a polymer ring that closes on itself by periodic boundary 

conditions, 𝐫𝑖
(𝑃+1)

= 𝐫𝑖
(1)

. 

)/(),(  T
 

)/( TkB
 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Classical

Quantum



 
Journal of Physics: Conf. Series1136 (2018) 012014 
 
H Dammak et al 2018 J. Phys.: Conf. Ser.1136 012014     doi:10.1088/1742-6596/1136/1/012014 

 

 

 

4/9 

 

In the limit where the Trotter number 𝑃 → ∞, this equivalent classical system has the same partition 

function as that of the quantum system. As a consequence, MD simulation can be applied to the classical 

equivalent to numerically estimate the static properties of the quantum system. In the microcanonical 

ensemble, the corresponding equation of motion of each particle 𝑖 in each replica 𝑠 writes 

 

𝑚 𝐫̈𝑖
(𝑠)

= −
1

𝑃
𝛁

𝐫𝑖
(𝑠)  𝑉({𝒓𝑁}(𝑠)) − 𝑚𝜔𝑃

2 (2𝐫𝑖
(𝑠)

− 𝐫𝑖
(𝑠+1)

− 𝐫𝑖
(𝑠−1)

). (4) 

 

In practical simulations, the Trotter number is finite, and must be chosen to converge the estimated 

properties. For instance, the average total energy of the system is given by the following estimator: 

 

〈𝐸〉 = 〈∑ ∑
(𝐩𝑖

(𝑠)
)

2

2𝑚
𝑁
𝑖=1

𝑃
𝑠=1 − ∑ ∑

1

2
𝑚𝜔𝑃

2 (𝐫𝑖
(𝑠)

− 𝐫𝑖
(𝑠+1)

)
2

𝑁
𝑖=1

𝑃
𝑠=1 〉 + 〈∑

1

𝑃
𝑉({𝒓𝑁}(𝑠))𝑃

𝑠=1 〉. (5) 

 

where the first and second averages are the kinetic and the potential energies, respectively. This 

primitive estimator can be derived from − 𝜕𝐿𝑛(𝑍) 𝜕𝛽⁄ . 

In the canonical or isothermal-isobaric ensemble, Eq. (4) is modified by adding the forces due the 

thermostat and/or barostat. In this study of the ferroelectric phase-transitions in BTO, the extension of 

the Langevin method to the isothermal-isobaric ensemble which has been achieved by Quigley and 

Probert is used [11,12]. The ferroelectric properties of BTO were modeled by an effective Hamiltonian 

[13,14] derived from first-principles density-functional calculations. The degrees of freedom of this 

Hamiltonian are the local modes and the homogeneous strain tensor. The reduced local polar 

displacement 𝐮𝑖 (𝐫𝑖 = 𝑎0𝐮𝑖) inside the cell 𝑖 is related to the local dipolar moment 𝐩𝑖 through the cell 

parameter 𝑎0 (7.46 Bohr) and an effective charge 𝑍∗ (9.956 𝑒): 𝐩𝑖 = 𝑍∗𝑎0𝐮𝑖. Using this model, a 

ferroelectric phase-transition temperature corresponds to the temperature at which the mean local mode 

(dipole) rotates and thus exhibits a change of the macroscopic polarization direction: [111], [101] and 

[001] for the R, O and T phases, respectively.  

 

 

Figure 4. Evolution as a function of 

temperature of the average of the non-zero 

components of the reduced polarization (local 

modes) in BaTiO3 as obtained by PIMD and 

standard MD. Vertical dashed lines show the 

three ferroelectric phase transitions from 

rhombohedral (R), to orthorhombic (O), to 

tetragonal (T), and to cubic (C) structures. 

 

Figure 4 shows the ferroelectric phase-transitions as obtained by PIMD and standard MD. The PIMD 

calculation is converged with a Trotter number of 𝑃 = 16 in the whole temperature range. The PIMD 

sequence of phase transitions, R-O-T-C, is identical to the one experimentally observed, but the values 

of the transition temperatures are different due to the model employed [15]. Hence, these PIMD results 

will be taken as a reference instead of the experimental ones, in order to test other techniques within the 

same model. Hence, the standard MD calculation (𝑃 = 1) overestimates the transition temperatures and 

the discrepancy is about 30-40 K. This shows an important NQE, which cannot be neglected. 

 



 
Journal of Physics: Conf. Series1136 (2018) 012014 
 
H Dammak et al 2018 J. Phys.: Conf. Ser.1136 012014     doi:10.1088/1742-6596/1136/1/012014 

 

 

 

5/9 

 

 

2.2.  Quantum Thermal Bath Molecular Dynamics (QTB-MD) 

An alternative technique to include the NQE in MD simulations is the QTB method [6], which is based 

on a modification of the Langevin thermostat [16]. The component 𝛼 of the random force, 𝑅𝑖𝛼, applied 

on the atom 𝑖, is not a white noise and its power spectral density, 𝐼𝑅, is derived from the quantum 

dissipation-fluctuation theorem [17], and is related to the Fourier transform of the autocorrelation 

function, 〈𝑅𝑖𝛼(𝑡)𝑅𝑖𝛼(𝑡 + 𝜏)〉, according to the Wiener−Khinchin theorem:  

 

〈𝑅𝑖𝛼(𝑡)𝑅𝑖𝛼(𝑡 + 𝜏)〉 = ∫ 𝐼𝑅(𝜔, 𝑇) exp(−𝑖𝜔𝜏)
d𝜔

2𝜋

+∞

−∞
 (6) 

 

𝐼𝑅(𝜔, 𝑇) =  2𝑚 𝛾 𝜃(𝜔, 𝑇) (7) 

 

where 𝛾 is the frictional coefficient. The equation of motion is thus: 

 

𝑚 𝐫̈𝑖 = −𝛁𝐫𝑖
𝑉({𝒓𝑁}) − 𝑚𝛾𝐫̇𝑖 + 𝐑𝑖 (8) 

 

 

 

 

 

Figure 5. Heat capacity of the MgO crystal 

as computed by QTB-MD [6] (full circles) 

compared to experimental values (open 

circles). The dashed line is a guide for the 

eye. 

 Figure 6. Experimental and QTB-MD computation 

of the lattice parameters of 7LiH and 7LiD crystals 

as a function of the temperature, T, by using DFT 

within the GGA [20]. 

 

In contrast to the Langevin thermostat, 𝐼𝑅 is ω-dependent and the random force components are 

generated using the procedure detailed in References [18] and [19]. In summary, for 𝑛 MD time steps, 

𝛿𝑡, the random force, 𝑅̃𝑖𝛼, is first generated in the Fourier space (𝜔𝑗 =
2𝜋 𝑗

𝑛 𝛿𝑡
): 

 

𝑅̃𝑖𝛼(𝜔𝑗) =  (𝑎𝑗 + i 𝑏𝑗) √𝐼𝑅(𝜔𝑗) 𝑛 𝛿𝑡 2⁄  (9) 
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where 𝑎𝑗 and 𝑏𝑗 are normally distributed random numbers, and i the imaginary number. 𝑅𝑖𝛼(𝑡𝑗 = 𝑗𝛿𝑡) 

is then obtained by inverse Fourier transform. 

QTB-MD provides the experimental behavior for the heat capacity in the MgO crystal, as shown in 

figure 5. The isotopic shift in the lattice parameter of 7LiH and 7LiD is also well reproduced. Figure 6 

yields the experimental and computed lattice parameter at low temperature of both crystals. The 

discrepancies between experimental and QTB-MD data are due to the GGA functional used. Although 

exact only in the case of a purely harmonic systems, the QTB leads to satisfactory results in many 

anharmonic systems, such as MgO [6], LiH [20] and many others [21-24]. Unfortunately, the method 

can fail when dealing with anharmonic systems. Indeed, the QTB technique is subject to zero-point 

energy leakage (ZPEL), like any other method based on classical trajectories [25]. It consists in the 

transfer of energy from high-frequency vibrational modes to low-frequency vibrational modes, hence 

losing the distribution imposed through the power spectral density of equation (7). A case of ZPEL is 

given by the ferroelectric phase transitions in BaTiO3. Figure 7a shows that only the T-C phase transition 

is observed when using usual values of the frictional coefficient − 𝛾 less than 0.5 THz. The T-C 

temperature is about 210 K instead of the PIMD reference value of 260 K. In addition, the low-

temperature phases, R and O, are not observed even at 𝑇 = 0 K. Fortunately, the ZPEL can be reduced 

or even suppressed by increasing the value of 𝛾. As can be seen in figure 7a, the R-O-T-C sequence of 

transitions occurs from 𝛾 = 1.2 THz. The values of the transition temperatures converge toward the 

PIMD reference temperatures for higher values of 𝛾. For 𝛾 =  16 THz, the QTB-MD simulation, with 

consecutive transition temperatures of 160 K, 190 K and 255 K, is in good agreement with the PIMD 

result (figure 7b). We conclude that using very high values of the frictional coefficient is an efficient 

solution in case of failure of the QTB due to ZPEL. The possible drawback of using such high values 

will be discussed in the last section. 

 

 

 

 

Figure 7. R-O, O-T, and T-C ferroelectric phase transitions in BaTiO3. (a) Convergence of the phase-

transition temperatures with the friction coefficient, γ, within the QTB-MD simulation. (b) Average 

of the non-zero components of the reduced polarization (local modes), as a function of the 

temperature, T, obtained by QTB-MD with γ = 16 THz (full circles), and by PIMD with a Trotter 

number P = 16 (open circles). 

 

2.3.  Combining QTB and PIMD 

It is possible to combine the QTB and PIMD [26] in order i) to improve the convergence of the PIMD 

mostly at very low temperature and ii) to correct potential failures of the QTB-MD technique especially 

in the case of anharmonic systems. This combination requires the modification of the power spectral 

density of the random forces applied on each atom of each replicas. Indeed, for not converged Trotter 

number, quantum fluctuations are already partially included within the ring polymer of the PIMD. The 
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QTB random forces will thus only bring the missing part of the NQE which is dependent on the Trotter 

number. In practice, 𝜃(𝜔, 𝑇) of equation (7) is replaced by the adequate function 𝜅𝑃(𝜔, 𝑇), which is 

solution of the following equation  

 
1

𝑃
∑

𝜅𝑃(𝜔𝑘,𝑇)

𝑚 𝜔𝑘
2

𝑃−1
𝑘=0 =

𝜃(𝜔,𝑇)

𝑚 𝜔2   (10) 

 

where 𝜔𝑘 is the angular frequency of the normal modes of the ring polymer in the harmonic 

approximation: 

 

𝜔𝑘
2 =

𝜔2

𝑃
+ 4𝜔𝑃

2 sin2 (
𝑘𝜋

𝑃
)  (11) 

 

The power spectral density is thus given by: 

 

𝐼𝑅(𝜔, 𝑇) =  2𝑚 𝛾 𝜅𝑃(𝜔, 𝑇) (12) 

 

Since the corresponding random forces are intended to be applied to the normal modes, the random 

forces applied on the atoms are obtained through an orthogonal transformation which can be found in 

Reference [7]. 

 

 

 

 

Figure 8. T-C ferroelectric phase transitions in BaTiO3. (a) Convergence of the polarization at 

T = 240 K with the Trotter number, P, within the QTB-PIMD (full circles), and PIMD (open circles) 

simulations. (b) Reduced polarization as a function of the temperature, T, obtained by QTB-PIMD 

with P = 2 (open circles), and P = 3 (full circles). 

 

Let us recall that for QTB-MD simulation, using usual values of the frictional coefficient, the T-C 

transition in BTO occurs at a temperature of ~210 K, which is much lower than the PIMD reference 

values (figure 7a). The QTB-PIMD method is applied to the BTO system, varying the Trotter number 

from 2 to 5 (and using a low value of γ = 0.5 THz). Figure 8a shows that convergence of the reduced 

polarization at 240 K in the tetragonal phase is reached for P = 5, whereas P = 8 is required using PIMD. 

Hence, the convergence is improved by the combination of the two methods. In figure 8b, QTB-PIMD 

method with P = 2 gives a transition temperature of T = 257 K, very close to that obtained by PIMD (P 

= 16, T = 259 K). It is worth noting that the failure of the QTB method is fixed solely by two replicas 

when combining QTB with PIMD. Concerning the R-O and O-T transitions, the transition temperatures 

are in agreement with the PIMD ones for P = 3. This means that the effects of the zero-point energy 

leakage associated with the use of the QTB have been suppressed by the combination. We conclude, as 

expected, that QTB-PIMD is more efficient than the standard PIMD, since less replicas are needed for 

convergence. 
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3.  Discussion and Conclusion 

The QTB method provides exact results in the case of purely harmonic systems, except for properties 

that could be affected by frictional forces present in any Langevin dynamics [27]. In addition, the main 

advantage of the method is that time correlation functions are directly accessible, as in standard MD. 

Moreover, the QTB is very simple to implement in an existing code. 

For anharmonic systems, QTB-MD can fail due to ZPEL, which is the consequence of the coupling 

between vibrational modes. In this case, the resulting energy distribution does not match equation (1), 

it is intermediate between the quantum distribution and the classical homogeneous distribution. To 

suppress or reduce the ZPEL, it is necessary to increase the value of 𝛾, which is the technical parameter 

of the thermal bath. Encouraging results have been obtained in the case of a Lennard-Jones aluminum 

crystal and phase transitions in BTO, as well as for simple models of anharmonic systems [19]. The 

disadvantage of a high value of 𝛾 is the broadening of vibrational peaks and a spurious high-frequency 

tail in the phonon density of states (DOS). Nevertheless, vibrational spectra are not always dramatically 

altered, this effect depends on the simulated system. It is therefore convenient to check the DOS when 

using a high value of 𝛾 within QTB-MD simulations. 

Unfortunately, there exist systems for which increasing 𝛾 do not considerably reduces the ZPEL. The 

discrimination can be obtained through the strength of the anharmonicity. It can be evaluated with a 

dimensionless parameter, C, including a characteristic length, d, and a characteristic energy, V0: 

 

𝐶 =
ℏ2

2𝑚𝑉0𝑑2 (13) 

 

There exists a critical value of C, depending on the system, below which it can be considered as 

weakly anharmonic. For the Morse potential and the double-well model the critical values are about 

0.01 and 0.1, respectively. Hence, weakly anharmonic systems can be successfully simulated by QTB-

MD with an appropriate value of 𝛾, whereas for strongly anharmonic systems QTB-MD should not be 

used. In the latter case, QTB-PIMD is an adequate method to take into account the NQE. Indeed, it 

allows a better convergence with the number of beads than PIMD. The disadvantage of both methods 

(PIMD and QTB-PIMD) is that time correlation functions are not directly accessible. The sequence of 

phase transitions in BTO has been successfully retrieved by QTB-MD with a high value of 𝛾 [19] and 

by QTB-PIMD [7]. In contrast, the values of the ferroelectric polarization in BTO close to the 

temperatures of the phase-transitions are better computed in QTB-PIMD. 

For weakly anharmonic systems, some macroscopic properties are not affected by the ZPEL. In fact, 

the total energy is exact although the energy distribution is not correct. For instance, QTB-MD has been 

successfully used in numerous applications to highlight nuclear quantum effects or isotope effect on 

lattice parameter [6,20], on heat capacity of crystal [6] and carbon nanotube [22], and on binding 

energies in clusters [28]. 
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