A constructive version of Warfield’s Theorem
Cyrille Chenavier

To cite this version:
Cyrille Chenavier. A constructive version of Warfield’s Theorem. 2019. hal-02120656v5

HAL Id: hal-02120656
https://hal.archives-ouvertes.fr/hal-02120656v5
Preprint submitted on 7 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A constructive version of Warfield’s Theorem

Cyrille Chenavier *

* Inria Lille - Nord Europe, Villeneuve d’Ascq, France (e-mail: cyrille.chenavier@inria.fr).

Abstract: Within the algebraic analysis approach to linear system theory, a multidimensional linear system can be studied by means of its associated finitely presented left module. Deep connections exist between module isomorphisms and equivalent matrices. In the present paper, we introduce a constructive proof of a result due to Warfield which controls the size of equivalent matrices involved in the study of isomorphic modules. We illustrate our constructive proof with an example coming from differential equations with constant coefficients.

Keywords: Linear functional systems, module isomorphisms, matrix equivalence

1. INTRODUCTION

A linear multidimensional system, such as a linear system of differential equations or partial derivative equations, maybe described by a matrix of functional operators. Indeed, a system of q equations with p unknown functions

$$\eta_1, \cdots, \eta_p$$

over a ring of operators D is written

$$\ker_{\mathcal{F}}(R) := \{ \eta \in \mathcal{F}^p \mid R\eta = 0 \},$$

(1)

where $R \in D^{q \times p}$ and \mathcal{F} is the functional space where we are looking for the solutions. The system (1) can be studied by mean of algebraic tools, using the finitely presented left module $M := D^{1 \times q}/(D^{1 \times q}R)$ with p generators submitted to the q relations specified by the lines of R. Indeed, from the properties of free and quotient modules, the abelian group $\ker_{\mathcal{F}}(R.)$ is isomorphic to $\text{hom}_D(M, \mathcal{F})$, that is the abelian group of left D-linear maps from M to \mathcal{F}, see Malgrange (1963). Hence, systemic properties of (1) can be studied by mean of modules properties, which can be computed using effective homological algebra and Grothendieck bases theory, see Chyzak et al. (2005).

The abelian group $\text{hom}_D(M, \mathcal{F})$ only depend on M and \mathcal{F}, in particular it does not depend on the matrix R. That means that two matrices R and R' defining isomorphic modules $M \simeq M'$ have the same algebraic properties. A particular example for the isomorphism $M \simeq M'$ is the case where R and R' are equivalent, that is $R = Y R' X^{-1}$ for invertible matrices X and Y. A result due to Fitting (1936) asserts a weak converse implication: if R and R' define isomorphic modules, then they can be enlarged by 0 and identity blocs leading to equivalent matrices L and L'. An effective version of this result was obtained in Chuzeau and Quadrat (2011).

The purpose of the present paper is to introduce an effective version of a result of Warfield (1978), which asserts that the number of 0 and the size of identity blocs in L and L' maybe reduced, while keeping equivalent matrices. This result is based on an algebraic invariant of D, called the stable rank, see McConnell and Robson (2001). For a general presentation of the problem, we refer to Nicolas (2014).

The paper is organised as follows. In Section 2, we recall the notions of isomorphic left D-modules and equivalent matrices, as well as the effective version of Fitting’s result and the statement of Warfield’s result. In Section 3, we present the constructive version of Warfield’s result for removing 0 and identity blocs. In Section 4, we illustrate this constructive version with a differential equation with constant coefficients. Section 5 contains proofs of formulas used in Section 3.

2. ISOMORPHISMS AND EQUIVALENT MATRICES

In this section, we recall the characterization of morphisms between finitely presented left D-modules, as well as results of Fitting and Warfield which rely isomorphic left D-modules to matrix conjugation.

2.1 Effective version of Fitting’s Theorem

Consider two left D-modules M and M' with finite presentations:

$$D^{1 \times q} \xrightarrow{R} D^{1 \times p} \xrightarrow{\pi} M \twoheadrightarrow 0,$$

$$D^{1 \times q'} \xrightarrow{R'} D^{1 \times p'} \xrightarrow{\pi'} M' \twoheadrightarrow 0,$$

namely, exact sequences (see Rotman (2009)), where $R \in D^{q \times p}$, $(R)(\mu) = \mu R$, for every $\mu \in D^{1 \times q}$ and π is the natural projection on $M = D^{1 \times p}/(D^{1 \times q}R)$ (similarly for R' and π').

From Rotman (2009), there exists $f \in \text{hom}_D(M, M')$ if and only if there exist matrices $P \in D^{p \times p'}$ and $Q \in D^{q \times q'}$ such that $RP = QR'$ and

$$\forall \lambda \in D^{1 \times p}, f(\pi(\lambda)) = \pi'(\lambda \pi).$$

Hence, the following diagram is exact and commutative:
2.2 Warfield’s Theorem

Assume that the two matrices (2) are equivalent, then Warfield’s Theorem asserts that if there exist two integers r and s such that

\[
\begin{align*}
\begin{cases}
 s \leq \min(p+q', q+p'), \\
 \text{sr}(D) \leq \max(p+q'-s, q+p'-s), \\
 r \leq \min(p, p'), \\
 \text{sr}(D) \leq \max(p-r, p'-r)
\end{cases}
\end{align*}
\]

then the following $(n-r-s) \times (m-r)$ matrices are equivalent

\[
\begin{align*}
L := \begin{pmatrix} R & 0 \\ 0 & \text{id}_{p'-r} \\ 0 & 0 \end{pmatrix}, \\
L' := \begin{pmatrix} 0 & 0 \\ 0 & R' \end{pmatrix},
\end{align*}
\]

and induce finite presentations of M and M', respectively.

In the next section, we introduce a procedure which computes two pairs of invertible matrices (X, X') and (Y, Y') such that $L = Y' L X$.

3. EFFECTIVE WARFIELD’S THEOREM

Throughout this section, we fix some notations. Let M and M' be two left D-modules, isomorphic with $f : M \congto M'$, with inverse f', finitely presented by matrices $R \in D^{p \times q}$ and $R' \in D^{p' \times q'}$, respectively, and let L, L', X, Y, X' and Y' be the matrices defined in (2) and (3).

Given a nonzero integer k, we let $\overline{k} := k - 1$. For $1 \leq i \leq k$, the i-th vector of the canonical basis of $D^1 \times k$ is written e_i^k. Moreover, the i-th component of $v \in D^1 \times k$ or $v \in D^1 \times k$ is written v_i. Finally, for a matrix $A \in D^{k \times k'}$, the coefficient at position (i, j), the i-th row and the j-th column are written A_{ij}, A_i, and A_j, respectively.

3.1 Reduction of the zero bloc

In this section, we present the procedure for removing s lines of 0 in L and L', where s is such that

\[
\begin{align*}
\begin{cases}
 s \leq \min(p+q, q+p'), \\
 \text{sr}(D) \leq \max(p+q-s, q+p'-s).
\end{cases}
\end{align*}
\]

Without lost of generalities, we suppose $q + p' \leq p + q'$. We let $n := (q+p'+p+q')-s$, so that $\overline{n} = (q+p'+p+q')-s$, and we define $L_s, L'_s \in D^{\overline{n} \times \overline{k}}$ as follows:

\[
L_s := \begin{pmatrix} R & 0 \\ 0 & \text{id}_{p'} \end{pmatrix}, \\
L'_s := \begin{pmatrix} 0 & 0 \\ 0 & R' \end{pmatrix},
\]

that is, L_s and L'_s have respectively $p+q'-s$ and $q+p'-s$ lines of zeros.

Our objective is to construct \overline{n}-square matrices Y_s and Y'_s, inverse to each other and such that the following diagram is exact and commutative:

\[
\begin{align*}
& D^{1 \times \overline{n}} \xrightarrow{L_s} D^{1 \times \overline{k}} \xrightarrow{\pi \otimes 0} M \xrightarrow{0} 0 \\
& D^{1 \times \overline{n}} \xrightarrow{L'_s} D^{1 \times \overline{k}} \xrightarrow{\pi \otimes 0} M \xrightarrow{0} 0
\end{align*}
\]

For that, we let $Y_s := Y, Y'_s := Y'$ and we assume by induction that $Y_{\overline{s}}$ and $Y'_{\overline{s}}$ have been constructed and are such that (5) is exact and commutative. We decompose $Y_\overline{s}$ and $Y'_\overline{s}$ as follows:

\[
Y_\overline{s} = \begin{pmatrix} Y'_{\overline{s}} \\ Y_{\overline{s}} \end{pmatrix}, \\
Y'_{\overline{s}} = \begin{pmatrix} Y'_s \ Y_{s'} \ Y'_{s'} \end{pmatrix}.
\]
where Y_1, Y_2 and Y_3 (respectively, Y'_1, Y'_2 and Y'_3) have $q + p'$, $p + q' - s$ and 1 lines (respectively, columns), respectively. Finally, we let

$$k := q + p' - s.$$

Proposition 1. There exist $c \in D$ and $d, u \in D^{1 \times (p + q' - s)}$ such that

$$(c(Y'_1)_k, d) (Y'_1)_{k} + u^{T}(Y'_3)_{k} = 1. \quad (6)$$

Proof. Getting the coefficient at position (k, k) in the relation $Y'_1Y'_2 = id_n$, we get the following relation: $(Y'_1)_{k}(Y'_1)_{k} + (Y'_2)_{k}(Y'_2)_{k} + (Y'_3)_{k}(Y'_3)_{k} = 1$. Hence, the left D-module $N := D/D((Y'_1)_{k}(Y'_1)_{k})$ is generated by $[(Y'_2)_{k}]_N, 1 \leq i \leq p + q' - s$, and $[(Y'_3)_{k}]$. From (4), we have $sr(D) \leq p + q' - s$, and from (McConnell and Robson, 2001, Lemma 11.4.6), $sr(D)$ is in the stable range of N. Hence, there exist $u := (u_1, \ldots, u_{p+q'-s})$ such that N is generated by $[(Y'_2)_{k}]_{u} + (Y'_3)_{k}, 1 \leq i \leq p + q' - s$. Thus, there exist $c \in D$ and $d := (d_1, \ldots, d_{p+q'-s})$ such that (6) holds.

With the notations of Proposition 1, we introduce the lines $\hat{\ell} \in D^{1 \times \pi}$ and $\ell \in D^{1 \times n}$ defined as follows:

$$\hat{\ell} := (c(Y'_1)_{k}, d), \ell := (c(Y'_1)_{k}, d 0),$$

as well as the matrices $U, U' \in D^{n \times n}$ and $F \in D^{\pi \times n}$ defined as follows:

$$U := \begin{pmatrix} id_{p+p'} & 0 & 0 & u^{T} \end{pmatrix}, \quad U' := \begin{pmatrix} id_{p+p'} & 0 & 0 & -u^{T} \end{pmatrix}, \quad F := \begin{pmatrix} Y'_2 \end{pmatrix}.$$

We point out that U and U' are inverse to each other, and that $F = (id_{n} 0) U Y_{\pi}$. Moreover, from $\ell = \hat{\ell}(id_{\pi} 0)$ and (6), we get

$$1 = \hat{\ell} F(e_{k}^{n})^{T} = \ell U Y_{\pi} (e_{k}^{n})^{T}. \quad (7)$$

Finally, we consider $\psi, \psi' \in D^{n \times \pi}$, $\iota, \iota' \in D^{\pi \times n}$ defined as follows

$$\psi := \left(\begin{array}{cc} id_{n} - F(e_{k}^{n})^{T} \hat{\ell} \\ \iota \end{array} \right), \quad \iota := \left(\begin{array}{cc} id_{n} - F(e_{k}^{n})^{T} \cdot \iota' \end{array} \right), \quad

\psi' := \left(\begin{array}{cc} \iota d_{k-1} \end{array} \right), \quad \iota' := \left(\begin{array}{cc} \iota d_{k-1} \end{array} \right).$$

Proposition 2. We have the following relations:

1. $\iota d_{k} = id_{\pi}$,
2. $\iota' \psi' = id_{\pi}$,
3. $\ker(\iota) = D \ell$,
4. $\ker(\iota') = D D \ell U Y_{\pi}$.

Proof. By computing matrix products, $\iota \psi$ is equal to $(id_{\pi} - F(e_{k}^{n})^{T} \hat{\ell})^{2} + F(e_{k}^{n})^{T} \hat{\ell}$. Moreover, from (7), $F(e_{k}^{n})^{T} \hat{\ell}$ is a projector, so that $id_{\pi} - F(e_{k}^{n})^{T} \hat{\ell}$ is also a projector, whence Point 1.

We have $\iota' (e_{k}^{n})^{T} = 0$, from which we deduce Point 2 by computing the matrix product.

Let us show Point 3. Considering the isomorphism $D \times n \simeq D^{1 \times \pi} \oplus D$, we have $\psi = \psi_{1} \psi_{2}$, where $\psi_{1} \in D^{n \times n}$ and $\psi_{2} \in D^{n \times \pi}$ are defined as follows:

$$\psi_{1} := \left(\begin{array}{cc} id_{\pi} - F(e_{k}^{n})^{T} \hat{\ell} \\ 0 \end{array} \right), \quad \psi_{2} := \left(\begin{array}{cc} id_{\ell} \end{array} \right).$$

From (7), $im(\psi)$ is included in $ker(F(e_{k}^{n})^{T} \oplus D$ and the restriction of ψ_{2} to the latter is injective: for $(u, x) \in ker(F(e_{k}^{n})^{T} \oplus D) \cap ker(\psi_{2})$, we have $u + x \hat{\ell} = 0$, so that $x \hat{\ell} F(e_{k}^{n})^{T} = 0$, which, by (7), gives $x = 0$ and $u = 0$. Hence, we have ker(ψ) = ker(ψ_{2}), that is ker($id_{\pi} - F(e_{k}^{n})^{T} \hat{\ell}$) \oplus 0. We conclude by showing ker($id_{\pi} - F(e_{k}^{n})^{T} \hat{\ell}$) \oplus $D \ell$: the right to left inclusion is due to (7), and the other is due to $x = (xF(e_{k}^{n})^{T} \hat{\ell}$, for every $x \in ker(id_{\pi} - F(e_{k}^{n})^{T} \hat{\ell}$).

Let us show Point 4. From (7), we have $D \ell U Y_{\pi} \subseteq ker(\psi)$. The converse inclusion is due to the relation $x = x_{k} \ell U Y_{\pi}$, for every $x \in ker(\psi')$. Indeed, the first $k - 1$ and the last $p + q'$ columns of x and $x_{k} \ell U Y_{\pi}$ are equal since $x \in ker(\psi')$ implies

$$x \begin{pmatrix} \iota d_{k-1} \end{pmatrix} = x_{k} \ell U Y_{\pi} \begin{pmatrix} \iota d_{k-1} \end{pmatrix}. \quad (8)$$

Moreover, the k-th column of $x_{k} \ell U Y_{\pi}$ is $x_{k} \ell U Y_{\pi} (e_{k}^{n})^{T}$, that is x_{k} from (7).

Theorem 3. With the previous notations, we let $Y_{\pi} := i U Y_{\pi}$, $Y'_{\pi} := i U Y'_{\pi}$.

The following diagram is exact and commutative:

$$\begin{array}{ccccccc} D^{1 \times \pi} & \xrightarrow{L_{s}} & D^{1 \times m} & \xrightarrow{\iota' \psi} & M & \rightarrow & 0 \\
Y_{\pi} \uparrow & & \uparrow L'_{s} & & \uparrow \iota' \psi & \uparrow f & \uparrow \iota' \psi \\
D^{1 \times \pi} & \xrightarrow{L_{s}} & D^{1 \times m} & \xrightarrow{\iota \psi} & M' & \rightarrow & 0 \\
\end{array}$$

In particular, we have

$$L'_{s} = Y'_{s} L_{s} X.$$

Proof. We only have to show that the diagram is commutative.

First, we show that Y_{π} and Y'_{π} are inverse to each other. From Proposition 2, the lines of the following diagram are exact

$$\begin{array}{ccccccc} D \xrightarrow{\iota \psi} & D^{1 \times \pi} & \xrightarrow{\psi} & D^{1 \times \pi} & \rightarrow & 0 \\
\iota d_{k} \uparrow & \uparrow U Y \uparrow \iota' \psi & \uparrow \iota' \psi & \uparrow \iota' \psi & \uparrow \iota' \psi & \uparrow \iota' \psi \\
D \xrightarrow{D \ell U Y_{\pi}} & D^{1 \times \pi} & \xrightarrow{\iota' \psi} & D^{1 \times \pi} & \rightarrow & 0 \\
\end{array}$$

Moreover, it is also commutative. Indeed, ψY_{π} is equal to $\psi U Y_{\pi} \psi'$, and from 1 of Proposition 2, we have $im(\psi d_{k} - id_{n}) \subseteq ker(\psi)$. By commutativity of the left rectangle and
by exactness of the lines of (8), we have \((\psi - \text{id}_s)UY_\pi \psi' = 0\), so that \(Y_4 = UY_\pi \psi'\). In the same manner, we show that \(Y'U' \psi = \psi'Y'\). By commutativity and exactness of (8) and from the equations \(UY_\pi Y'U' = Y'_U U_\pi Y = \text{id}_n\), we get \(Y_2 Y'_s = Y'_s Y_2 = \text{id}_\pi\).

In Section 5.1 we prove the following relations:

\[
\begin{align*}
\mu L_\pi &= L_\pi, & U L_\pi &= L_\pi, & \gamma_\pi L_\pi &= L_\pi X, & \psi L_\pi &= L'_\pi, \\
\gamma L'_\pi &= L'_\pi, & Y'_\pi L_\pi &= L'_\pi X', & U L_\pi &= L_\pi, & \psi L_\pi &= L_\pi.
\end{align*}
\] (9)

Hence, \(Y_\pi L'_\pi = L_\pi X\) and \(Y'_\pi L_\pi = L'_\pi X'\) follow from commutativity of

\[
\begin{pmatrix}
D^{1 \times \pi} \\
\psi
\end{pmatrix}
\begin{pmatrix}
D^{1 \times n} & U \\
\psi'
\end{pmatrix}
\begin{pmatrix}
D^{1 \times n} & Y' \\
\psi'
\end{pmatrix}
\begin{pmatrix}
D^{1 \times n} \\
\psi
\end{pmatrix}
\begin{pmatrix}
D^{1 \times \pi} \\
\psi
\end{pmatrix}
\]

3.2 Reduction of the identity bloc

In this section, we assume that \(s\) zero lines have already been removed from \(L\) and \(L'\), where \(s\) is as in (4). For simplicity, we write \(K, K', Z\) and \(Z'\) instead of \(L_s, L'_s, Y_s\) and \(Y'_s\), respectively. Hence, we have

\[
K = \begin{pmatrix}
R & 0 \\
0 & \text{id}_p
\end{pmatrix}, & K' = \begin{pmatrix}
0 & 0 \\
0 & R
\end{pmatrix},
\]

where \(K\) and \(K'\) have respectively \(p + q' - s\) and \(q + p' - s\) lines of zeros, and \(Z, Z'\) are \((q + p' + p + q' - s)\)-square matrices such as in (5).

We present the procedure for removing \(r\) lines of identity blocs of \(K\) and \(K'\), where \(r\) is such that

\[
\begin{align*}
\begin{cases}
r \leq \min(p, p') \\
\text{sr}(D) \leq \max(p - r, p' - r).
\end{cases}
\end{align*}
\] (10)

Without loss of generality, we assume that \(p \leq p'\). We let \(r_1 := \min(p, p')\). Let \(r_2 := r - r_1\); \(r_2 \geq 0\), so that \(\pi_1 = (q + p' + p + q' - s) - r_1\), \(\pi_2 = (p + p' - r)\), and we define \(K_r, K'_r \in D^{\pi_1 \times \pi_2}\) as follows:

\[
K_r := \begin{pmatrix}
R & 0 \\
0 & \text{id}_p
\end{pmatrix}, & K'_r := \begin{pmatrix}
0 & 0 \\
0 & \text{id}_p
\end{pmatrix}.
\]

Our objective is to construct two pairs of square matrices \((Z_r, Z'_r), (X_r, X'_r)\), of size \(\pi_1 \times \pi_2\), respectively, invertible to each other and such that the following diagram is exact and commutative:

\[
\begin{array}{cccccccccc}
0 & K_r & D^{\pi_1 \times \pi_2} & \psi & D^{\pi_1 \times \pi_2} & \psi & 0 & 0 \\
0 & X_r & x_r & x'_r & x'_r & x_r & 0 & 0 & 0 & 0 \\
D^{\pi_1 \times \pi_2} & K'_r & D^{\pi_1 \times \pi_2} & \psi & D^{\pi_1 \times \pi_2} & \psi & 0 & 0 & 0 & 0
\end{array}
\] (11)

We let \(Z_0 := Z, Z'_0 := Z', X_0 = X, X'_0 := X'\) and we assume by induction that \(Z_r, Z'_r, X_r\) and \(X'_r\) have been constructed and are such that (11) is exact and commutative. We decompose these matrices as follows:

\[
\begin{align*}
X_r = \begin{pmatrix}
X_1 & X_2 \\
X_3 & X_4
\end{pmatrix}, & Z_r = \begin{pmatrix}
Z_1 & Z_2 \\
Z_3 & Z_4
\end{pmatrix}, \\
X'_r = \begin{pmatrix}
X'_1 & X'_2 \\
X'_3 & X'_4
\end{pmatrix}, & Z'_r = \begin{pmatrix}
Z'_1 & Z'_2 \\
Z'_3 & Z'_4
\end{pmatrix},
\end{align*}
\]

where the column and line separations are the following:

- the column (respectively, line) blocs of \(X_r\) from left to right (respectively, top to bottom) have \(p - r\) and \(p'\) columns (respectively, \(p - r\) and \(p'\) lines),
- the column (respectively, line) blocs of \(X'_r\) from left to right (respectively, top to bottom) have \(p, p' - r\) and \(1\) columns (respectively, \(p - r\) and \(p'\) lines),
- the column (respectively, line) blocs of \(Z_r\) from left to right (respectively, top to bottom) have \(q + p' - s, p - r\) and \(q'\) columns (respectively, \(q, p' - r, 1\) and \(p + q' - s\) lines),
- the column (respectively, line) blocs of \(Z'_r\) from left to right (respectively, top to bottom) have \(q, p' - r, 1\) and \(p + q' - s\) columns (respectively, \(q, p' - r, 1\) and \(p + q' - s\) lines).

Finally, we let \(k_1 := q + p' - s + p - r, k_2 := p - r\).

Lemma 4. We have

\[
X_3 = Z_5, \quad X_5 = Z_8
\] (12)

and

\[
(Z^5_2)_{k_2} (Z_2)_{k_2} + (Z^6_5)_{k_2} (Z_{11})_{k_2} = (X^1_1)_{k_2} (X_1)_{k_2}.
\] (13)

Proof. From \(K_r X_r = Z_r K'_r\) and \(K'_r X'_r = Z'_r K_r\), we get respectively

\[
\begin{pmatrix}
RX_3 & RX_2 \\
X_3 & X_4
\end{pmatrix}
= \begin{pmatrix}
Z_1 & Z_2 R' \\
Z_5 & Z_6 R'
\end{pmatrix},
\] (14)

\[
\begin{pmatrix}
X'_1 & X'_2 \\
X'_1 & X'_3
\end{pmatrix}
= \begin{pmatrix}
Z'_1 R' & Z'_2 \\
Z'_3 R' & Z'_4
\end{pmatrix}.
\]

Hence, (12) holds. Moreover, from \(Z^5_2 Z^5_2 = \text{id}_{n_1}\) and \(X^5_1 X^5_1 = \text{id}_{n_2}\), the coefficients at positions \((k_1, k_1)\) and \((k_2, k_2)\) of \(Z^5_2 Z^5_2\) and \(X^5_1 X^5_1\), respectively, are equal to 1. Hence, we get

\[
(Z^5_2)_{k_2} (Z_2)_{k_2} + (Z^6_5)_{k_2} (Z_{11})_{k_2} + (Z^7_2)_{k_2} (Z_8)_{k_2} + (Z^8_5)_{k_2} (Z_{12})_{k_2} = (X^1_1)_{k_2} (X_1)_{k_2} + (X^2_2)_{k_2} (X_3)_{k_2} + (X^3_3)_{k_2} (X_5)_{k_2}
\]

From (14), we also have \(X'_2 = Z'_6\) and \(X'_3 = Z'_7\), so that (13) holds.

Proposition 5. There exist \(c \in D\) and \(d, u \in D^{1 \times (p' - r)}\) such that

\[
\begin{pmatrix}
c(Z^5_2)_{k_2} & c(Z^5_2)_{k_2} X^5_1 \\
(Z_5)_{k_2} + u^*(Z^5_2)_{k_2}
\end{pmatrix}
\]

(15)
and
\[
(c(X'_1)k_2 \cdot d) (X_3)k_2 + u'_1(X_5)k_2 = 1.
\]

(16)

Proof. By computing the matrix products and from Lemma 4, the left-hand sides of (15) and (16) are equal. Moreover, we show (15) as we did for Proposition 1 by \(\phi\) considering the left \(\phi\)-module \(N := D/D \left((Z'_5)k_2 (Z_2)k_2 + (Z'_6)k_2 (Z_1)k_2 \right)\).

With the notations of Proposition 5, we introduce the lines \(\tilde{\ell}_1 \in D^{1 \times n}, \tilde{\ell}_1 \in D^{1 \times n}, \tilde{\ell}_2 \in D^{1 \times n}, \text{ and } \tilde{\ell}_2 \in D^{1 \times n}\) defined as follows:

\[
\tilde{\ell}_1 := \left(c(Z'_5)k_2, 0 \cdot c(Z'_5)k_2 \right), \quad \tilde{\ell}_1 := \left(c(Z'_5)k_2, d \cdot c(Z'_5)k_2 \right), \\
\tilde{\ell}_2 := \left(c(X'_1)k_2, d \right), \quad \tilde{\ell}_2 := \left(c(X'_1)k_2, d \cdot 0 \right),
\]

as well as the matrices \(U_1, U'_1 \in D^{n \times n}, F_1 \in D^{n \times n}, \) \(U_2, U'_2 \in D^{n \times n}, \) and \(F_2 \in D^{n \times n}, \)

\[
U_1 := \begin{pmatrix}
1d & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad U_2 := \begin{pmatrix}
1d & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}, \\
U'_1 := \begin{pmatrix}
1d & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad U'_2 := \begin{pmatrix}
1d & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad F_1 := \begin{pmatrix}
Z_1 & Z_2 & Z_3 \\
Z_4 & Z_5 & Z_6 \\
Z_7 & Z_8 & Z_9
\end{pmatrix}, \\
F_2 := \begin{pmatrix}
X_1 & X_2 & X_3 & X_4 & X_5 & X_6
\end{pmatrix}.
\]

We point out that \(U_1 \) and \(U'_1, i \in \{1, 2\}, \) are inverses to each other and

\[
F_1 = \begin{pmatrix}
1d & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix} U_1 Z_\phi, \quad F_2 = \begin{pmatrix}
1d & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix} U_2 X_\phi.
\]

Adapting the arguments for proving (7), we show

\[
1 = \tilde{\ell}_1 F_1 (e_\phi k_2)^T = \tilde{\ell}_1 U_1 Z_\phi (e_\phi k_2)^T
\]

(17)

and

\[
1 = \tilde{\ell}_2 F_2 (e_\phi k_2)^T = \tilde{\ell}_2 U_2 X_\phi (e_\phi k_2)^T.
\]

We decompose \(id_{n \times n} = F_1 (e_\phi k_2)^T \tilde{\ell}_1 \) as follows

\[
id_{n \times n} - F_1 (e_\phi k_2)^T \tilde{\ell}_1 = (\varphi_1, \varphi_2) = (\varphi_3, \varphi_4),
\]

where \(\varphi_1\) and \(\varphi_2\) (respectively, \(\varphi_3\) and \(\varphi_4\)) have \(q + p' - r\) and \(p + q' - s\) columns (respectively, lines). Fi-
4. EXAMPLE

In this Section, we illustrate Theorem 3.

4.1 Two presentations of one ODE

We consider a linear differential equation with constant coefficients:

\[y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \cdots + a_1 y(t) + a_0 y(t) = 0, \quad (19) \]

where \(a_i \in \mathbb{R} \). Letting

\[x_1 := y, \quad x_2 := \dot{y}, \quad \cdots, \quad x_n := \dot{x}_{n-1} = y^{(n-1)}, \]

(19) rewrites as follows:

\[
\begin{pmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t) \\
\vdots \\
\dot{x}_n(t)
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots \\
-a_1 & -a_2 & \cdots & -a_{n-1}
\end{pmatrix}
\begin{pmatrix}
x_1(t) \\
x_2(t) \\
\vdots \\
x_n(t)
\end{pmatrix}. \quad (20)
\]

Hence, the system (19)–(20) is described by two matrices over the ring \(D := \mathbb{R}[\partial] \) of differential polynomials with constant coefficients: \(R_y = 0 \) and \(R'x = 0 \), \(R \in D^{1 \times 1} = D \) and \(R' \in D^{n \times n} \) defined as follows

\[
R := \partial^n + a_{n-1}\partial^{n-1} + \cdots + a_1 \partial + a_0, \\
R' := \begin{pmatrix}
\partial & -1 & 0 & \cdots & 0 \\
0 & \partial & -1 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots \\
a_0 & a_1 & \cdots & a_{n-1} \partial + a_n
\end{pmatrix}.
\]

Hence, letting \(p = q = 1 \) and \(p' = q' = n \), we associate with this system the two modules \(M := D/(DR) \) and \(M' := D^{1 \times n}/(D^{1 \times n} R') \), isomorphic as follows

\[
\begin{array}{ccc}
D^{1 \times p} & \xrightarrow{R} & D^{1 \times p} \\
Q \downarrow & & \downarrow P \\
D^{1 \times q'} & \xrightarrow{R'} & M' \quad 0
\end{array}
\]

where \(P, Q \in D^{1 \times n} \) and \(P', Q' \in D^{n \times 1} \) are:

\[
P := \begin{pmatrix}
1 & 0 & \cdots & 0
\end{pmatrix}, \quad Q := \begin{pmatrix}
\partial^n & + & \sum_{i=1}^{n-1} a_i \partial^{(i-1)} & \partial^{n-2} & + & \sum_{i=2}^{n-2} a_i \partial^{(i-1)} & \cdots & \partial & + & a_{n-1} & 1
\end{pmatrix},
\]

\[
P' := \begin{pmatrix}
\partial \\
\vdots \\
\partial^{n-1}
\end{pmatrix}, \quad Q' := \begin{pmatrix}
0 \\
\vdots \\
0
\end{pmatrix}.
\]

4.2 Reduction of \(L \) and \(L' \)

Let \(L \) and \(L' \) be the matrices as in (2). For simplicity, we assume that \(n = 3 \). We have

\[
Z = (0), \quad Z' = \begin{pmatrix}
0 & 0 & 0 \\
-1 & 0 & 0 \\
-\partial & -1 & 0
\end{pmatrix}
\]

and the matrices \(Z_2, R_2, Z'_2 \) and \(R'_2 \) are the zero matrices. The expressions of \(X, X' \) and \(Y, Y' \) come from (3).

We have \(s_r(D) = 2 \), see McConnell and Robson (2001). From (10), we may remove two lines of 0 in \(L \) and \(L' \). We give the details for removing the first zero lines of \(L \) and \(L' \) with the notations of Proposition 1, we may choose

\[
c = 0 \in D, \quad u = (0 \ 0 \ 0) \in D^{1 \times 3} \quad \text{and} \quad d = (0 \ 0 \ 1) \in D^{1 \times 3}.
\]

We get \(U = \text{id}_3 \) and

\[
\psi = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix}, \quad \iota = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}.
\]

From this, we get the matrices \(Y_1 \) and \(Y'_1 \) in (21). We remove the second zero lines with the matrices \(Y_2 \) and \(Y'_2 \) of (22), where we use the following notations:

\[
P(a, \partial) := - (\partial^3 + a_2 \partial^2 + (a_1 - 1) \partial + a_0),
\]

\[
Q(a, \partial) := \partial^2 + (a_2 - 1) \partial + a_1 - 1,
\]

\[
R(a, \partial) := \partial^2 + (2a_2 - 1) \partial + (a_2^2 + a_1 - a_2 - 1) \partial^2 + (2a_2 - 1) a_1 + a_0 - a_2 + 1) \partial^3 + ((a_2 - 1) a_1 + a_0 - a_2 + 1) \partial^2 + (a_1 (a_1 - 1) + a_0 (a_2 - 1) \partial + a_0 (a_1 - 1). \]

5. PROOFS OF FORMULAS (9) AND (18)

5.1 Proof of Formulas (9)

We have to show the following relations

\[
\iota L_{\mathcal{T}} = L_{\mathcal{T}}, \quad (23) \quad Y_{\mathcal{T}} L'_{\mathcal{X}} = L_{\mathcal{T}} X, \quad (25)
\]

\[
U L_{\mathcal{T}} = L_{\mathcal{T}}, \quad (24) \quad \psi' L'_{\mathcal{X}} = L'_{\mathcal{T}} \quad (26)
\]

\[
\iota' L'_{\mathcal{T}} = L'_{\mathcal{T}}, \quad (27) \quad U' L_{\mathcal{T}} = L_{\mathcal{T}}, \quad (29)
\]

\[
Y'_{\mathcal{T}} L'_{\mathcal{X}} = L'_{\mathcal{X}} X', \quad (28) \quad \psi L_{\mathcal{T}} = L_{\mathcal{T}} \quad (30)
\]

The two relations (25) and (28) are assumed by induction hypothesis, (24), (27) and (29) are proven by direct computations. For proving (23), we first check that by definitions
The first equality comes from definitions of $\tilde{\psi}$ and $\tilde{\iota}$. We have to show the following relations

$Y_1 = \begin{pmatrix} 1 & 0 & 0 & \partial^3 + a_2\partial^2 + a_1\partial + a_0 & \partial^2 + a_2\partial + a_1 \partial + a_2 \partial + a_1 \partial + a_2 \partial + 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -\partial & 1 & 0 & 0 \\ -1 & -a_0 & (-\partial^2 + (1 - a_2)\partial - a_1) & -\partial^2 & -\partial & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\partial & 1 & 0 & 0 & 0 & 0 \\ -1 & -a_0 & (-\partial^2 + a_2\partial + a_1) & 0 & 0 & 0 & 0 \end{pmatrix}$,

$\psi_1 \psi' K' = K' \psi_1$. From 2 and 4 of Proposition 2, $\text{im}(\psi' \iota' - \iota_0)$ is included $D(U Y_2)$. From (24) and (25), we have $U Y_2 \iota_0 = \iota_0 Y_2 X$, and from $\tilde{\iota} K_0 = 0$, we have $\iota_0 K_0 = 0$, so that $U Y_2 \tilde{\iota} K_0 = 0$. Thus, $(\psi' \iota' - \iota_0) K' = 0$, which is the desired relation. Moreover, from (27), we get $\psi' \iota' K' = \psi' K'$, which verifies (26).

We show (30) in the same manner using (23).

5.2 Proof of Formulas (18)

We have to show the following relations

$\iota_1 K_\tau = K_{\iota_2}$, \hspace{1cm} $\psi_1 \psi' K' = K' \psi_1$. \hspace{1cm} (31)

$\iota_1 K' = K' \iota_2$, \hspace{1cm} $\psi_1 K' = K' \psi_1$. \hspace{1cm} (35)

$U_1 K_\tau = K_\tau U_2$, \hspace{1cm} $Z' \tau K_\tau = K' \tau X_\tau$. \hspace{1cm} (32)

$U_1' K_\tau = K_\tau U_2'$, \hspace{1cm} $Z_\tau K_\tau = K_\tau X_\tau$. \hspace{1cm} (33)

$\psi_1 \psi' K' = K_\tau \psi_1$, \hspace{1cm} $\psi_1 K_\tau = K_\tau \psi_1$. \hspace{1cm} (34)

$\iota_1 K_\tau = K_\tau \psi_2$, \hspace{1cm} $\psi_1 K_\tau = K_\tau \psi_1$. \hspace{1cm} (37)

The two relations (33) and (36) are assumed by induction hypothesis, (32), (35) and (37) are proven by direct computations.

Let us show (31). For that, we use that $\iota_1 K_\tau$ is equal to $(\varphi \psi_2) K_\tau + (0 F_1(e_{k_1}^{n_1})^T 0) K_\tau$ and that, by computing matrix products, the first summand of this expression is equal to $(\iota_0 \psi_2 \psi_1) (\psi_1 K_\tau) (\iota_0 \psi_2 \psi_1)$, so that

$\iota_1 K_\tau = (K_\tau \psi_2) + (0 F_1(e_{k_1}^{n_1})^T 0) K_\tau$.

By adapting the arguments, we also show

$K_{\iota_2} = (K_\tau \psi_2) + (0 F_1(e_{k_2}^{n_2})^T 0) K_\tau$.

The hypothesis (32), (35) and (37) are then proven by direct computations.
Now, we show that the last two summands of these expressions are equal by computing matrix products and using (14).

Let us show (34). For that, multiplying (35) by ψ_1' on the left and ψ_2' on the right, and from Point 2 of Proposition 6, we get $\psi_1'K_r\psi_2' = \psi_1'K_r'$. It remains to show that $\psi_1'K_r\psi_2' = K_r\psi_1'$, for which it is sufficient to show that $\text{im}(\psi_1' - \text{id}_n)K_r'$ is included in $\ker(\psi_1')$.

From Points 2 and 4 of Proposition 6, we have $\text{im}(\psi_1' - \text{id}_n)\subseteq \ker(\psi_1') = D\ell_1U_1Z_r$. From (33) and (32), we have $\ell_1U_1Z_rK_r' = \ell_1U_2X_r$. By computing matrix products and using (14), we have $\ell_1K_r = \ell_2$. Hence, $\ell_1U_1Z_rK_r'$ is equal to $\ell_2U_2X_r$, and by computing matrix products and using (17), $\ell_2U_2X_r$ is included in $\ker(\psi_2')$. Hence, $D\ell_1U_1Z_r$ is included in $\ker(\psi_2')$, so that $\text{im}(\psi_1' - \text{id}_n)K_r'$ is also included in $\ker(\psi_2')$, which finishes the proof of (34).

With the same arguments, we show (38).

ACKNOWLEDGEMENTS

The author wishes to thank Alban Quadrat for having presented the problematic of the present paper and for helpful discussions.

REFERENCES

