
HAL Id: hal-02120523
https://hal.science/hal-02120523

Submitted on 6 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel nonlinear least squares approach to highly
maneuvering target tracking

Marion Pilté, Silvere Bonnabel, Frédéric Livernet

To cite this version:
Marion Pilté, Silvere Bonnabel, Frédéric Livernet. A novel nonlinear least squares approach to highly
maneuvering target tracking. Comptes Rendus. Physique, In press, �10.1016/j.crhy.2019.05.019�. �hal-
02120523�

https://hal.science/hal-02120523
https://hal.archives-ouvertes.fr


A novel nonlinear least squares approach to highly maneuvering target tracking

Marion Piltéa,b, Silvère Bonnabela, Frédéric Livernetc

aMinesParisTech, PSL University, 60 bd Saint-Michel, Paris, France
bThales Land and Air Systems, Voie Pierre Gilles de Gennes, Limours, France

cDirection Générale de l’Armement (DGA), Toulon, France

Abstract

Trajectories of aerial and marine vehicles are typically made of a succession of smooth trajectories, linked by abrupt
changes, i.e., maneuvers. Notably, modern highly maneuvering targets are capable of very brutal changes in the
heading with accelerations up to 15 g. As a result, we model the target behavior using piecewise deterministic
Markov models, driven by parameters that jump at unknown times. Over the past years, real-time (or incremental)
optimization based smoothing methods have become a popular alternative to nonlinear filters, such as the Extended
Kalman Filter (EKF), owing to the successive relinearizations that mitigate the linearization errors that inherently
affect the EKF estimates. In the present paper, we propose to combine such methods for tracking the target during
non-jumping phases with a probabilistic approach to detect jumps. Our algorithm is shown to compare favorably to
the state of the art Interacting Multiple Model (IMM) algorithm, especially in terms of target’s velocity estimation, on
a set of meaningful and challenging trajectories.

Keywords:
Mono-Target tracking, Radar, Nonlinear smoothing, Nonlinear State Estimation, Probabilistic Approach

1. Introduction

Considerable research has been devoted to the optimal estimation problem in the field of mono-target tracking.
Applications span civilian airborne and marine surveillance and military tracking of highly maneuvering missiles.
Although the formal equations of the optimal filter are easy to derive and have been known for decades, its imple-
mentation in real time is still a challenge. There are essentially two sources of difficulty. First the use of models
to accurately describe the target’s motion which are nonlinear, and then the use of multi-hypotheses regarding the
unknown possible target’s behavior that results in excessive combinatorics. Particle filters (PF), see e.g., [1], have
been a popular attempt over the past two decades to handle those two sources of difficulty.

Based on the idea that motion of manned and unmanned vehicles consist of a succession of smooth trajectories,
with potentially abrupt changes from one type of trajectory (such as straight line) to the next (such as coordinated
turn), S. Godsill and co-authors have advocated over the past decade the use of nonlinear piecewise deterministic
Markov models (PDMM) to model the target’s behavior, see e.g., [2, 3, 4]. Between jumps, trajectories are modeled
by ordinary differential equations driven by constant inputs. This kind of trajectories have long been a key model in
tracking: see for example the constant velocity model in [5], the coordinated turn model [6], and our recent work [7].
Adapting PF techniques to the continuous-time setting of PDMM, S. Godsill and co-authors proposed the variable
rate particle filter (VRPF). However, such filters are computationally demanding as many particles are needed to fully
cover the space of possible jumps and parameters.

In this paper we consider PDMM that are akin to those considered in the VRPF literature. Instead of using a PF
approach, we opt for a smoothing optimization-based approach. The use of such techniques for filtering and track-
ing have long been known, but only recent advances in computers have allowed them to be fully implementable.
In robotics, and especially in the vast literature related to the problem of simultaneous localization and mapping
(SLAM), optimization-based smoothing approaches, see [8, 9, 10, 11], have virtually wholly replaced the once ex-
tremely popular PF-based approach [12]. Those methods currently enjoy much popularity because of the successive
re-linearizations they use until convergence, that mitigate the problem or linearization errors in nonlinear filtering.

Preprint submitted to Nuclear Physics B May 2, 2019



In the present paper, inspiring on the one hand from the VRPD literature for target motion modeling, and on the
other from recent smoothing techniques from the robotics literature, we use smoothers to track the state of a PDMM
driven by unknown constant inputs, and we use a probabilistic approach for jump detection. In the stationary phase
the state is very well tracked as our deterministic-based model provides smooth trajectories that are not fluctuating
due to the assumption of process noise, and in turn the accuracy of the state estimates helps to rapidly detect jumps. It
seems to us our approach to estimate the target’s state and possibly predict the motion of the target in the future is very
similar to the way the eye of a human expert would proceed. The proposed estimator is shown to favorably compare
to a state of the art IMM for meaningful target motions, especially in terms of estimation of the target’s velocity.

2. Smoothing as an estimation procedure for target tracking

2.1. Classical smoothing approach
Consider a target that one must track. Assume a discrete time model and let the target’s state at time i be denoted

Xi ∈ Rp. The state typically consists of the position and velocity (and some additional quantities) of the target.
Consider a nonlinear evolution model for the target of the form (1), with noisy measurements of the form (2).

Xi = fi(Xi−1)+wi, (1)

yi = h(Xi)+ vi (2)

The goal of any filter, such as extended Kalman filter (EKF) or interacting multiple models (IMM) filter, is to compute
the distribution p(Xn | y0:n) of present state Xn conditionally on past and present measurements y0:n := {y1, . . . ,yn}.
In contrast, a smoother (sometimes referred to as Kalman smoothing) computes the distribution p(X0:n | y0:n) of
entire past trajectory X0:n := {X0, . . . ,Xn}, conditionally on past measurements y0:n := {y1, . . . ,yn}. Both a filter and a
smoother allow us to find the best estimate of the state, that is, the most likely state Xn in the light of the information
y0:n we have collected so far, which is referred to as the maximum a posteriori (MAP) estimate. The MAP estimate of
the entire past trajectory X0:n is thus defined as argmaxX0,...,Xn

P(X0:n|y0:n), i.e.,

X∗0:n = argmin
X0:n

− logP(X0:n|y0:n) (3)

Besides, under standard assumptions of independence of noises (wi,vi)i∈N we get

P(X0:n|y0:n) = P(X0)
n

∏
i=1

P(Xi|Xi−1)
n

∏
k=1

P(yk|Xk).

In this equation P(X0) is a prior knowledge that we have on the initial state. Under the assumption of Gaussian noises
wi'N (0,Qi) and vi'N (0,Ni) to represent respectively model and measurements uncertainties, and Gaussian prior
X0 ∼N (X̄0,P0) we have from (1) that P(Xi|Xi−1) = C̃ exp

(
|| fi(Xi−1)−Xi||2Qi

)
and from (2), we have P(yk|Xk) =

C̄ exp
(
||h(Xtk)− yk||2Nk

)
. Thus we end up with the following nonlinear least squares problem

X∗0:n = argmin
X0:n

{
||X0− X̄0||2P0

+
n

∑
i=1
|| fi(Xi−1)−Xi||2Qi

+
n

∑
k=1
||h(Xk)− yk||2Nk

}
(4)

where the norm is the Mahalanobis distance defined by ||e||Σ = eT Σ−1e for Σ a covariance matrix.
If the dynamical model fi and measurement function h are nonlinear, and a linearization point is not available,

one must resort to non-linear optimisation methods such as Gauss-Newton or Levenberg-Marquardt algorithm. The
algorithm is based on successive linear approximations to (4), that iteratively improve the estimate X0:n. Indeed, at
each iteration, by denoting X̂0:n = {X̂0, · · · , X̂n} the current estimate, the problem may be linearized around X̂0:n as
follows. We let:

Fi =
∂ fi(X)

∂X

∣∣∣∣
X̂i−1

, Hk =
∂h(X)

∂X

∣∣∣∣
X̂k

2



Letting ai = X̂i− fi(X̂i−1), ck = yk−h(X̂k), and p0 = X̂0− X̄0, the optimisation problem can be approximated as

δX∗ = argmin
δX

{
||p0||2P0

+
n

∑
i=1
||FiδXi−1−δXi−ai||2Qi

+
n

∑
k=1
||HkδXk− ck||2Nk

}
(5)

yielding at each iteration a linear least squares problem to solve. Noting that we can re-write norms as follows

||e||2Σ = eT
Σ
−1e = (Σ−T/2e)T (Σ−T/2e) = ||Σ−T/2e||2,

stacking the matrices Fi, Hk in a large matrix A and the vectors p0,ai,ck in a large vector b, (5) may be re-written as

δX∗ = argmin
δX

||AδX−b||2 (6)

The solution of this linear least squares problem is then notoriously obtained by equating the gradient of ||AδX−b||2
to 0, which yields

δX∗ = (AT A)−1AT b. (7)

A is a large but sparse matrix, and linear algebra methods can be used to compute efficiently this solution: as explained
in e.g., [10], the Cholesky decomposition or the QR matrix factorization allow us to efficiently compute (AT A)−1. The
obtained solution δX∗ of (7) depends on a particular realization of random noises wi,vi, and varies due to fluctuations
in the data yi which are stacked in vector b. Its variability over a large number of noise realizations is encoded in the
covariance matrix Cov(δX∗ that can be shown to be equal to (AT A)−1.

As already mentioned, the goal of a filter is to return the state that maximizes the posterior distribution P(Xn|y0:n),
whereas a smoother returns the argmax of P(X0:n|y0:n). As time passes, n grows boundlessly and re-estimating the
entire trajectory at each n may become intractable. Typically, the matrix A that appears in (6) at each iteration is of
dimension O(n2), yielding a O(n3) complexity to evaluate (7). As a result there have been various attempts to compute
incrementally the MAP estimate for the smoothing problem. Notably, in robotics, the well-studied problem of SLAM
has a structure that lends itself to such incremental methods, as proved in [10].

Another popular solution is to use a fixed-lag smoother, which aims to approximate P(Xn−k:n|y0:n) for some fixed
lag k ∈ N. Such smoothers are obtained by marginalizing the old states X0:n−k−1 out, see e.g. [13], see also [14].

2.2. Restriction to a deterministic evolution model over a sliding window as a tuning strategy

Actual motion of objects such as aircrafts and marine vehicles typically consist of a succession of distinct ma-
neuvers commanded by an operator. As a result, the trajectories of those objects look like a succession of smooth
trajectories that are well described by continuous time ordinary differential equations (ODE). In Section 3.1, we will
take into account the possibility of abrupt changes in the trajectory, but for now let us consider only the phase in
between maneuvers where the trajectory is governed by deterministic equations. Prosaically, this means that the
covariance matrix Qi of process noise wi in (1) is null. Thus (4) becomes:

minimize
X0:n

{
||X0− X̄0||2P0

+
n

∑
k=1
||h(Xk)− yk||2Nk

}
subject to Xi = fi(Xi−1), i = 1, . . . ,n.

(8)

Of course, such a model is too rigid in practice, as there are always fluctuations in the target behavior with respect to
a model specified in advance. A boat or a plane may deviate slightly from its planned trajectory due to perturbations,
or to slight motion adaptations from the pilot. This is why in the target tracking literature, the covariance Qi of noise
wi is always positive, and serves as a tuning parameter.

Let us temporarily assume we are dealing with problem (8), though. To simplify the exposure, assume fi,hi are
linear and let Fi,Hi denote the corresponding matrices. This means Xk = Fk · · ·F1X0, and thus h(Xk) = HkFk · · ·F1X0.
As a result, solving problem (8) is equivalent to minimizing ||X0− X̄0||2P0

+∑
n
k=1 ||HkFk · · ·F1X0− yk||2Nk

with respect
to X0. Let H̃0 = Id, H̃1 = H1F1, · · · H̃k = HkFk · · ·F1. We see by applying the results of Section 2.1 that Cov(X∗0 ) =
(∑n

i=0 H̃T
i H̃i)

−1, and as X∗n is obtained deterministically from X∗0 it has similar covariance. As a result, when there is

3



no process noise, the confidence about the current state X∗n obtained by solving problem (8) grows as 1/n where n
is the number of measurements. However, as the model cannot be completely accurate due to unpredictability of the
target’s behavior, new observations need to constantly impact the estimate for accurate tracking and it is not sensible
to assume the confidence in the estimate to tend to 0 as 1/n.

On the other hand, if process noise is considered, the covariance of X∗n obtained by solving problem (4) is lower
bounded by some matrix C∗ that depends on the magnitude of the Qi’s. Matrix C∗ is known as the Cramér-Rao bound.
As a result, we see there are two different routes for the practitioner to tune its estimator. Either, one can attempt to
solve (4) and tune process noise Qi, leading to an asymptotic confidence C∗ about the estimate. Or we can consider
the estimation problem with no process noise Qi = 0, leading to (8) , but only on a sliding window of size k̄, that is,

minimize
Xn−k̄:n

{
n

∑
j=n−k̄

||h(X j)− y j||2N j

}
subject to Xi = fi(Xi−1), i = n− k̄+1, . . . ,n.

(9)

Of course those two routes are not strictly equivalent mathematically, but they may be viewed as alternative ways
to tune the estimator. The second route that consists in solving (9) at each time step n is the one we advocate in
the present paper. In this case, the depth of the window k̄ is the tuning parameter which appears as an alternative to
process noise Qi: one should bear in mind the resulting uncertainty about the current state Xn is of magnitude 1/k̄, and
this should be tuned in accordance with the fit between evolution model Xi = fi(Xi−1) and actual motion of the target
(in the extreme case where motion of the target is exactly modeled by this deterministic approach, one may set k = n,
on the other hand if the fit of the model to actual motion is approximative k̄ should be kept at a moderate value).

In the literature devoted to systems identification [15], the use of recursive least squares is pivotal. For real-time
implementation, where one must track a parameter that varies (slowly) over time, it is common to use a “forgetting
factor” that gives less weight to old observations. Our approach may be related to this practice, by setting a forgetting
factor as 1 for the k̄ latest observations and 0 for the preceding ones.

3. Smoothing applied to deterministic systems with random jumps

3.1. Considered systems and simplifying assumptions
As already explained, actual motions of objects such as aircrafts and marine vehicles typically consist of a succes-

sion of distinct maneuvers commanded by an operator. As a result, the trajectories of objects are in fact smooth and
well described by continuous time ordinary differential equations (ODE) driven by constant inputs between change-
points. This was advocated in particular by S. Godsill with various co-authors who proposed the variable rate particle
filter [2, 3, 4], a sequential Monte-Carlo (SMC) method, well suited to piecewise deterministic models. Following [2],
we consider the following piecewise deterministic Markov model:

d
dt

xt = f (xt ,uK(t)) (10)

where xt ∈ Rp is the continuous time target’s state, K(t) ∈ N is a stochastic point process that counts the number
of random jumps up to time t, and u0,u1, · · · is a sequence of random inputs that drive the ODE (10). Moreover, at
discrete time instants t0, t1, · · · , we get (range and bearing) measurements of the form:

yn = h(xtn)+ vn. (11)

The goal is to estimate the most likely state value, that is argmax p(xt | y0:n) for tn ≤ t < tn+1. To simplify the
estimation task, we will assume jumps can only occur at pre-specified discrete times. This may look like a harmful
approximation, but we will see in Section 4 it is actually easy to modify the least squares problem to mitigate its impact
on the estimation. Furthermore, to keep the notation simple we will assume jump times coincide with observation
times t1, t2, · · · . We let rk be the random variable indicating jump at time k (rk = 1 if there is a jump). K(t) is the
number of jumps between times 0 and t. We also let K̃n to be the number of jumps between 0 and tn. We obviously
have K(tn) = K̃n. Note that, K̃n is a function of r0:n. Finally, we let θn = (r0:n,u0:K̃n

,x0) be the parameters we seek to
estimate. To recover xt we only need to integrate (10) based on the knowledge of θn for t < tn+1 .

4



3.2. Corresponding smoothing problem
For the problem described at the preceding paragraph, our goal is to find the most likely state xt at present time.

As just explained, for tn ≤ t < tn+1 this amounts to finding the parameter θn. First, note that we have

log p(y0:n | θn) = log p(y0:n | r0:n,u0:K̃n
,x0) =−

n

∑
k=1
||yk−h(xtk)||

2
Nk
+Cste (12)

where Nk is the covariance matrix of the Gaussian measurement noise vk, and the xtk are obtained by integrating (10).
Trying to estimate θn by maximizing the likelihood (12) is not suitable. Indeed, the optimal solution will jump at
all times to stick to at most to the observations. Obviously, we need a prior on the average time between successive
maneuvers. Letting 0 < p < 1 be the probability of a jump at each time ti, we have the following prior

p(K̃n = j) = p({r0:n contains j ones and n− j zeros}) = P(bin(n, p) = j) =
(

n
j

)
p j(1− p)n− j (13)

Let us assume as prior on the initial state x0 ∼N (x̄0,P0). Estimating the most likely state for the piecewise determin-
istic model of Section 3.1 boils down to the following optimization problem:

θ
∗
n = (r0:n,u0:K̃n

,x0)
∗ = argmin

r0:n,u0:K̃n ,x0

− log p(r0:n,u0:K̃n
,x0 | y0:n)

= argmin
r0:n,u0:K̃n ,x0

[− log p(y0:n | r0:n,u0:K̃n
,x0)− log p(u0:K̃n

| r0:n)− log p(r0:n)− log p(x0)]

= argmin
r0:n,u0:K̃n ,x0

( n

∑
k=1
||yk−h(xtk)||

2
Nk
− log[

(
n

K̃n

)
pK̃n(1− p)n−K̃n ]−||x0− x̄0||2P0

) (14)

with the xtk obtained by integrating (10) with parameters r0:n,u0:K̃n,x0
. The justification for removing log p(u0:K̃n

| r0:n)
from the optimization problem is that we assume a flat prior on the parameters u0,u1, · · · , as we assume at each jump
may correspond to a complete shift. Of course alternative priors might be considered depending on the application.

4. Proposed algorithm

The optimization problem (14) is not tractable, owing to the combinatorics in the jump times. Unfortunately, this
remains true even if the optimization is restricted to a sliding window along the lines of Section 2.2. Over a window of
size k̄, there are 2k̄ possibilities for the discrete variable rn−k̄:n, each leading to a continuous optimization problem with
respect to uK̃n−k̄:K̃n

. To efficiently approximate the optimization problem, we propose the following tractable strategy.

Setting a horizon. We first choose a size k̄ for a sliding window for the reasons explained in Section 2.2, corresponding
to the forgetting horizon of the smoother in the absence of jumps: even if there are no jumps this allows the state to
deviate over time from deterministic model (10) while continuing to be efficiently tracked.

Continuity assumption of xt at jumps. In our model described at Section 3.1 we made the simplifying assumptions
that jumps only occurred at discrete time instants t0, t1, · · · while they actually can occur at any time. We also said
there was a way around the harmfulness of this approximation. Indeed, the “true” considered model (10) implies
continuity in xt , since ẋt is bounded. If a jump actually occurs between tn−1 and tn, for instance at time (tn−1 + tn)/2,
assuming it has occurred at time tn and the trajectory is continuous may result in degraded accuracy, see Fig. 1 for a
graphical illustration. However, by relaxing the continuity assumption and assuming small jumps in the state xt may
also occur at jumping times, may compensate for the assumption that jumps may only occur at pre-specified instants.

Assuming a jump has occurred at time strictly between tl−1 and tl , and given that no other jump has occurred until
current time n, to find the most likely state xtn we relax the continuity assumption and solve the optimization problem

argmin
u,xtl

[||xtl − x̄tl ||
2
Pjump

+
n

∑
j=l
||y j−h(xt j)||

2
N j
], (15)

where x̄tl is the value obtained at instant index l by integrating (10) until time tl based on the former value of u (i.e.
value obtained by continuity), and where Pjump is a covariance matrix that must be tuned as representative of the
typical squared distance xt may achieve between successive observations.

5



Figure 1: Trajectory with velocity u jumping strictly between the observations at times tn−1 and tn. Under the assumption that jump may only occur
at tn and the trajectory xt is continuous we obtain the dotted line which is a poor trajectory estimate. However if we assume u jumps at time tn but
we relax the assumption that the trajectory xt must be continuous and allow it to jump - see (15) - we obtain a much better estimate (dashed line).

Jump detection. Assume n denotes current time step, and the last jump occurred at time l > n− k̄. This means rl:n
contains one 1 followed by zeros. Using (12) we may solve the problem

argmin
u,xtl

− log p(u,xtl | yl:n,rl:n) = argmin
u,xtl

[||xtl − x̄tl ||
2
Pjump

+
n

∑
k=l
||yk−h(xtk)||

2
Nk
] (16)

where the xtk are obtained by integrating ẋt = f (xt ,u) with initial condition xtl , and x̄tl corresponds to the estimate
obtained by continuity with the model before jump. As explained in Section 2.1, it is classically possible to assess
a covariance matrix P̃ to the couple (u,xtl ). As in the absence of jumps xtn = φ(u,xtl ) is a deterministic function of
the parameters (u,xtl ), with φ the flow of (10) , covariance matrix of xtn is Pn = Dφ P̃Dφ T where Dφ denotes the
differential of φ at the optimal values (u∗,x∗tl ). This allows us to compute the associated Mahalanobis distance

∆ =
√
(yk−h(x∗tn))

T (DhT PnDh)−1(yk−h(x∗tn)) (17)

where Dh denotes the differential of h at x∗tn . We may then apply the χ2-test to determine if there is a jump, i.e. as
soon as ∆ goes above a certain value corresponding to a, say 95% quantile of χ2, a potential jump is suspected.

Proposed strategy. We approximate the solution to the true optimization problem (14) by first restricting it to a sliding
window of horizon k̄. Then, we assume jumps are scarce (that is, jump probability p is small) and we let Tn ∈N denote
the time index at which the last jump before current (observation) time tn occurred. At each jump time Tn, the window
is re-initialized, since u jumps to an unknown arbitrary value. As a result, at time tn, current optimal parameter u∗K̃n

is
obtained as a solution to problem (16) with l = max(n− k̄,Tn). Assume according to the χ2 test a possible jump is
detected at time index n, as (17) goes above some predefined quantile q. As this does not mean a jump has necessarily
occurred, we initialize a second smoother based on jump at time n. The first smoother assuming “no jump” has
occurred at n solves:

argmin
u,xtl

(
||xtl − x̄tl ||

2
Pjump

+
n+k

∑
j=l
||y j−h(xt j)||

2
N j

)
,

where the xt j ’s are obtained by integrating ẋt = f (xt ,u). Recalling (14) the associated posterior log likelihood writes:

Lno jump(n+ k) = log p(yl:n+k | u∗,x∗tl )+(n+ k− l) log(1− p)+ log p(x∗tl ) (18)

On the other hand, the candidate “jumping” smoother which assumes one jump occurred at time index n solves:

argmin
u,xtn

(
||xtn − x̄tn ||2Pjump

+
n+k

∑
j=n
||y j−h(xt j)||

2
N j

)
, (19)

where xt j are again obtained by integrating ẋt = f (xt ,u). The associated posterior log likelihood writes:

Ljump(n+ k) = log p(yn:n+k | u∗,x∗tn)+ log
(
kp(1− p)k−1)+ log p(x∗tn). (20)

6



We clearly see the benefit of having a prior on jumps: as the size of window for the jumping smoother is smaller,
the residual of the least squares will be smaller, as it is easier to find a u∗ that fits better a lesser number of data.
But its likelihood will be penalized as soon as kp < 1− p, and in our strategy p must be assumed small. Thus the
binomial term acts as a regularization term that will favor the non jumping smoother, and prevent the estimation
from constantly jumping, which may end up in meaningless estimates. As p is assumed very small, the likelihood
of two or more jumps is considered as negligible. After a possible jump detection at n, we let k increase until either
Ljump(n+ k)> Lno jump(n+ k) and then jump at n is validated, leading to Tn = Tn+k = n, or until k = k̄ in which case
both smoothers coincide and the jumping smoother is suppressed. This strategy is illustrated by Figure 2.

Figure 2: Smoothing with jumps and underlying non-jumping smoother.

Note that there must be a minimum time elapsed after the candidate jump at n for comparing the smoothers. We
will denote it by index k. Indeed, the problem (19) might be solved with 0 residual as long as dim(u)> kdim(y). Jump
penalization may not suffice to have Ljump(n+ k)> Ljump(n+ k) and the jumping smoother is artificially favored.

Algorithm. The pseudo code is displayed in Algorithm 1. During the phases were the jumping and the non-jumping
smoothers are running in parallel, the user can choose whether to output the estimation of one or the other smoother.

Algorithm 1 Smoothing algorithm with jumps
Input: Initial prior (x̄0,P0); Observations y1,y2, · · · ,

1: Set Pjump = P0, T0 = 0, n = 0
2: Solve (u∗,x∗tl ) = argminu,xtl

[||xtl − x̄tl ||2Pjump
+∑

n
j=l ||y j−h(xt j)||2N j

] with l = max(0,n− k̄) and where x̄tl is either
x̄0 or obtained by continuity through model (10) if l > 0.

3: while ∆2 < q with ∆ defined by (17) and q the user specified quantile for the χ2-test do
4: Set Tn = Tn−1
5: n = n+1
6: if ∆2 > q, a candidate jump is detected at time index n then
7: for j = n : n+ k̄ do
8: Compute estimations for a smoother with jump and with no jump
9: end for

10: if for some j we have Ljump( j)> Lno jump( j) then
11: Set Tj = n and select the jumping smoother by selecting (u∗,x∗tl )= argminu,xtn

[||xtn− x̄tn ||2Pjump
+∑

n
j=n ||y j−

h(xt j)||2N j
] where x̄tn is obtained by continuity through model (10) with previous optimal u∗

12: end if
13: Set n = j
14: end if
15: end while

Output: xt is obtained for tl ≤ t < tn+1 with l = min(Tn,n− k̄) by integrating (10) with parameters (u∗,x∗tl ).

7



5. Application to a simple 2D target model

A simple and meaningful deterministic model for a target in 2D consists of a succession of straight lines and arcs
of a circle (at constant speed). In other words, this is a piecewise constant speed and curvature assumption. This also
coincides with the Frenet-Serret model we introduced in [7], with noise turned off. The model is as follows:

d
dt

θt = ωt ,
d
dt

xt = ut

(
cosθt
sinθt

)
,

d
dt

ωt = 0,
d
dt

ut = 0 (21)

where xt ∈ R2 is the position of the target, θt ∈ S1 denotes the orientation of the velocity vector, ut its norm, and
ωt := d

dt θt is related to the curvature of the trajectory. The observations are supposed to be of the form yn = xtn + vn
with vn a Gaussian noise. Here again, we assume the parameters ut ,ωt to be piecewise constant, and we assume
jumping times coincide with observation times.

5.1. Solving the smoothing problem without jumps
Let us first consider the problem without jumps, to explain how the corresponding optimization problem is solved.

It is convenient to discretize the problem as exact discretization is possible. Consider indeed the discrete-time state
(22). The state can be expressed as (23), and yk = h(Xk)+ vk where h(Xk) = xtk .

Xk =
(
θtk xtk ωtk utk

)T (22)

xn = x0 +u0∆t
n−1

∑
k=0

(
cos(θ0 + kω0∆t) sin(ω0∆t)

ω0
− sin(θ0 + kω0∆t) 1−cos(ω0∆t)

ω0

sin(θ0 + kω0∆t) sin(ω0∆t)
ω0

+ cos(θ0 + kω0∆t) 1−cos(ω0∆t)
ω0

)
(23)

The corresponding least squares problem is ||X0−X̂0||2P0
+∑

N
k=0 ||yk−h(Xk)||2N , and is amenable to a problem involving

only X0 through exact discretization (23). Then, we can solve the problem through successive linear approximations
as explained in Section 2.1. Calculations are elementary but all the developments take much space. Due to space
limitations they are not reproduced herein.

5.2. Accounting for jumps
For the 2D Frenet-Serret target model, with Cartesian observations, Algorithm 1 may be directly applied. In the

present application, the piecewise constant (jumping) parameters are ω and u, the angular velocity and the norm of
the velocity. An example is provided in Figure 3. The trajectory presented has been created with a 2D Frenet-Serret
target model, with random jumps for the angular velocity ω and the norm of the velocity u. The first jump, when
the ruen occurs is shown on figure 4. The algorithm applied for the estimation is Algorithm 1, with the non-linear
Frenet-Serret model (21).

6. Comparison with state of the art IMM

In this section, we compare our smoothing Algorithm 1 with the IMM algorithm. The IMM was introduced in
[16] for systems with Markovian switching. Owing to its computational efficiency, its versatility, and its accuracy in
terms of tracking performances, it has become prevalent in the field, where it is considered as the (industrial) state of
the art filter for mono-target tracking. Moreover, good performances on the type of problems we consider in Section
3.1 may be anticipated, as the IMM filter is inherently based upon randomly switching models.

6.1. Results
We compare an IMM with three models (constant velocity, constant turn and constant acceleration) with our

smoothing Algorithm 1. The smoothing algorithm is tuned as follow: the sliding window horizon is taken to be the
entire trajectories, and we tune the number of observations we need to wait after a candidate jump to accept or reject
as k = 5. The jump probability is tuned very low: the average jump probability by unit step p is tuned such that the
average number of jumps over the whole trajectory is 0.02, whereas the actual number of jumps in the trajectory is

around 2 . The transition probability matrix for the IMM is

0.4 0.3 0.3
0.3 0.4 0.3
0.3 0.3 0.4

.

8



(a) (b)

Figure 3: Example of position and velocity estimates using our approach. The real trajectory has two jumps. The smoothing algorithm detects the
two jumps.

(a) (b)

Figure 4: Zoom on the first jump, between a straight line and a turn. The estimation of the velocity adapts smoothly to this turn.

9



6.1.1. Monte-Carlo simulations results
We provide RMSE values computed for a set of 100 randomly generated trajectories with random jumps in head-

ing θ , norm of velocity u, and angular velocity ω . Results are displayed in table 1. Smoothing “real-time” is an
implementation of Algorithm 1, whereas smoothing “smoothed” returns the trajectory estimated by the smoother at
the end of the experiment. The difference is that if a candidate jump at time n is actually validated at time n+ k, the
real-time smoother estimates the state with the “no-jump” smoother between n and n+k (while expecting the jump to
be validated) whereas the smoothed one provides the estimates of the jumping smoother during transition. As a result
our smoothed estimates may be viewed as nearly optimal.

For the comparison to be fair, we must compare the real-time smoother to the IMM. We see our smoothing based
estimator outperforms the IMM in terms of velocity estimation (norm and orientation of velocity vector). However,
for the position precision, we observe that the estimations provided in real time of the smoothing algorithm are a less
precise than the ones of the IMM. Indeed, the IMM has a quite large process noise, so the position tends to stick
more to the observations, whereas the smoothing position estimation can deviate a little. The IMM is tuned so that
the convergence after the jumps is fairly fast. This implies high process noise, so it introduces less accuracy (for the
velocity especially) during constant motions. Moreover, the transition probabilities of the IMM have also to be tuned.
Note that, velocity estimation may be considered as more important that position, since modern radars measure very
accurately the position. However, velocity is not measured and an accurate estimate may be pivotal for e.g., beam
repointing during active tracking.

Parameter Smothing: smoothed Smoothing: real time IMM

Position (m) 40 60 43
Norm of velocity (m/s) 15 32 75

Orientation (rad) 0.12 0.24 0.26

Table 1: RMSE for the smoothing algorithm and the IMM on trajectories simulated with 100 Monte-Carlo simulations of random jumps of heading,
angular velocity and norm of velocity.

6.1.2. Results for a challenging trajectory
We also run the filters on a trajectory generated as follows: first, a constant velocity linear motion, then an abrupt

90 degrees turn that occurs between two observations, followed by another straight line motion, and a slow turn,
containing several observations. Results are displayed in Figure 5. There again, we see our smoothing approach
is better suited to this type of trajectories than an IMM, especially after a jump in the trajectory. The error values
averaged over the entire trajectory are collected in Table 2. Note that, this kind of challenging trajectory is used by
the French Department of Defense (DGA) as a key trajectory to benchmark tracking algorithms.

Parameter Smothing: smoothed Smoothing: real time IMM

Position (m) 33 49 46
Norm of velocity (m/s) 13 35 81

Orientation (rad) 0.18 0.45 0.67

Table 2: RMSE for the smoothing algorithm and the IMM for the trajectory of Figure 5.

6.2. Discussion about IMM
During model changes, the sampling of the observations (that might be over one second, for rotating antenna

radars) is a source of erroneous estimates. Indeed, during these transition phases, there exist an infinite number of
likely solutions, when the exact time of the transition is not known. During these transition phases, recursive Kalman
filters estimate a unique solution, which has a high probability to be erroneous. To overcome this problem, and avoid
the divergence of the Kalman filters during transitions, multiple models filters (IMM) are commonly used. A well-
known caveat to practitioners of IMM is that, at least one of the models must be tuned with a high process noise

10



(a) (b)

Figure 5: Velocity vector along the trajectory for the IMM (fig. 5a), for the smoothing algorithm, with the results output in real time (fig. 5b), and
for the smoothing algorithm with the final result (fig. 5b). The results are more precise for the smoothing algorithm, even when considering the
real time output, and not the final smoothed estimation. The smoothing algorithm is able to manage the jumps, and to be accurate during straight
lines, whereas the IMM algorithm, while managing the jumps has troubles during straight lines, because of the high process noise.

(and usually a constant acceleration model), to ensure at least one of the filters in the IMM never diverges. Engineers
sometimes compare it to a “garbage collector” model, which saves the day when none of the other models is properly
fitting the measurements. The problem is that this model generates uncertainty on the estimate and usually delays the
convergence of the filter after a transition during phases with constant kinematic model.

The jumping smoother with the Frenet-Serret model allows to optimize these transition phases. The conception of
the algorithm is designed to be optimal during constant input phases, and to handle jumps gracefully. We see indeed
the smoothing algorithm with jumps works very well in the presence of very abrupt jumps.

6.3. Discussion about tuning

Another advantage of the smoothing algorithm proposed in this chapter for practitioners is that there are very few
parameters to tune, a feature in sharp contrast with other methods that involve process noise covariance matrices. The
three scalar parameters to tune are the number of observations we wait after a possible jump to accept the jump or
to reject it, called k in Algorithm 1, the size of the sliding window k̄ and the probability p of a jump, which is used
in (13) to compare the smoother that has just jumped with the one that has not jumped. Moreover, our experience
is that the filter is robust to small variations in the parameters. In contrast, the IMM has to be tuned carefully, and
must match the amplitude of the jumps. Indeed, if the process noise is too low, then the filter cannot accommodate
the jumps, whereas if it is too high, the accuracy elsewhere is degraded.

7. Conclusion

In this paper, a novel estimation method has been applied to the mono-traget tracking problem, using nonlinear
least squares and a target dynamic model based on piecewise deterministic Markov models. As no process noise is
assumed during the non-jumping phases, estimation is quite smooth and accurate in the absence of jumps (stationary
phases), and allows us to accurately detect jumps in the trajectory (transition phases). Some types of targets, such as
modern missiles, may exhibit very abrupt changes in heading between two observations (while changes in the linear
velocity/acceleration are necessarily much more limited). Our estimation algorithm should prove especially useful for
this type of targets, as illustrated by the displayed comparisons to the IMM.

This smoothing algorithm has only been derived for a 2D target model, in a vector space. Perspectives include
extension to 3D, using the general Lie group setting introduced in [7].

11



References

[1] A. Doucet, N. De Freitas, K. Murphy, S. Russell, Rao-blackwellised particle filtering for dynamic bayesian networks, in: Proceedings of the
Sixteenth conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., 2000, pp. 176–183.

[2] S. Godsill, J. Vermaak, Variable rate particle filters for tracking applications, in: IEEE/SP 13th Workshop on Statistical Signal Processing,
2005, IEEE, 2005, pp. 1280–1285.

[3] P. Bunch, S. Godsill, Dynamical models for tracking with the variable rate particle filter, in: Information Fusion (FUSION), 2012 15th
International Conference on, IEEE, 2012, pp. 1769–1775.

[4] P. Bunch, S. Godsill, Particle smoothing algorithms for variable rate models, IEEE Transactions on Signal Processing 61 (7) (2013) 1663–
1675.

[5] Y. Bar-Shalom, X. Li, T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, Wiley,
2004.
URL https://books.google.fr/books?id=xz9nQ4wdXG4C

[6] M. R. Morelande, N. J. Gordon, Target tracking through a coordinated turn, in: Proceedings. (ICASSP ’05). IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2005., Vol. 4, 2005, pp. iv/21–iv/24 Vol. 4. doi:10.1109/ICASSP.2005.1415935.

[7] M. Pilté, S. Bonnabel, F. Barbaresco, An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2d, in: Radar
Symposium (IRS), 2017 18th International, IEEE, 2017, pp. 1–10.

[8] S. Thrun, M. Montemerlo, The graph slam algorithm with applications to large-scale mapping of urban structures, The International Journal
of Robotics Research 25 (5-6) (2006) 403–429.

[9] F. Dellaert, M. Kaess, Square root sam: Simultaneous localization and mapping via square root information smoothing, The International
Journal of Robotics Research 25 (12) (2006) 1181–1203.

[10] M. Kaess, A. Ranganathan, F. Dellaert, isam: Incremental smoothing and mapping, IEEE Transactions on Robotics 24 (6) (2008) 1365–1378.
doi:10.1109/TRO.2008.2006706.

[11] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, F. Dellaert, isam2: Incremental smoothing and mapping using the
bayes tree, The International Journal of Robotics Research 31 (2) (2012) 216–235. arXiv:https://doi.org/10.1177/0278364911430419,
doi:10.1177/0278364911430419.
URL https://doi.org/10.1177/0278364911430419

[12] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., Fastslam: A factored solution to the simultaneous localization and mapping problem,
in: Aaai/iaai, 2002, pp. 593–598.

[13] T.-C. Dong-Si, A. I. Mourikis, Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis, in: Robotics and Automation
(ICRA), 2011 IEEE International Conference on, IEEE, 2011, pp. 5655–5662.

[14] G. Sibley, L. Matthies, G. Sukhatme, Sliding window filter with application to planetary landing, Journal of Field Robotics 27 (5) (2010)
587–608.

[15] L. Ljung, System identification: theory for the user, Prentice-hall, 1987.
[16] H. A. Blom, Y. Bar-Shalom, The interacting multiple model algorithm for systems with markovian switching coefficients, IEEE transactions

on Automatic Control 33 (8) (1988) 780–783.

12


