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Substitutions and Mobius disjointness

S. Ferenczi, J. Kutaga-Przymus, M. Lemanczyk? C. Mauduit
April 15, 2016

Abstract

We show that Sarnak’s conjecture on M&bius disjointness holds for all
subshifts given by bijective substitutions and some other similar dynami-
cal systems, e.g. those generated by Rudin-Shapiro type sequences.
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1 Introduction

In 2010, Sarnak [? | formulated the following conjecture: for each zero entropy
topological dynamical system (7, X) (X is a compact metric space and T is a
homeomorphism of X), each f € C(X) and x € X, we have

1 n
1) 2 f@ ) ) — o,
n<N
where p: N — C is the Mobius function defined by pu(1) = 1, p(py - ... pg) =

(—1)* for k different prime numbers p;, and p(n) = 0 for the remaining case.
The conjecture has already been proved in numerous cases, e.g. [? 7 7 7 7 7
FA S S A A S A A

The aim of the present paper is to show that Sarnak’s conjecture holds for
some classes of dynamical systems of number theoretic origin. Namely, for all
dynamical systems given by bijective substitutions (a subclass of substitutions
of constant length) [? ]| and also for other related systems given by some
automata (e.g. by the sequences of the Rudin-Shapiro type). Our approach is
purely ergodic and our main tool is the theory of compact group extensions
of rotations. Throughout, we deal with uniquely ergodic homeomorphisms, i.e.
homeomorphisms possessing exactly one invariant measure (which has to be
ergodic).

Given a bijective substitution 6 over a finite alphabet A, we define its group
cover substitution 6 over a subgroup G of permutations of A, which hence carries
an additional natural group structure. Since the dynamical system (S, X (9))E|
given by 6 is a topological factor of the dynamical system (.S, X (6)) given by 0, it
suffices to show that Sarnak’s conjecture holds for (S, X (#)). The group cover
substitution # can be identified with a certain (generalized) Morse sequence
x and the associated dynamical system (S, X(x)) is a Morse system. This is
where compact group extensions come into play — each Morse dynamical system
is (measure-theoretically) isomorphic to a compact group extension (T, X x G)
given by a so called Morse cocycle ¥: X — G over a rotation T', more precisely
over an odometer (7, X )E| The main difficulty is that such compact group
extensions have been studied so far mostly from the measure-theoretic point
of view [? ? 7 ] (the dynamical systems under considerations are uniquely
ergodic). The underlying reason and, at the same time, the main obstacle for
us is that Morse cocycles are in general not continuous. Thus, we cannot deal
directly with such models — Sarnak’s conjecture requires topological systems.
In order to bypass this difficulty, more tools are used. The Morse dynamical
system (S, X (z)) turns out to have a Toeplitz dynamical system (S, X (%)) as
a topological factor, which, in turn, is an almost 1-1-extension of the odometer
(T, X). Moreover, the method of Toeplitz extensions [? | allows us to find a
dynamical system topologically isomorphic to (S, X (x)), which also has a form
of a compact group extension: (S,,X(Z) x G) given by a continuous cocycle
p: X(Z) - G. If we denote the (natural) factoring map from (S, X(Z)) to
(T, X) by p, we have the following relation between the two cocycles: ¢ = op.
Our goal will be to prove that Sarnak’s conjecture holds for (S,, X(Z) x G).

Here and in what follows, S stands for the left shift on a closed S-invariant subset of the
space of two-sided sequences, i.e. (S, X (0)) is an example of a subshift.

2This and other relations between the dynamical systems described in this paragraph are
illustrated in Figure



The passage to group substitutions seems to be unavoidable for our method.
Indeed, we require that the substitution subshift has a topological factor, deter-
mined by a Toeplitz sequence, which is an almost 1-1 extension of the maximal
equicontinuous factor (the underlying odometer) and is measure-theoretically
isomorphic to it. However, in [? |, Section 4.4, it is proved that a bijective
substitution need not have a symbolic factor which is measure-theoretically iso-
morphic to the maximal equicontinuous factor (this anwers a question raised
by Baake). For example, this surprising property holds for the substitution
a — aabaa, b — bcabb and ¢ — cbeee [? .

M t
Morse system orse system

i b ~ given by Morse cocycle
g(l‘;”e;l( <Y);C 77777777777777777777777 ’ (cpt. group extension)
R ~ N (T, X x G)

continuous cpt.
group extension
(Sp, X(Z) x G)

l

Toeplitz system
(5, X(2))

-

odometer
(T, X)

Figure 1: Morse and Toeplitz dynamical systems on a diagram. Plain and
dashed lines denote topological and measure-theoretical maps, respectively (all
depicted systems are uniquely ergodic).

The first tool we use to deal with the continuous compact group extensions
is the Katai-Bourgain-Sarnak-Ziegler criterion:

Theorem 1.1 ([? ? |, see also [? ]). Assume that (a,) < C is bounded and
suppose that

1 _
N 2 Oprlns — 0

n<N

for all sufficiently large different prime numbers r,s. Then

1
— apA(n) — 0
N ngN

for each multiplicativﬂ function A: N - C, |A\| < 1.

This criterion is applied to sequences of the form a,, = f(T"z), n > 1, and
if satisfied, it yields a certain form of disjointness of different prime powers of

3X: N — C is called multiplicative if X(m - n) = A(m) - A\(n) whenever m,n are coprime.
It is called aperiodic whenever % Yin<n Aan +b) — 0 for all a,be N. The Mobius function
p is multiplicative and aperiodic.



the homeomorphism T'; notice that ,sufficiently large” in Theorem [I.I] may now
depend on f and =x.

Our second tool is based on the method of lifting generic points in the Carte-
sian products of different prime powers 7" and T° to almost 1-1-extensions. It
has already appeared in [? |, where the almost 1-1-extensions are chosen in
such a way that the original cocycle considered on the extended space becomes
continuous. Moreover, we will study ergodic joinings of (Ty)" and (T)® and
show that in our case this set consists only of the relatively independent exten-
sions of isomorphisms between 7" and T for different sufficiently large primes
r,s. This will allow us to control generic points in the Cartesian product of the
continuous compact group extension (S,)" x (S,)°.

In Section 5, we give the main application of our method — we prove Sarnak’s
conjecture for the dynamical systems given by:

e all bijective substitutions,
e certain subclass of regular (generalized) Morse sequences,
e certain sequences of the Rudin-Shapiro type.

In Section 6, we compare our results concerning generalized Morse sequences
and the Rudin-Shapiro type sequences with some earlier results in which has
been proved only for f(y) = (—1)¥I°. Using spectral approach, we prove, in
some cases, that the validity of for such f yields Sarnak’s conjecture in
its full form for the corresponding dynamical system. In particular, we show
that Sarnak’s conjecture holds for the dynamical systems given by Kakutani
sequences [? ? ]ﬂ Sometimes, however, it seems that more than one function
satisfying (1) is necessary for the validity of Sarnak’s conjecture. E.g., this seems
to happen for the dynamical systems given by the Rudin-Shapiro type sequences.
Here, (1) for f has been been proved in [? ? | by a purely combinatorial
approach. The methods developed in [? | seem to be flexible enough to give
for finitely many functions described in Section hence yields one more proof
of Sarnak’s conjecture for the corresponding dynamical system.

In Section [6.4] we compare our results with a recent work of Veech [? ]. He
provides a proof of Sarnak’s conjecture for a class of dynamical systems given by
some genearlizations of Kakutani sequences over an arbitrary compact group.
In particular, [? | gives an alternative proof of Sarnak’s conjecture for Kakutani
systems.

2 Basic tools

2.1 Spectral theory

For an ergodic automorphism T of a standard probability Borel space (X, B, u),
we consider the associated Koopman operator on L?(X, B, i) given by Ur(f) =
foT. Then there exist elements f,, € L?(X, B, 1), n > 1, such that

(2) L*(X,B,p) = P Z(f,) and op, » o4, > ...,

n=1

4This result does not seem to follow by Section



where Z(f) = span{U}(f) : n € Z} is the cyclic space generated by f and oy
denotes the only finite positive Borel measure on T such that §  foTm f dp =
§p 2" dog(z) for each n € Z (o is called the spectral measure of f). The class of
all measures equivalent to oy, in the above decomposition is called the mazimal
spectral type of Ur and is called a spectral decomposition. We say that the
maximal spectral type is realized by f € L*(X, B, u) if o is equivalent to oy, .

If L2(X,B,p) = Z(f1) ® - - ® Z(fx) for some f; € L?(X, B, 1), we say that
Ur has multiplicity at most k. If no such k > 1 exists, the multiplicity of Ur is
infinite. If kK = 1, Ur is said to have simple spectrum.

Recall that T has discrete spectrum if the maximal spectral type of Up is
purely discrete. Equivalently, L?(X, B, i) is generated by the eigenfunctions of
Ur. By the Halmos-von Neumann theorem, 7' is, up to isomorphism, an ergodic
rotation on a compact monothetic group. If, additionally, all eigenvalues of Ur
are roots of unity, T is said to have rational discrete spectrum.

For more information on the spectral theory see e.g. [? ].

2.2 Joinings

Recall that if T and S are ergodic automorphisms on (X, 5, ) and (Y,C,v)
respectively, then by a joining between T and S we mean any T x S-invariant
measure £ on (X x Y, B ® C) whose projections on X and Y are p and v,
respectively. We denote by J(T',S) the set of joinings between T' and S and
by J¢(T,S) the subset of ergodic joinings. Clearly, u® v € J(T,5). If T and
S are isomorphic, an isomorphism given by R: (X,B,u) — (Y,C,v), then the
measure g determined by pur(B x C) = u(B n R71C), B € B,C € C, belongs
to J¢(T,S). It is concentrated on the graph of R and is called a graph joining.
When T' = S we speak about self-joinings of T' and each graph self-joining is
given by some element from the centralizer C'(T") of TE|

Suppose that T and S are isomorphic, where the isomorphism is given by
R: X — Y, and have extensions to T on (X,B,%) and S on (Y,C,7), respec-
tively. The relatively independent extension of ur (to a joining of T and S) is
denoted by pig and determined by

L  F®G djip = J E(F|X)-E(G|Y) o R du
XxY X
for F e L?(X,n), G e L*(Y, D).

2.3 Compact group extensions

Assume that T is an ergodic automorphism of a standard Borel probability
space (X, B, p). Let G be a compact metric group with Haar measure mg.

Definition 2.1. Any measurable map ¢: X — G is called a cocycle. The
automorphism T, of (X x G,B® B(G), 4t ® mg) defined by

Ty(x,g) := (Tx,p(x)g)

is called a G-extension of T (it is an example of a compact group extension of
T). We say that v is ergodic if T, is ergodic.

5The centralizer C(T') consists of automorphisms of (X, B, 1) commuting with T



Compact group extensions enjoy the following relative unique ergodicity
property.

Lemma 2.1 ([? |). If Ty is ergodic (i.e. if the product measure p ® mg is
ergodic) then p® me is the only Ty -invariant measure projecting onto fi.

Let 74 be an automorphism of (X x G, u ® mg) given by
14(z,¢') = (x,¢' - g) for each ¢’ € G.
Then Ty, o 7y = 74 0 Ty, that is, 7, is an element of the centralizer C(Ty) of Ty.

Proposition 2.2 ([? ]). Assume that T is ergodic and ¢: X — G is ergodic as
well. Assume additionally that T has discrete spectrum. Then each S € C(Ty)
is a lift of some S € C(T). More precisely, S = S¢v, where Sy, (x,9) =
(Sz, f(z)v(g)) for some S € C(T), some measurable f: X — G and some

continuous group automorphism v: G — G. Moreover, if S and S are two lifts
of Se C(T) then S = S oy, for some gy € G.

Definition 2.2. We will say that T3, has G-trivial centralizer if
C(Ty) = {TZZOTg ckeZ, geG}.

Definition 2.3. Let H < G be a closed subgroup. The corresponding factor-
automorphism Ty of (X x G/H, up® mg/g) given by

Tyu(z,gH) = (Tx,(x)gH)

is called a natural factor of Ty It is called nontrivial if H # G, and it is called
normal whenever H is normal.

Remark 2.3. Notice that a power of a group extension is clearly a group
extension: (Ty)" =T ﬂand the passage to natural factors is “commutative”:

()
(Tp)" ) = Tyn)"-
We need some facts about joinings of compact group extensions.

Theorem 2.4 ([? ]). Assume that T is ergodic. Assume that S € C(T) and let
P; + X — G be an ergodic cocycle, i = 1,2. Assume that k € J¢(Ty,,Ty,) and
projects on the graph self-joining us of T. Then there are two closed normal
subgroups Hy, Ho = G and an isomorphism S (a lift of S) between the two
normal natural factors Ty, g, and Ty,p, such that

k= (ma/m,)s

i.e. k is the relatively independent extension of the graph joining (mg/u,)g €
J( Ty, Tyorr,) given by the isomorphism S.

Remark 2.5. Suppose that T has rational discrete spectrum and (Ty)" and
(Ty)® are ergodic. Then T and T are isomorphic and the only ergodic joinings
between them are the graph joinings. By Theorem[2.4] if there is no isomorphism

60" (z) := Y(x)(Tx) ... (T 1z) for r > 0 and extends to r € Z so that the cocycle
identity (™) () = (™) (2)(™) (T™z) holds for every m,n € Z.



between nontrivial normal natural factors of (T3;)" and (Ty)®, then there are no
ergodic joinings between (T)" and (Ty)®, except for the “most independent”
ones: the relatively independent extensions of isomorphisms between 7" and
T7. Notice also that if such a relative product is ergodic then automatically, by
Lemma [2.T] it is the only invariant measure on X x G x X x G projecting on
the graph of the isomorphism.

2.4 Generic points

Let T be a homeomorphism of a compact metric space X. Let y be a T-invariant
Borel probability measure on X.

Definition 2.4. We say that x € X is generic for p if %anN Orng — b
weakly. If the convergence to u takes place only along a subsequence (Ny) then
x is called quasi-generic for .

Remark 2.6. Notice that, by the compactness of X, the space of probability
measures on X is also compact, hence each point is quasi-generic for some 7T-
invariant measure.

3 Basic objects

3.1 Odometers, Morse cocycles and Toeplitz extensions

Odometers Assume that (n:);>o satisfies ng = 1 and ng|ngq with Ay =
nip1/ne = 2 for t > 0. Consider X := [],.,Z/\Z with the product topology
and the group law given by addition mod \;, with carrying the remainder to the
right. This makes X a compact metric Abelian group. We define the translation
T by (1,0,0,...):

T(xo,x1,%2,...) = (o + 1,21, 22,...)
to obtain (X, B, mx,T) — an ergodic rotation.
Definition 3.1. T defined above is called an odometer.

Remark 3.1. Odometer 7" defined above has rational discrete spectrum given
by the n;-roots of unity, ¢ > 0. For each ¢ > 0, there is a Rokhlin tower
D':={D{, Di,..., D}, }, i.e. apartition of X for which T°Df = D!, for
each i > 0 (by ergodicity, such a tower is unique up to cyclic permutation of the

levels). Indeed, D = X and we set
Dii={reX :zg=...=x2,,=0}t>1

Clearly, the partition D!*! is finer that D! and the sequence of such partitions
tends to the partition into points.

Remark 3.2 (cf. Remark 2.5)). Notice that for each r > 1,
(3) T" is isomorphic to 7" whenever 7T is ergodic.

Indeed, T™ has the same spectrum as 7. To see the isomorphism more directly,
notice that ged(r,n;) = 1 and T" permutes the levels of D! — this extends to an
isomorphism map between T and T".



Remark 3.3 (cf. Remark. Since T has discrete spectrum, its only ergodic
joinings are graph measures (mx)w, where W e C(T') is another rotation on
X [? ]- It easily follows that

each point (z,y) € X x X is generic for an ergodic self-joining
of the form (mx)w.

(4)
Indeed, define W as the translation by x — y.

Morse cocycles Assume that G is a compact metric group and (7, X) is an
odometer.

Definition 3.2 ([? 7 |). We say that ¢: X — G is a Morse cocycle if ¢ is

constant on each D!, ¢t > 0,i=0,1,...,n; — 2 (4| pt may depend on i).
Remark 3.4. To see what are the values of Morse cocycle 1 on thfh we first
pass to the levels D;:tl_l for j =1,...,A\41 — 1, and read the values 9| e+

jng—1
To read the values on beﬂl_l (ng41 = Aip1n¢), we pass to D2 ete. Tt is clear
that ¢ defined in this way is continuous everywhere (as the levels of the towers
are clopen sets) except perhaps one point (given by the intersection of the top
levels of all towers). Notice also that whenever G is finite then a Morse cocycle
cannot be continuous unless for some tg, it is constant on each level of the
tower D'. In this case, Ty, if ergodic, is a direct product of 7" with a rotation
on G. In particular, Sarnak’s conjecture holds for 1.

Remark 3.5. The class of group extensions given by Morse cocycles is (up
to measure-theoretic isomorphism) the same as the class of dynamical systems
generated by generalized Morse sequences, see [? 7 ? ? |, which we consider in
the next section.

Toeplitz extensions Morse cocycles yield extensions of odometers which are
special cases of so called Toeplitz extensions studied in [? ]. Toeplitz extensions
are also given by cocycles over odometers but in the definition of such cocycles
we areﬁetting more than one level have non-constant values, as in the example
below

Example 3.1. Let \; := 2 for each ¢ > 0 and G := Z/2Z. We define ¢: X —
Z/27 so that at stage t it is defined on each D!, except for i = 271 — 1 and
i = 2% — 1. Then, when we pass to D!*!, on the levels D;f_ll_l and D?jw—l—l
(v must be defined here at this stage of the construction), we set the values 0

and 1 (or 1 and 0), respectively.

The class of Toeplitz extensions of the dyadic odometer described in Exam-
ple 3.1 was considered in [? ? ]. The dynamical systems corresponding to the
Rudin-Shapiro type sequences (see Section II1.2 in [? |) are in this class.

"It is however required that the numbers of levels of D* on which the cocycle is non-constant
divided by n: goes to zero. A reason for that is that we want to obtain a regular Toeplitz
sequence which is behind such a construction, see [? ] for more details.



3.2 Generalized Morse sequences
Let G be a compact metric group with the unit e.

Definition 3.3. Let b* € G* be a block over G of length |bt| = \; > 2 and
b'[0] = e, t = 0. The associated (generalized) Morse sequence is defined by

(5) zi=00x bl x ...

)

where B x C = (B o c[0])(Boc[l])...(Boc[|C|—1]) and B o g :=
(bog, ..., bp—1g) for B,C blocks over G and g € G. By (S, X(z)) we denote
the subshift corresponding to = (X (z) = G%).

Example 3.2. Generalized Morse sequences for G = Z/27 were first studied
in |7 ]. If b* € {00,01}, t > 0, we speak about Kakutani sequences |? |.

Definition 3.4 ([? |). We say that u € GY is a Toeplitz sequence whenever
for each n € N, there exists k,, > 1 such that v is constant on the arithmetic
progression n + k,N E|

Lemma 3.6 (cf. Figure. Let x = b9 x b x ... be a Morse sequence. The map
(6) y =g, gln]:=yln+1]y[n] ™"

yields an equivariant map between (S, X (z)) and (S, X (Z)). Moreover, T is a
Toeplitz sequence.

Proof. The first part is obvious. For the second, notice that for each ¢t > 1, we
have
x=cp X 2z, where ¢; = b x ... x b7z =bt x b x L

whence z is a concatenation of blocks of the form ¢; o g. Moreover,
ci[n +1ei[n] ™ = (crog)[n+1](ci 0 g)[n] ! for n = 0,...,|ei| — 2.
It follows that
(7) T=CrxCr#Cr%...,
where “*” stands for the unfilled place of T at the stage t > 1. O

Remark 3.7. Toeplitz sequence Z from (7)) is regular in the sense of [? ]. Hence
(S, X (%)) is uniquely ergodic [? |.

Lemma 3.8 (cf. Figure|l)). (S, X (x)) is topologically isomorphic to (S,, X () x
G), where ¢: X (Z) — G is the continuous cocycle given by

©(z) = z[0], for each z € X(Z).
Proof. The topological isomorphism is given by the (equivariant) map

y = (4,y[0]).

J—

Indeed, this map is continuous as ¢ is continuous, it is onto since § = y o g, and
finally it is 1-1 since y[n + 1] is determined by y[n] and g[n]. O

8For the theory of dynamical systems given by Toeplitz sequences, see e.g. [? |.



Remark 3.9 (cf. Figure . Let z be the Morse sequence given by with
ng = || = |b° x --- x b7, t = 1. Then the Toeplitz system (S, X (Z))
has the {n.}-odometer (T, X) as its topological factor. Moreover, the Morse
dynamical system (S, X (x)) is given by a Morse cocycle ¢ over T. The values
(1/1\%, . ’¢|Dit—2) are determined by ¢;:

It follows that

and then, inductively (¢; = b x ... x b'~1),

1
VO] = €, B[] = [ [@raaline — Uerlne — 1), 1 <i < Aya — 1
j=i
(for more details see, e.g. [? ? |). However, the Morse cocycle is not continuous.
The passage to the Toeplitz dynamical system from Lemma [3.§ allows us to get
its continued version.

Lemma 3.10. The normal natural factors of Morse dynamical systems over G
are Morse dynamical systems over G/H.

Proof. The assertion follows immediately from the equality B x C mod H =
(Bmod H) x (C mod H) and Remark [3.9] O

3.3 Bijective substitutions
Fix a finite alphabet A with |[A] =r > 2.

Definition 3.5. A map 6: A — A* (A > 1) is called a substitution on A of
constant length \ (in what follows, simply substitution) if there exists n > 1
such that for each a,a’ € A there exists k such that 8™ (a)[k] = a’. We extend 6
first to a map on blocks over A, then to a map #: AN — AN, We will assume
that 0(ag)[0] = ag. By iterating 6 at ag, we obtain a fixed point for the map
0: AN — AN and by (S, X (0)) we denote the corresponding subshift of A%.

Remark 3.11 (see Chapter 5 in [? ]). For each substitution 6 of constant
length, (S, X (0)) is strictly ergodic.

Remark 3.12. Let : A — A* be a substitution of constant length such that
(S,X(0)) is aperiodic. Recall that then for each y € X () there is a unique
sequence (i;(y))i>1 = Z (t-skeleton) with i,(y) € [-A* + 1,0] such that y[i; +
kXY i+ (k+ )X — 1] = 0% (ay¢) for each k € Z and some letters ay; € A. This
allows us to define the corresponding towers of height ! by setting the base of
the t-tower

Dyi= {y e X(6) :is(y) = 0}

to obtain U;\ial S'Di = X ().

10



Definition 3.6 ([? ]). We say that 6 is recognizable if there exists a constant
M > 0 such that if y € X(0), t > 1 and i € [-\! + 1,0] satisfy

ylivi+ M — 1] = 0t(b1) ... 6 (bar)

for some by,...,by € A then i = i;(y). We say that M is a constant of recog-
nizability.

Remark 3.13 ([? ? ]). Each substitution 6 of constant length, such that
(S, X(0)) is aperiodic, is recognizable. In what follows, we will tacitly assume
that we deal with recognizable substitutions.

Remark 3.14. Suppose that 6 is recognizable. It follows that each function
1pe depends on not more than M A! coordinates.

Definition 3.7 ([? ]). Substitution 6 is called bijective if

d(0(a),b(a)) := {0<k<A-1: i(a)[k] 7 O _ 1, whenever a # o

or, equivalently, the maps o;(a) := 6(a)[¢] are bijections of A, i =0,..., A — 1.

Remark 3.15. We can assume (wlog) that og = Id by considering, if necessary,
some its power.

Definition 3.8. Let G be a finite group with the unit e. A substitution : G —
G* is called a group substitution whenever

0(g) = 6(e) o g for each g € G.

Remark 3.16. Each group substitution is bijective. Moreover, each group
substitution can be identified with the Morse sequence 6(e) x 6(e) x ...

Lemma 3.17 (cf. Lemma and Remark [3.16). The normal natural fac-
tors of dynamical systems given by group substitutions are determined by group
substitutions.

Proof. Consider the group substitution given by e — B (i.e. g — B o g). Then
gH — B mod gH

yields a bijective substitution as in each column of the matrix corresponding to
the group substitution we see all elements of G; in particular, by taking them
mod H, we see all elements of G/H. O

Denote ., the group of permutations of A. Define 0: .7, — 2 by setting

~

(8) 0(r) = (cpoT,0107,...,0n_107) =0(Id)oT

for each 7 € .Z.. Let G < .¥, be the subgroup generated by og,01,...,0x_1
and define

(9) 0(r) := 6(7) for € G.

Definition 3.9 (cf. Lemma below). We call § the group cover substitution
of 6.

11



Lemma 3.18. 0 is a (bijective) substitution.

Proof. Notice that if 8" (c¢)[j] = 7 then in 5”“(00) we can find the block
(000T,...,05_107). Since all elements in G are of finite order (o; ' = o771, it
follows by induction that, for some n, we will see all symbols from G on 7" (00)-

O

Lemma 3.19. (S, X(0)) is a topological factor of its group cover substitution
(5, X(0)).

Proof. We define an equivalence relation on G by setting 7 = 7/ if 7(0) = T’(O)H

For y € X (0), set

F(y)[n] := (y[n])(0).
Notice that the image of F equals X (), F is equivariant and takes the same
values on the equivalence classes of =. Finally, notice that {r(0) : 7€ G} = A
since 6 is a substitution, whence G acts transitively on A. O

Remark 3.20 (cf. Remark [3.16). The group cover substitution # can be identi-
fied with the Morse sequence Bx B x ... (over G), where B = (09,071,...,0x_1).

Remark 3.21. Notice that, in order to prove Sarnak’s conjecture for a bijective
substitution 6, it suffices to prove it for (S,, X (Z) x G), where x = Bx B x ...
as (S, X(0)) is its topological factor (see Lemma[3.19]and Remark [3.20). Notice
also that we do not claim that for (S, X()) the Toeplitz dynamical system
(S, X (%)) is its topological factor (even though the odometer is its topological
factor). In fact, there is a counterexample due to Herning [? |.

4 Sarnak’s conjecture for finite group extensions

4.1 Lifting generic points for compact group extensions

We now recall a basic result on lifting generic points from [? |. Assume that
T'; (T;) is a uniquely ergodic homeomorphism, with a unique invariant measure
I; (ps), of a compact metric space X; (X;), ¢ = 1,2. Assume, moreover, that

7i: X; — X; is continuous and yields (7}, X;) a topological factor of (T, X;).

Proposition 4.1 (|7 |). Assume that (T;, X;,71;) and (T;, X;, j1;) are measure-
theoretically isomorphic.  Assume, moreover that (T;, X;, ;) is measure-
theoretically coalescenﬂfori =1,2. Assume that (z1,22) € X1 x X2 is generic
for an ergodic Ty x Ts-invariant measure p. Then there exists a unique Ty xTs-
invariant measure p, such that each pair (T1,To) € (w1 x w3) " (21, 22) is generic
for p. Moreover, the system (T1 x Ta,p) is isomorphic to (T} x T, p).

Let T be an odometer acting on (X, B, ) and let T be a uniquely ergodic
homeomorphism of X (with the unique invariant measure 1) such that 7: X —
X is a topological factor map, and (7, u) and (T,7) are measure-theoretically
isomorphic (then 7 is a.e. 1-1 as transformations with discrete spectrum are

9This relation is called 6-consistent, see [? 7 |.
10An automorphism T of (X, B, ) is called coalescent [? | if each endomorphism commuting
with T is invertible.
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g()aliscent). Assume that ¢: X — G is ergodic and such that the cocycle
1: X — G given by

(10) ¥(T) := ¢(n(T)) is continuous

(it is automatically ergodic as (Ty, X x G, p®mg) and (T, X x G,E® mg)
are isomorphic). Assume that r # s are such that (T7),)" and (7,)® are ergodic,
hence T" and T* are isomorphic (and they are isomorphic to T').

Proposition 4.2. Assume that the only ergodic joinings between (T,)" and
(Ty)® are the relatively independent extensions over the graphs of isomorphisms
between T" and T°. Let T € X and let p = ug be the (ergodic) graph joining
for which the point (n(T),n(T)) is generic. Then for each g € G, the point
((z, 9), (T, q)) is generic for the 7, where p comes from Proposition (~ stands
for the relatively independent extension). Moreover,

(11) (T5)" % (T)*,p) and ((Ty)" x (Ty)°, iir) are isomorphic.

Proof. The point ((Z, g9), (Z,g)) is quasi-generic for a (TE)T X (TE)S—invariant
measure . By Proposition (z,T) is generic for p. Therefore, the projection
of k on X x X is equal to p. Using Lemma [2.1| (applied to T: x T, @(T) X E(s)

and p), to conclude, we only need to prove that ((77)" x (TE)S,ﬁ) is ergodic.
Notice that is obvious since p = pg and p yield isomorphic systems. This

~

gives immediately that ((1%)" x (1%)°, p) is ergodic, whence k =p. O

4.2 Criterion for Sarnak’s conjecture for finite group ex-
tensions

In this section, we assume that (7, X, B, 1) is an ergodic transformation with
discrete spectrum and ¢: X — G is an ergodic cocycle with values in a finite
group G.

Lemma 4.3. Let m = |G|. Assume that r = 2 is an integer such that (T)" is
ergodic and ged(r,m) = 1. Then C(Ty) = C((Ty)").

Proof. Assume that S e C((Ty)"). Since Ty, € C((Ty)"), we have (Ty,) "t o So
Ty € C((Ty)"). Since (Ty) t oS oTy € C((Ty)") is a lift of S and (Tyy)" is
ergodic, it follows by Proposition [2.2] that

(Ty) "t oS80Ty =S or, for some g € G.
Therefore
(Ty) 2080 (Ty)* = (Ty) " oSoryoTy = (Ty) ' oSoTy00, = Somga

and, in a similar way, (Ty)"™ 0 S o (Ty)™ = So7mm = S, ie. S € C((Ty)™).
Let a,b € Z be such that am + br = 1. We conclude that S commutes with
(Ty)*™+b" = T, which completes the proof. 0O

Proposition 4.4. Assume that Ty, has continuous spectrum on the orthocom-
plement of L*(X,B, 1) ® 1g. Suppose that r = 2 is such that T" is ergodic and
ged(m,r) = 1. Then C(Ty) = C((Ty)").
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Proof. Since, by assumptions, (T,)" is ergodic, the assertion follows from
Lemmald3 O

We can now formulate a general criterion concerning the validity of Sarnak’s
conjecture for continuous finite group extensions.

Proposition 4.5. Let T be a uniquely ergodic homeomorphism which is a con-
tinuous extension of an odometer T', measure-theoretically isomorphic to T. As-
sume that its (rational discrete) spectrum is determined by finitely many prime
numbers. Assume that ¥: X — G is a cocycle with G finite, is satisfied,
and Ty, has continuous spectrum in the orthocomplement of L*(X,B,mx)®1¢.
Assume moreover that the centralizers for all normal natural factors Tyn of Ty
are G/H -trivial whenever H # G. Then, for each f € C(X) and j € C(G) of
zero mean, is satisfied for TJ and (form)®je C(X x G) at each point.

Proof. Fix r, s two different prime numbers sufficiently large (so that (T,)" and
(Ty)® are ergodic). Notice that T is then isomorphic to 7. Following Theo-
rem (applied to T isomorphic to 7%, both isomorphic to T') and Remark
we first will prove that if Hq, H, are proper normal subgroups of G then (Tyx, )"
is not isomorphic (T p,)*. For this aim, it is enough to notice is that (Typ,)*
cannot have an r-th root. Indeed, using the fact that the centralizer of (Typ,)*
is G/Hs-trivial and Proposition it (Tym,)® an r-th root then

(Tyr,)® = (Typu,)* © 7m,)" = (Tpr,) 7gr by -

It follows that 74, = (Tpm,)* %", which is an absurd as s, r are prime (s # kr)
and Ty is aperiodic.
Take any (T, g). By the first part of the proof and Proposition we obtain

I

1
¥ 2 @@ (o) )

n<N
Therefore

+ 3 (Fom)@i) (Tg) ™ < (T5) " (7, 9), (7,9)) f (fom)&)) (T om) ®7) dp

n<N

- Juesn TN = | 1 TRy |

G x

j®jdmec ®mg =0,
G

where the last equality follows by the assumption on j. The result follows by
Theorem [LIl O

Remark 4.6. The assertion of Proposition .5 remains true if in the orthocom-
plement of L?(X,B,mx) ® 1l there are finitely many rational eigenvalues (in
the proof we need to exclude finitely many 7, s).

4.3 Special case: 2-point extensions of odometers

We now consider the special case when G = Z/27. As an immediate consequence
of Theorem we obtain the following:

Corollary 4.7. Let T be an odometer and let ¢,v: X — Z/27Z be ergodic
cocyles. Then, either Ty and Ty are isomorphic or they are relatively disjoint
over T, i.e. J¢(Ty,Ty) = {fir: Re C(T)}.
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Remark 4.8. We give now a direct proof of Corollary Fix pe J°(Ty, Ty).
We have (Ty, x Ty, p) >~ (Tyxypor, k) Where k projects on p and R € C(T). If
# x 9 o R is ergodic, it follows by Lemma 2.1] that x = pu ® (mg ® mg), so
p=lg. If  x o R is not ergodic, then

¢p—toR=¢—¢oT for some measurable £: X — Z/27Z.

It follows that T and T3 are isomorphic: Re o Ty = Ty o Re.
We also have the following (cf. Proposition [£.4).

Corollary 4.9. Let T be an odometer and let : X — Z/2Z be ergodic. Assume
that Ty, has continuous spectrum in the orthocomplement of L3(X,B,1)® 1z/2z
and C(Ty) is Z/2Z-trivial. Assume, moreover, that v # s are prime numbers
such that T" and T® are ergodic. Then (Ty)" and (Ty)® are not isomorphic.

Now, using Corollary [.7 the corresponding part of Proposition takes
the following form.

Corollary 4.10. Let T be a uniquely ergodic homeomorphism which is a con-
tinuous extension of an odometer T', measure-theoretically isomorphic to T. As-
sume that its (rational discrete) spectrum is generated by finitely many prime
numbers. Assume that ¢: X — 7,/27 is a cocycle, is satisfied, and T, has
continuous spectrum in the orthocomplement of L?(X,B,mx)® lz/07. Assume
that for sufficiently large prime numbers r # s, the automorphisms (Ty)" and
(Ty)® are not isomorphic. Then for each f e C(X) and 1 # j € Z//\QZ, is
satisfied for T and (f o) ®j at each point.

5 Applications

5.1 Bijective substitutions

Let : A — A be a bijective substitution with the corresponding bijections
o; € 7. Let C(0) denote the centralizer of the set {o; : ¢ =0,...,A—1} in .7
Assume that n € C'(6). Then 7 induces a map 7 (both on finite blocks over A
and on A%) given by

7(y)[n] := n(y[n]) for each n € Z.

We claim that 77(X(0)) = X(6). Indeed, since n(0;(0)) = 0;(n(0)), it follows
that
7(6"(0)) = 6" (n(0))

and we use the transitivity of the action of the group G generated by og, ..., 0x_1
on A. Since 7 commutes with the shift, 77 € C(S, X (0)) (indeed, (S, X(0)) is
uniquely ergodic, so 7 must preserve the unique measure). Now, the result from
[? | shows that this is the only way to get non-trivial elements in the cen-
tralizer of the (measure-theoretic) dynamical system determined by a bijective
substitution:

Theorem 5.1 (|7 ]). C(S,X(0)) ={S‘o:ieZneC(0)}.
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Suppose now that #: G — G* is a group substitution, i.e. 6(g) = 6(e) o g for
g € G. Notice first that in each column j of the matrix for 6, we have elements
0(e)[j] - g- Therefore

o; is the left translation on G by 6(e)[j]

and the group generated by 6(e)[j], 7 = 0,...,A — 1, is G. It follows that the
group generated by og,...,0x_1 is the group of all left translations on G. Its
centralizer C(0) is equal to the group of all right translations. Thus, we obtain
the following consequence of Theorem [5.1

Corollary 5.2. The centralizer of the group substitutions is G-trivial.

Remark 5.3. The discrete part of the spectrum of the dynamical system
(S,X(0)), where 6 is a substitution, consists of the spectrum of the underlying
odometer and a cyclic group determined by the height h of the substitution [? |.
It follows that when the height is equal to 1, then the spectrum is continuous in
the orthocomplement of the L2-space of the underlying odometer. Otherwise,

in this orthocomplement we have the cyclic group of eigenvalues generated by
2mi/h
e .

We are now ready to show that Sarnak’s conjecture holds for dynamical
systems given by bijective substitutions.

Theorem 5.4. For each bijective substitution 8: A — A", each function F €
C(X(0)), each bounded by 1, aperiodic multiplicative function A\: N — C and
each y € X(0), we have

(12) % 1 F(S"y)A(n) —> 0 when N — oo

n<N

In particular, each topological dynamical system determined by a bijective sub-
stitution satisfies Sarnak’s conjecture.

Proof. It follows by Lemmathat it is enough to prove for the dynamical
system (.5, X (0)) corresponding to the group cover substitution 6 of §. Moreover,
in view of Lemma we can study instead its topologically isomorphic model
(Sp, X(Z) x G).

Fix f ® j with f € C(X(Z)), where j € C(G), §jdme = 0. In view of
Theorem [I.T] Lemma [3.17] Corollary [5.2] and Proposition £.5] Remark [£.6] and
Remark for each (y,g) € X(Z) x G, we have

(13) 2 (F @IS (1 9)Am) — 0
n<N

for each multiplicative function A, |A| < 1. If we now fix A, then we have the

relevant convergence (against this fixed A) for a linearly dense set of functions
in C(X(Z) x G), hence for all functions in C(X(Z) x G) and the result follows.
O

Remark 5.5. Let j := 1. Using (13), for each y € X (%), we have

3 A8 )Am) 0

n<N
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for each bounded by 1, aperiodic multiplicative function A. This can be also
proved more directly. Notice that for each odometer (T, X) we have true
with p replaced by A since each finite system enjoys this property and (7, X)
is a topological inverse limit of such systems. If (T, X) is a uniquely ergodic
topological extension of (T, X), measure-theoretically isomorphic to (T, X, mx),
we can apply Lemma 7 and Proposition 3 in [? | to lift the orthogonality
condition from the odometer to (T, X).

Remark 5.6. The proof of Sarnak’s conjecture also gives the following: when-
ever (5, X(0)) is a subshift given by a bijective substitution, for each ergodic
powers S” and S°, each point (y,z) € X(0) x X(6) is generic (for an ergodic
measure).

5.2 Regular Morse sequences and the Rudin-Shapiro case

Remark 5.7. Theorem [5.4]is also true for all so called regular Morse sequences
[? ] 2 =0 x bt x ... (bt e{0,1}*, t > 0) (their centralizer is Z/2Z-trivial [?
|), whenever the set {p : p is prime and p|\; for some t} is finite. Indeed, the
result follows from Corollaries [4.9) and and the proof of Theorem

Remark 5.8. Theorem also holds for the Rudin-Shapiro type sequences
considered in [? ]. These are 0-1-sequences x € {0, 1} such that z[n] is equal
to the mod 2 frequency of the block 1 #...% 1 (with fixed number of *) in the
block given by the binary expansion on nE As shown in [? ], the corresponding
subshift is given by a Toeplitz type Z/2Z-extension of the dyadic odomoter, and
the whole method applies. Indeed, since (S, X (z)) has Lebesgue component of
multiplicity 2* in the spectrum in the orthocomplement of the space generated
by eigenfunctions [? |, it follows that its sth and rth power also have Lebesgue
components in the spectrum, of multiplicity s2* and r2*, respectively. Thus,
these powers cannot be isomorphic, unless s = r.

6 Spectral approach and other methods

Let (S, X) with X < AZ be a subshift over a finite alphabet A with |A| =7 > 2.

6.1 First remarks

Lemma 6.1. Suppose that holds for arbitrary x € X, for each function
f = 1p, where B € AF is a block of finite length (k > 1 is arbitrary) that
appears on X. Then Sarnak’s conjecture holds for (S, X).

Proof. 1t suffices to show for a linearly dense family of functions in C'(X):
e.g. functions which depend on a finite number of coordinates. The space of
(continuous) functions depending on coordinates [—k, k] in the full shift has
dimension 72**1, which is at the same time the number of possible blocks of
length 2k + 1. In a similar way, for a subshift, we just need to count the
number of distinct (2k + 1)-blocks appearing on X. Moreover, the family of
their characteristic functions is linearly independent. 0O

H'We can also consider 1 % ... % 0.
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Remark 6.2. There are other choices of finite families of functions than those
in Lemma [6.1| which also yield the validity of Sarnak’s conjecture. For example,
when r = 2 we can use the so called Walsh basis: for each K > 1, we consider the
characters of the group {0,1}25+1: fo(x) = (—1)Ziec i for C c {~K,..., K}
and z € X c AZ.

Remark 6.3. In [? 7 | the convergence in is proved at any point for f(y) =
(—1)vll (f = f{o0y in the notation from Remark for Kakutani sequences|*“| A
natural question arises whether this is sufficient to obtain Sarnak’s conjecture
for the corresponding dynamical system. In general, it does not seem to be
automatic that for functions depending on one coordinate implies for
functions depending on more coordinates. E.g. in [? |, where Sarnak’s conjecture
is proved for the 0-1-subshift generated by the Thue-Morse sequence, for
f(y) = (—=1)¥I% is proved by completely different methods than for continuous
functions invariant under the map y — 3, where §[n] = 1 — y[n][] We note
that the method from Corollary [£.7] does not apply to Kakutani systems since
their centralizer can be uncountable: there are Kakutani sequences for which
the corresponding dynamical systems are rigid [? |. However, in Section we
provide an argument which in Section will be used to show that [? 7 | yield
Sarnak’s conjecture for the dynamical systems given by Kakutani sequences.

Remark 6.4. We have already shown that Sarnak’s conjecture holds for the
dynamical system given by the Rudin-Shapiro sequence, see Remark [5.8] Recall
also that in this case was show earlier in [? | for f(y) = (—1)I% (at any
point). Here the situation is more delicate if we want to apply the method from
Section [6.2} we need more functions, see Section [6.3] for more details.

6.2 Spectral approach

Lemma 6.5. Assume thatT is a uniquely ergodic homeomorphism of a compact
metric space X. Denote the unique T-invariant measure by . Assume that
the unitary operator Ur : L*(X,B,u) — L*(X,B, ), Urg := go T, has simple
spectrum. Assume that the mazimal spectral type of Ur is realized by F € C(X).
If F satisfies at each point x € X then (T, X) satisfies Sarnak’s conjecture.

Proof. Observe first that if F' satisfies at each point then the same is true
for each function p(Ur)F of F (where p(z) = Zfsz apz’ is a trigonomet-
ric polynomial). By the simplicity of the spectrum of Ur, functions of the
form p(Ur)F are dense in L?(X,B,u). We now repeat the argument from
Lemma 7 in [? |. Fix G € C(X), 2 € X and € > 0. Find a trigonometric
polynomial p so that |p(Ur)F — G|2 < €. Let Ny be such that for N > Ny,
| % Ynen P(Ur)F(T"x)pu(n)| < e for all N > Ny. Then (since T' is uniquely

12The uniformity of estimates in these papers yields indeed at any point y € X (x)).
BE.g. g(y) = (—1)¥[01+¥[1] is invariant under this map; notice that g = f10,13 from Re-
mark
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ergodic and |p| < 1)

3 G )

n<N

(14)

+ 3 WnE)I )

n<N

<+ 3G = pUDFNT"D)| + = |G~ pUr)Fl +¢

n<N

<% G = pUn)F)YTm) )] +

n<N

when N — o0. Since |G — p(Ur)F|1 < |G — p(Ur)F||2 < €, the result follows.
O

Remark 6.6. (A) The assertion of Lemma remains true if we take any
bounded arithmetic function A: N — C instead of p (both in and in
Sarnak’s conjecture). The proof is the same.

(B) Fraczek [? | showed that for each automorphism T on (X, B, 1), where X is
a compact metric space, the maximal spectral type of Ur is always realized
by a continuous function. However, in order to prove Sarnak’s conjecture
using Lemma [6.5] we look for natural continuous functions realizing the
maximal spectral type for which we can show that holds.

(C) Suppose that the continuous and discrete part of the maximal spectral
type of Ur are realized by f € C(X) and g € C(X), respectively. Then,
by elementary spectral theory, F = f + g € C(X) realizes the maximal
spectral type of Ur and, clearly, it suffices to check that holds both for
f and g (at each point) to see that it holds for F' (at each point).

(D) Lemma has a natural extension to uniquely ergodic homeomorphisms
T such that Ur has non-trivial multiplicity. All we need to know is
that L?(X,B,u) has a decomposition into cyclic spaces: L2(X,B,u) =
@1 Z(fr) with f € C(X) and check for these generatorsm We will
find such functions in the next section in case of the dynamical systems
given by the Rudin-Shapiro type sequencesE

6.3 Applications
Generalized Morse sequences over A = {0, 1}

Proposition 6.7. Let x be a generalized Morse sequence over A = {0,1}. Then
Sarnak’s conjecture holds for (S, X (x)) if and only if holds (at each point)
for f(y) = (~=1)¥I°L.

Proof. Recall that (S, X (x)) is uniquely ergodic |? | (with the unique invariant
measure i) and has simple spectrum [? |. As proved in [? ] (see also [? ])

MRecall however that it is open whether for an arbitrary automorphism T on (X, B, u),
where X is a compact metric space there are continuous functions fr, &k = 1 such that
L2(X,B,u) = ®r>1Z(fx) and oy, <oy, k=1, see e.g. [? ] for more details.

15Recall that in the general case of dynamical systems given by the Rudin-Shapiro type
sequences, this multiplicity is of the form 2% k> 1[? ].
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f(y) = (=1)¥19 realizes the continuous part of the maximal spectral type of Ug
(on L?(X (), ps)). Moreover, the discrete part is given by the equicontinuous
factor of (S, X (x)), which is the odometer determined by A, ¢ = 0. It follows
that the eigenfunctions g;, i > 1, are continuous. If g = > .., a;gi, each a; # 0,
Dis1 lail < 400, then g is a continuous function realizing the discrete part of
the maximal spectral type of Ug. Since each odometer is a topological inverse
limit of systems defined on finitely many points, and for finite systems Sarnak’s
conjecture holds because of the PNT in arithmetic progressions, therefore g
satisifes (I). Thus, in view of Lemma [6.5 and Remark (C), it suffices to
prove for f to obtain the validity of Sarnak’s conjecture. 0O

Corollary 6.8. Sarnak’s conjecture holds for the dynamical systems given by
Kakutani sequences.

Proof. In view of the above proposition, it suffices to prove for f which was
done in [? ? ] (cf. Remark[6.3). O

Rudin-Shapiro type sequences Recall that the classical Rudin-Sharpiro
sequence x € {0,1}" is defined in the following way:

e take the fixed point of the substitution a — ab, b — ac, ¢ — db and
d — dec,

e use the code a,b — 0 and ¢,d — 1 to pass to the space of 0-1-sequences
(the map arising from this code yields a topological isomorphism of the
relevant subshifts on four and two letters).

The multiplicity of the corresponding dynamical system on the continuous part
of the spectrum is equal to 2 [? ? |. It follows from [? | and Remark[6.6](D) that,
in order to obtain Sarnak’s conjecture for the corresponding subshift, we need
to check for two continuous functions f-1pz and f-1p2 (cf. Remark.
It follows immediately from the definition of D and the recognizability of sub-
stitutions [? | that 1p2 is a continuous function depending on a finite number
of coordinates. Therefore, to obtain Sarnak’s conjecture for the subshift given
by the Rudin-Shapiro sequence, we would have to check for the elements
of the Walsh basis of order 4M, where M is the constant of recognizability,
see Remark Recall that was already shown for fin [? 7 |. Notice that
this approach to prove Sarnak’s conjecture is completely different from the one
presented in the preceding sections (cf. Remark . The above applies to all
Rudin-Shapiro type sequences.

6.4 Results of Veech [? |

In the recent preprint [? |, Veech considers a class of systems for which Sarnak’s
conjecture holds. We will now briefly present his work and then compare it with
our results. Assume that \,, > 2 for n > 0, then set ng := 1 and n; := 2_:10 Ak,
t > 1 and define

X = liminv; . Z/nZ = {x = (x4) : 0 < xp < ng, @41 = xp mod ny, t = 1},

This is a compact, Abelian, monothetic group on which we consider Tz = x + 6
with 6 = (1,1,...). It is not hard to see that the systems obtained this way are
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naturally isomorphic to the odometers considered in Section 3.1} The sequence
of towers D?, ¢ > 1, in the new coordinates is determined by

Db :={reX :z; =0},
and we obtain pairwise disjoint sets D§, TDE, ... T™ 1D} with U?;Bl TID§ =
X. Then define
7(2) :=min{t > 1: a4 # ny — 1}.
We have lim,_, ¢ 7(x) = o0 and 7 is continuous on X\{—6}.
Let K be a compact group and take (¥(¢)):>1 < K. Set

f(x) := V(7 (2)).
Then ¥ is locally constant on X\{—0} and f € C(X\{—60}, K). There are some
assumptions on the sequence ¥ made in [? |:

(i) limy—qo P(¢) does not exist,
(if) {¥(¢) :t = 1} generates a dense subgroup of K,

(i) (P(t))i=1 is recurrent (that is, every initial block of ¥ repeats infinitely
often).

Remark 6.9. If K = Z/2Z, the conditions and are not necessary.

Let My < K? be the closure of all sequences (f(z + n6),ez for x € X\Z6.
On My, we consider the usual shift S. Let

m: My — K be given by m(y) = y[0].

Finally, let S,,: My x K — Mg x K be the skew product defined as S, (y, k) =
(Sy,m(y)k). Then S,, is a homeomorphism of My x K.

Theorem 6.10 ([? |). Suppose additionally that the set {\; : t = 0} is finite.
Then, under the above assumptions, (Sy,, My x K) satisfies Sarnak’s conjecture.

Remark 6.11. It is not hard to see that in the language of [? ], the function f
is a semicocycle over an odometer (that is, a function continuous on a residual
subset of an odometer). It follows from [? | that the dynamical system given
by (S, My) is a Toeplitz dynamical system (cf. Section . The system is
regular [? |, hence uniquely ergodic and measure-theoretically isomorphic to
the odometer (T, X).

Notice that if x; = ny — 1 then also xp, = np —1for 1 < k< t—1. It
follows immediately that 7 is constant on each D!, 0 < i < n; — 2. Therefore,
the cocycle f: X — K defined above is a Morse cocycle (cf. Section. It has
the following additional property:

(15) f is constant on U Dixl .

1<j<Ap41-1

Condition yields the class of Morse sequences © = b° x b! x ..., where each
block by, t > 0, is of the form bt = ek... k"'I=1 (cf. Remark [3.9). In particular,
if K = 7/27, we have x = ° x b x ..., where b = 0...0, b* = 01...01 or
bt = 010...10, t = 0. Notice that Kakutani sequences are of this form.

Notice also that (S,,, Mg x K) corresponds to (S,, X (Z) x G) defined in
Section which is, in turn, topologically isomorphic to (S, X (z)).

It follows that Theorem [6.10|yields, in particular, that the dynamical systems
given by Kakutani sequences satisfy Sarnak’s conjecture (cf. Corollary .
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