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Substitutions and Möbius disjointness

S. Ferenczi, J. Kuªaga-Przymus, M. Lema«czyk˚, C. Mauduit

April 15, 2016

Abstract

We show that Sarnak's conjecture on Möbius disjointness holds for all

subshifts given by bijective substitutions and some other similar dynami-

cal systems, e.g. those generated by Rudin-Shapiro type sequences.
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1 Introduction

In 2010, Sarnak [? ] formulated the following conjecture: for each zero entropy
topological dynamical system pT,Xq (X is a compact metric space and T is a
homeomorphism of X), each f P CpXq and x P X, we have

(1)
1

N

ÿ

nďN

fpTnxqµpnq Ñ 0,

where µ : N Ñ C is the Möbius function de�ned by µp1q “ 1, µpp1 ¨ . . . ¨ pkq “
p´1qk for k di�erent prime numbers pi, and µpnq “ 0 for the remaining case.
The conjecture has already been proved in numerous cases, e.g. [? ? ? ? ? ?

? ? ? ? ? ? ? ? ].
The aim of the present paper is to show that Sarnak's conjecture holds for

some classes of dynamical systems of number theoretic origin. Namely, for all
dynamical systems given by bijective substitutions (a subclass of substitutions
of constant length) [? ] and also for other related systems given by some
automata (e.g. by the sequences of the Rudin-Shapiro type). Our approach is
purely ergodic and our main tool is the theory of compact group extensions
of rotations. Throughout, we deal with uniquely ergodic homeomorphisms, i.e.
homeomorphisms possessing exactly one invariant measure (which has to be
ergodic).

Given a bijective substitution θ over a �nite alphabet A, we de�ne its group
cover substitution θ over a subgroup G of permutations of A, which hence carries
an additional natural group structure. Since the dynamical system pS,Xpθqq1

given by θ is a topological factor of the dynamical system pS,Xpθqq given by θ, it
su�ces to show that Sarnak's conjecture holds for pS,Xpθqq. The group cover
substitution θ can be identi�ed with a certain (generalized) Morse sequence
x and the associated dynamical system pS,Xpxqq is a Morse system. This is
where compact group extensions come into play � each Morse dynamical system
is (measure-theoretically) isomorphic to a compact group extension pTψ, XˆGq
given by a so called Morse cocycle ψ : X Ñ G over a rotation T , more precisely
over an odometer pT,Xq.2 The main di�culty is that such compact group
extensions have been studied so far mostly from the measure-theoretic point
of view [? ? ? ] (the dynamical systems under considerations are uniquely
ergodic). The underlying reason and, at the same time, the main obstacle for
us is that Morse cocycles are in general not continuous. Thus, we cannot deal
directly with such models � Sarnak's conjecture requires topological systems.
In order to bypass this di�culty, more tools are used. The Morse dynamical
system pS,Xpxqq turns out to have a Toeplitz dynamical system pS,Xppxqq as
a topological factor, which, in turn, is an almost 1-1-extension of the odometer
pT,Xq. Moreover, the method of Toeplitz extensions [? ] allows us to �nd a
dynamical system topologically isomorphic to pS,Xpxqq, which also has a form
of a compact group extension: pSϕ, Xppxq ˆ Gq given by a continuous cocycle
ϕ : Xppxq Ñ G. If we denote the (natural) factoring map from pS,Xppxqq to
pT,Xq by p, we have the following relation between the two cocycles: ϕ “ ψ ˝p.
Our goal will be to prove that Sarnak's conjecture holds for pSϕ, Xppxq ˆGq.

1Here and in what follows, S stands for the left shift on a closed S-invariant subset of the
space of two-sided sequences, i.e. pS,Xpθqq is an example of a subshift.

2This and other relations between the dynamical systems described in this paragraph are
illustrated in Figure 1.
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The passage to group substitutions seems to be unavoidable for our method.
Indeed, we require that the substitution subshift has a topological factor, deter-
mined by a Toeplitz sequence, which is an almost 1-1 extension of the maximal
equicontinuous factor (the underlying odometer) and is measure-theoretically
isomorphic to it. However, in [? ], Section 4.4, it is proved that a bijective
substitution need not have a symbolic factor which is measure-theoretically iso-
morphic to the maximal equicontinuous factor (this anwers a question raised
by Baake). For example, this surprising property holds for the substitution
a ÞÑ aabaa, b ÞÑ bcabb and c ÞÑ cbccc [? ].

continuous cpt.
group extension
pSϕ, Xppxq ˆGq

Morse system
given by Morse cocycle
(cpt. group extension)

pTψ, X ˆGq

Toeplitz system
pS,Xppxqq

odometer
pT,Xq

Morse system
given by x
pS,Xpxqq

»

»
»

»

Figure 1: Morse and Toeplitz dynamical systems on a diagram. Plain and
dashed lines denote topological and measure-theoretical maps, respectively (all
depicted systems are uniquely ergodic).

The �rst tool we use to deal with the continuous compact group extensions
is the Katai-Bourgain-Sarnak-Ziegler criterion:

Theorem 1.1 ([? ? ], see also [? ]). Assume that panq Ă C is bounded and
suppose that

1

N

ÿ

nďN

anrans Ñ 0

for all su�ciently large di�erent prime numbers r, s. Then

1

N

ÿ

nďN

anλpnq Ñ 0

for each multiplicative3 function λ : NÑ C, |λ| ď 1.

This criterion is applied to sequences of the form an “ fpTnxq, n ě 1, and
if satis�ed, it yields a certain form of disjointness of di�erent prime powers of

3λ : N Ñ C is called multiplicative if λpm ¨ nq “ λpmq ¨ λpnq whenever m,n are coprime.
It is called aperiodic whenever 1

N

ř

nďN λpan` bq Ñ 0 for all a, b P N. The Möbius function
µ is multiplicative and aperiodic.
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the homeomorphism T ; notice that �su�ciently large� in Theorem 1.1 may now
depend on f and x.

Our second tool is based on the method of lifting generic points in the Carte-
sian products of di�erent prime powers T r and T s to almost 1-1-extensions. It
has already appeared in [? ], where the almost 1-1-extensions are chosen in
such a way that the original cocycle considered on the extended space becomes
continuous. Moreover, we will study ergodic joinings of pTψq

r and pTψq
s and

show that in our case this set consists only of the relatively independent exten-
sions of isomorphisms between T r and T s for di�erent su�ciently large primes
r, s. This will allow us to control generic points in the Cartesian product of the
continuous compact group extension pSϕq

r ˆ pSϕq
s.

In Section 5, we give the main application of our method � we prove Sarnak's
conjecture for the dynamical systems given by:

• all bijective substitutions,

• certain subclass of regular (generalized) Morse sequences,

• certain sequences of the Rudin-Shapiro type.

In Section 6, we compare our results concerning generalized Morse sequences
and the Rudin-Shapiro type sequences with some earlier results in which (1) has
been proved only for fpyq “ p´1qyr0s. Using spectral approach, we prove, in
some cases, that the validity of (1) for such f yields Sarnak's conjecture in
its full form for the corresponding dynamical system. In particular, we show
that Sarnak's conjecture holds for the dynamical systems given by Kakutani
sequences [? ? ].4 Sometimes, however, it seems that more than one function
satisfying (1) is necessary for the validity of Sarnak's conjecture. E.g., this seems
to happen for the dynamical systems given by the Rudin-Shapiro type sequences.
Here, (1) for f has been been proved in [? ? ] by a purely combinatorial
approach. The methods developed in [? ] seem to be �exible enough to give (1)
for �nitely many functions described in Section 6.3, hence yields one more proof
of Sarnak's conjecture for the corresponding dynamical system.

In Section 6.4, we compare our results with a recent work of Veech [? ]. He
provides a proof of Sarnak's conjecture for a class of dynamical systems given by
some genearlizations of Kakutani sequences over an arbitrary compact group.
In particular, [? ] gives an alternative proof of Sarnak's conjecture for Kakutani
systems.

2 Basic tools

2.1 Spectral theory

For an ergodic automorphism T of a standard probability Borel space pX,B, µq,
we consider the associated Koopman operator on L2pX,B, µq given by UT pfq “
f ˝ T . Then there exist elements fn P L

2pX,B, µq, n ě 1, such that

(2) L2pX,B, µq “
à

ně1

Zpfnq and σf1 " σf2 " . . . ,

4This result does not seem to follow by Section 4.
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where Zpfq “ spantUnT pfq : n P Zu is the cyclic space generated by f and σf
denotes the only �nite positive Borel measure on T such that

ş

X
f ˝Tn ¨ f dµ “

ş

T z
n dσf pzq for each n P Z (σf is called the spectral measure of f). The class of

all measures equivalent to σf1 in the above decomposition is called the maximal
spectral type of UT and (2) is called a spectral decomposition. We say that the
maximal spectral type is realized by f P L2pX,B, µq if σf is equivalent to σf1 .

If L2pX,B, µq “ Zpf1q ‘ ¨ ¨ ¨ ‘ Zpfkq for some fi P L
2pX,B, µq, we say that

UT has multiplicity at most k. If no such k ě 1 exists, the multiplicity of UT is
in�nite. If k “ 1, UT is said to have simple spectrum.

Recall that T has discrete spectrum if the maximal spectral type of UT is
purely discrete. Equivalently, L2pX,B, µq is generated by the eigenfunctions of
UT . By the Halmos-von Neumann theorem, T is, up to isomorphism, an ergodic
rotation on a compact monothetic group. If, additionally, all eigenvalues of UT
are roots of unity, T is said to have rational discrete spectrum.

For more information on the spectral theory see e.g. [? ].

2.2 Joinings

Recall that if T and S are ergodic automorphisms on pX,B, µq and pY, C, νq
respectively, then by a joining between T and S we mean any T ˆ S-invariant
measure κ on pX ˆ Y,B b Cq whose projections on X and Y are µ and ν,
respectively. We denote by JpT, Sq the set of joinings between T and S and
by JepT, Sq the subset of ergodic joinings. Clearly, µ b ν P JpT, Sq. If T and
S are isomorphic, an isomorphism given by R : pX,B, µq Ñ pY, C, νq, then the
measure µR determined by µRpB ˆ Cq “ µpB X R´1Cq, B P B, C P C, belongs
to JepT, Sq. It is concentrated on the graph of R and is called a graph joining.
When T “ S we speak about self-joinings of T and each graph self-joining is
given by some element from the centralizer CpT q of T .5

Suppose that T and S are isomorphic, where the isomorphism is given by
R : X Ñ Y , and have extensions to T on pX,B, µq and S on pY , C, νq, respec-
tively. The relatively independent extension of µR (to a joining of T and S) is
denoted by rµR and determined by

ż

XˆY

F bG drµR “

ż

X

EpF |Xq ¨ EpG|Y q ˝R dµ

for F P L2pX,µq, G P L2pY , νq.

2.3 Compact group extensions

Assume that T is an ergodic automorphism of a standard Borel probability
space pX,B, µq. Let G be a compact metric group with Haar measure mG.

De�nition 2.1. Any measurable map ψ : X Ñ G is called a cocycle. The
automorphism Tψ of pX ˆG,B b BpGq, µbmGq de�ned by

Tψpx, gq :“ pTx, ψpxqgq

is called a G-extension of T (it is an example of a compact group extension of
T ). We say that ψ is ergodic if Tψ is ergodic.

5The centralizer CpT q consists of automorphisms of pX,B, µq commuting with T .
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Compact group extensions enjoy the following relative unique ergodicity
property.

Lemma 2.1 ([? ]). If Tψ is ergodic (i.e. if the product measure µ b mG is
ergodic) then µbmG is the only Tψ-invariant measure projecting onto µ.

Let τg be an automorphism of pX ˆG,µbmGq given by

τgpx, g
1q “ px, g1 ¨ gq for each g1 P G.

Then Tψ ˝ τg “ τg ˝ Tψ, that is, τg is an element of the centralizer CpTψq of Tψ.

Proposition 2.2 ([? ]). Assume that T is ergodic and ψ : X Ñ G is ergodic as

well. Assume additionally that T has discrete spectrum. Then each rS P CpTψq

is a lift of some S P CpT q. More precisely, rS “ Sf,v, where Sf,vpx, gq “
pSx, fpxqvpgqq for some S P CpT q, some measurable f : X Ñ G and some

continuous group automorphism v : GÑ G. Moreover, if rS and S are two lifts
of S P CpT q then rS “ S ˝ τg0 for some g0 P G.

De�nition 2.2. We will say that Tψ has G-trivial centralizer if

CpTψq “ tT
k
ψ ˝ τg : k P Z, g P Gu.

De�nition 2.3. Let H Ă G be a closed subgroup. The corresponding factor-
automorphism TψH of pX ˆG{H,µbmG{Hq given by

TψHpx, gHq :“ pTx, ψpxqgHq

is called a natural factor of Tψ. It is called nontrivial if H ‰ G, and it is called
normal whenever H is normal.

Remark 2.3. Notice that a power of a group extension is clearly a group
extension: pTψq

r “ T r
ψprq

6 and the passage to natural factors is �commutative�:

ppTψq
rqH “ pTψHq

r.

We need some facts about joinings of compact group extensions.

Theorem 2.4 ([? ]). Assume that T is ergodic. Assume that S P CpT q and let
ψi : X Ñ G be an ergodic cocycle, i “ 1, 2. Assume that κ P JepTψ1 , Tψ2q and
projects on the graph self-joining µS of T . Then there are two closed normal
subgroups H1, H2 Ă G and an isomorphism S (a lift of S) between the two
normal natural factors Tψ1H1

and Tψ2H2
such that

κ “ ČpmG{H1
qS ,

i.e. κ is the relatively independent extension of the graph joining pmG{H1
qS P

JepTψ1H1 , Tψ2H2q given by the isomorphism S.

Remark 2.5. Suppose that T has rational discrete spectrum and pTψq
r and

pTψq
s are ergodic. Then T r and T s are isomorphic and the only ergodic joinings

between them are the graph joinings. By Theorem 2.4, if there is no isomorphism

6ψprqpxq :“ ψpxqψpTxq . . . ψpT r´1xq for r ě 0 and extends to r P Z so that the cocycle
identity ψpm`nqpxq “ ψpmqpxqψpnqpTmxq holds for every m,n P Z.
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between nontrivial normal natural factors of pTψq
r and pTψq

s, then there are no
ergodic joinings between pTψq

r and pTψq
s, except for the �most independent�

ones: the relatively independent extensions of isomorphisms between T r and
T s. Notice also that if such a relative product is ergodic then automatically, by
Lemma 2.1, it is the only invariant measure on X ˆ G ˆX ˆ G projecting on
the graph of the isomorphism.

2.4 Generic points

Let T be a homeomorphism of a compact metric spaceX. Let µ be a T -invariant
Borel probability measure on X.

De�nition 2.4. We say that x P X is generic for µ if 1
N

ř

nďN δTnx Ñ µ
weakly. If the convergence to µ takes place only along a subsequence pNkq then
x is called quasi-generic for µ.

Remark 2.6. Notice that, by the compactness of X, the space of probability
measures on X is also compact, hence each point is quasi-generic for some T -
invariant measure.

3 Basic objects

3.1 Odometers, Morse cocycles and Toeplitz extensions

Odometers Assume that pntqtě0 satis�es n0 “ 1 and nt|nt`1 with λt :“
nt`1{nt ě 2 for t ě 0. Consider X :“

ś

tě0 Z{λtZ with the product topology
and the group law given by addition mod λt, with carrying the remainder to the
right. This makes X a compact metric Abelian group. We de�ne the translation
T by p1, 0, 0, . . .q:

T px0, x1, x2, . . .q “ px0 ` 1, x1, x2, . . .q

to obtain pX,B,mX , T q � an ergodic rotation.

De�nition 3.1. T de�ned above is called an odometer.

Remark 3.1. Odometer T de�ned above has rational discrete spectrum given
by the nt-roots of unity, t ě 0. For each t ě 0, there is a Rokhlin tower
Dt :“ tDt

0, D
t
1, . . . , D

t
nt´1u, i.e. a partition of X for which T iDt

0 “ Dt
i mod nt

for
each i ě 0 (by ergodicity, such a tower is unique up to cyclic permutation of the
levels). Indeed, D0

0 “ X and we set

Dt
0 :“ tx P X : x0 “ . . . “ xt´1 “ 0u, t ě 1.

Clearly, the partition Dt`1 is �ner that Dt and the sequence of such partitions
tends to the partition into points.

Remark 3.2 (cf. Remark 2.5). Notice that for each r ě 1,

(3) T r is isomorphic to T whenever T r is ergodic.

Indeed, T r has the same spectrum as T . To see the isomorphism more directly,
notice that gcdpr, ntq “ 1 and T r permutes the levels of Dt � this extends to an
isomorphism map between T and T r.
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Remark 3.3 (cf. Remark 2.5). Since T has discrete spectrum, its only ergodic
joinings are graph measures pmXqW , where W P CpT q is another rotation on
X [? ]. It easily follows that

(4)
each point px, yq P X ˆX is generic for an ergodic self-joining
of the form pmXqW .

Indeed, de�ne W as the translation by x´ y.

Morse cocycles Assume that G is a compact metric group and pT,Xq is an
odometer.

De�nition 3.2 ([? ? ]). We say that ψ : X Ñ G is a Morse cocycle if ψ is
constant on each Dt

i , t ě 0, i “ 0, 1, . . . , nt ´ 2 (ψ|Dti may depend on i).

Remark 3.4. To see what are the values of Morse cocycle ψ on Dt
nt´1, we �rst

pass to the levels Dt`1
jnt´1 for j “ 1, . . . , λt`1 ´ 1, and read the values ψ|Dt`1

jnt´1
.

To read the values on Dt`1
nt`1´1 (nt`1 “ λt`1nt), we pass to Dt`2 etc. It is clear

that ψ de�ned in this way is continuous everywhere (as the levels of the towers
are clopen sets) except perhaps one point (given by the intersection of the top
levels of all towers). Notice also that whenever G is �nite then a Morse cocycle
cannot be continuous unless for some t0, it is constant on each level of the
tower Dt0 . In this case, Tψ, if ergodic, is a direct product of T with a rotation
on G. In particular, Sarnak's conjecture holds for Tψ.

Remark 3.5. The class of group extensions given by Morse cocycles is (up
to measure-theoretic isomorphism) the same as the class of dynamical systems
generated by generalized Morse sequences, see [? ? ? ? ], which we consider in
the next section.

Toeplitz extensions Morse cocycles yield extensions of odometers which are
special cases of so called Toeplitz extensions studied in [? ]. Toeplitz extensions
are also given by cocycles over odometers but in the de�nition of such cocycles
we are letting more than one level have non-constant values, as in the example
below.7

Example 3.1. Let λt :“ 2 for each t ě 0 and G :“ Z{2Z. We de�ne ψ : X Ñ

Z{2Z so that at stage t it is de�ned on each Dt
i , except for i “ 2t´1 ´ 1 and

i “ 2t ´ 1. Then, when we pass to Dt`1, on the levels Dt`1
2t´1´1

and Dt`1
2t`2t´1´1

(ψ must be de�ned here at this stage of the construction), we set the values 0
and 1 (or 1 and 0), respectively.

The class of Toeplitz extensions of the dyadic odometer described in Exam-
ple 3.1 was considered in [? ? ]. The dynamical systems corresponding to the
Rudin-Shapiro type sequences (see Section III.2 in [? ]) are in this class.

7It is however required that the numbers of levels of Dt on which the cocycle is non-constant
divided by nt goes to zero. A reason for that is that we want to obtain a regular Toeplitz
sequence which is behind such a construction, see [? ] for more details.
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3.2 Generalized Morse sequences

Let G be a compact metric group with the unit e.

De�nition 3.3. Let bt P Gλt be a block over G of length |bt| “ λt ě 2 and
btr0s “ e, t ě 0. The associated (generalized) Morse sequence is de�ned by

(5) x :“ b0 ˆ b1 ˆ . . . ,

where B ˆ C “ pB ˝ cr0sqpB ˝ cr1sq . . . pB ˝ cr|C| ´ 1sq and B ˝ g :“
pb0g, . . . , b|B|´1gq for B,C blocks over G and g P G. By pS,Xpxqq we denote

the subshift corresponding to x (Xpxq Ă GZ).

Example 3.2. Generalized Morse sequences for G “ Z{2Z were �rst studied
in [? ]. If bt P t00, 01u, t ě 0, we speak about Kakutani sequences [? ].

De�nition 3.4 ([? ]). We say that u P GN is a Toeplitz sequence whenever
for each n P N, there exists kn ě 1 such that u is constant on the arithmetic
progression n` knN.8

Lemma 3.6 (cf. Figure 1). Let x “ b0ˆb1ˆ . . . be a Morse sequence. The map

(6) y ÞÑ py, pyrns :“ yrn` 1syrns´1

yields an equivariant map between pS,Xpxqq and pS,Xppxqq. Moreover, px is a
Toeplitz sequence.

Proof. The �rst part is obvious. For the second, notice that for each t ě 1, we
have

x “ ct ˆ zt, where ct “ b0 ˆ . . .ˆ bt´1, zt “ bt ˆ bt`1 ˆ . . . ,

whence x is a concatenation of blocks of the form ct ˝ g. Moreover,

ctrn` 1sctrns
´1 “ pct ˝ gqrn` 1spct ˝ gqrns

´1 for n “ 0, . . . , |ct| ´ 2.

It follows that

(7) px “ pct ˚ pct ˚ pct ˚ . . . ,

where �˚� stands for the un�lled place of px at the stage t ě 1.

Remark 3.7. Toeplitz sequence px from (7) is regular in the sense of [? ]. Hence
pS,Xppxqq is uniquely ergodic [? ].

Lemma 3.8 (cf. Figure 1). pS,Xpxqq is topologically isomorphic to pSϕ, Xppxqˆ
Gq, where ϕ : Xppxq Ñ G is the continuous cocycle given by

ϕpzq “ zr0s, for each z P Xppxq.

Proof. The topological isomorphism is given by the (equivariant) map

y ÞÑ ppy, yr0sq.

Indeed, this map is continuous as ϕ is continuous, it is onto since py “zy ˝ g, and
�nally it is 1-1 since yrn` 1s is determined by yrns and pyrns.

8For the theory of dynamical systems given by Toeplitz sequences, see e.g. [? ].
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Remark 3.9 (cf. Figure 1). Let x be the Morse sequence given by (5) with
nt :“ |ct| “ |b0 ˆ ¨ ¨ ¨ ˆ bt´1|, t ě 1. Then the Toeplitz system pS,Xppxqq
has the tntu-odometer pT,Xq as its topological factor. Moreover, the Morse
dynamical system pS,Xpxqq is given by a Morse cocycle ψ over T . The values
pψ|Dt0 , . . . , ψ|Dtnt´2

q are determined by pct:

ψ|Dti “ pctris for 0 ď i ď nt ´ 2, t ě 1.

It follows that

b0r0s “ e, b0ris “
i´1
ź

j“0

pc1rjs, 1 ď i ď λ0 ´ 1

and then, inductively (ct “ b0 ˆ . . .ˆ bt´1),

bt`1r0s “ e, bt`1ris “
1
ź

j“i

ppct`1rjnt ´ 1sctrnt ´ 1sq, 1 ď i ď λt`1 ´ 1

(for more details see, e.g. [? ? ]). However, the Morse cocycle is not continuous.
The passage to the Toeplitz dynamical system from Lemma 3.8 allows us to get
its continued version.

Lemma 3.10. The normal natural factors of Morse dynamical systems over G
are Morse dynamical systems over G{H.

Proof. The assertion follows immediately from the equality B ˆ C mod H “

pB mod Hq ˆ pC mod Hq and Remark 3.9.

3.3 Bijective substitutions

Fix a �nite alphabet A with |A| “ r ě 2.

De�nition 3.5. A map θ : A Ñ Aλ (λ ě 1) is called a substitution on A of
constant length λ (in what follows, simply substitution) if there exists n ě 1
such that for each a, a1 P A there exists k such that θnpaqrks “ a1. We extend θ
�rst to a map on blocks over A, then to a map θ : AN Ñ AN. We will assume
that θpa0qr0s “ a0. By iterating θ at a0, we obtain a �xed point for the map
θ : AN Ñ AN and by pS,Xpθqq we denote the corresponding subshift of AZ.

Remark 3.11 (see Chapter 5 in [? ]). For each substitution θ of constant
length, pS,Xpθqq is strictly ergodic.

Remark 3.12. Let θ : A Ñ Aλ be a substitution of constant length such that
pS,Xpθqq is aperiodic. Recall that then for each y P Xpθq there is a unique
sequence pitpyqqtě1 Ă Z (t-skeleton) with itpyq P r´λ

t ` 1, 0s such that yrit `
kλt, it ` pk` 1qλt ´ 1s “ θtpak,tq for each k P Z and some letters ak,t P A. This
allows us to de�ne the corresponding towers of height λt by setting the base of
the t-tower

Dt
0 :“ ty P Xpθq : itpyq “ 0u

to obtain
Ťλt´1
i“0 SiDt

0 “ Xpθq.

10



De�nition 3.6 ([? ]). We say that θ is recognizable if there exists a constant
M ą 0 such that if y P Xpθq, t ě 1 and i P r´λt ` 1, 0s satisfy

yri, i`Mλt ´ 1s “ θtpb1q . . . θ
tpbM q

for some b1, . . . , bM P A then i “ itpyq. We say that M is a constant of recog-
nizability.

Remark 3.13 ([? ? ]). Each substitution θ of constant length, such that
pS,Xpθqq is aperiodic, is recognizable. In what follows, we will tacitly assume
that we deal with recognizable substitutions.

Remark 3.14. Suppose that θ is recognizable. It follows that each function
1Dt0

depends on not more than Mλt coordinates.

De�nition 3.7 ([? ]). Substitution θ is called bijective if

dpθpaq, θpa1qq :“
|t0 ď k ď λ´ 1 : θpaqrks ‰ θpa1qrksu|

λ
“ 1, whenever a ‰ a1

or, equivalently, the maps σipaq :“ θpaqris are bijections of A, i “ 0, . . . , λ´ 1.

Remark 3.15. We can assume (wlog) that σ0 “ Id by considering, if necessary,
some its power.

De�nition 3.8. Let G be a �nite group with the unit e. A substitution θ : GÑ
Gλ is called a group substitution whenever

θpgq “ θpeq ˝ g for each g P G.

Remark 3.16. Each group substitution is bijective. Moreover, each group
substitution can be identi�ed with the Morse sequence θpeq ˆ θpeq ˆ . . .

Lemma 3.17 (cf. Lemma 3.10 and Remark 3.16). The normal natural fac-
tors of dynamical systems given by group substitutions are determined by group
substitutions.

Proof. Consider the group substitution given by e ÞÑ B (i.e. g ÞÑ B ˝ g). Then

gH ÞÑ B mod gH

yields a bijective substitution as in each column of the matrix corresponding to
the group substitution we see all elements of G; in particular, by taking them
mod H, we see all elements of G{H.

Denote Sr the group of permutations of A. De�ne rθ : Sr Ñ S λ
r by setting

(8) rθpτq “ pσ0 ˝ τ, σ1 ˝ τ, . . . , σλ´1 ˝ τq “ rθpIdq ˝ τ

for each τ P Sr. Let G Ă Sr be the subgroup generated by σ0, σ1, . . . , σλ´1

and de�ne

(9) θpτq :“ rθpτq for τ P G.

De�nition 3.9 (cf. Lemma 3.19 below). We call θ the group cover substitution
of θ.

11



Lemma 3.18. θ is a (bijective) substitution.

Proof. Notice that if θ
n
pσ0qrjs “ τ then in θ

n`1
pσ0q we can �nd the block

pσ0 ˝τ, . . . , σλ´1 ˝τq. Since all elements in G are of �nite order (σ´1
i “ σr!´1

i ), it

follows by induction that, for some n, we will see all symbols from G on θ
n
pσ0q.

Lemma 3.19. pS,Xpθqq is a topological factor of its group cover substitution
pS,Xpθqq.

Proof. We de�ne an equivalence relation on G by setting τ ” τ 1 if τp0q “ τ 1p0q.9

For y P Xpθq, set
F pyqrns :“ pyrnsqp0q.

Notice that the image of F equals Xpθq, F is equivariant and takes the same
values on the equivalence classes of ”. Finally, notice that tτp0q : τ P Gu “ A
since θ is a substitution, whence G acts transitively on A.

Remark 3.20 (cf. Remark 3.16). The group cover substitution θ can be identi-
�ed with the Morse sequence BˆBˆ. . . (over G), where B “ pσ0, σ1, . . . , σλ´1q.

Remark 3.21. Notice that, in order to prove Sarnak's conjecture for a bijective
substitution θ, it su�ces to prove it for pSϕ, Xppxq ˆGq, where x “ B ˆB ˆ . . .
as pS,Xpθqq is its topological factor (see Lemma 3.19 and Remark 3.20). Notice
also that we do not claim that for pS,Xpθqq the Toeplitz dynamical system
pS,Xppxqq is its topological factor (even though the odometer is its topological
factor). In fact, there is a counterexample due to Herning [? ].

4 Sarnak's conjecture for �nite group extensions

4.1 Lifting generic points for compact group extensions

We now recall a basic result on lifting generic points from [? ]. Assume that
T i (Ti) is a uniquely ergodic homeomorphism, with a unique invariant measure
µi (µi), of a compact metric space Xi (Xi), i “ 1, 2. Assume, moreover, that
πi : Xi Ñ Xi is continuous and yields pTi, Xiq a topological factor of pT i, Xiq.

Proposition 4.1 ([? ]). Assume that pT i, Xi, µiq and pTi, Xi, µiq are measure-
theoretically isomorphic. Assume, moreover that pTi, Xi, µiq is measure-
theoretically coalescent10 for i “ 1, 2. Assume that px1, x2q P X1ˆX2 is generic
for an ergodic T1ˆT2-invariant measure ρ. Then there exists a unique T 1ˆT 2-
invariant measure ρ, such that each pair px1, x2q P pπ1ˆπ2q

´1px1, x2q is generic
for ρ. Moreover, the system pT 1 ˆ T 2, ρq is isomorphic to pT1 ˆ T2, ρq.

µ ÞÑ mX

Let T be an odometer acting on pX,B, µq and let T be a uniquely ergodic
homeomorphism of X (with the unique invariant measure µ) such that π : X Ñ

X is a topological factor map, and pT, µq and pT , µq are measure-theoretically
isomorphic (then π is a.e. 1-1 as transformations with discrete spectrum are

9This relation is called θ-consistent, see [? ? ].
10An automorphism T of pX,B, µq is called coalescent [? ] if each endomorphism commuting

with T is invertible.
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coalescent). Assume that ψ : X Ñ G is ergodic and such that the cocycle
ψ : X Ñ G given by

(10) ψpxq :“ ψpπpxqq is continuous

(it is automatically ergodic as pTψ, X ˆ G,µ bmGq and pTψ, X ˆ G,µ bmGq

are isomorphic). Assume that r ‰ s are such that pTψq
r and pTψq

s are ergodic,
hence T r and T s are isomorphic (and they are isomorphic to T ).

Proposition 4.2. Assume that the only ergodic joinings between pTψq
r and

pTψq
s are the relatively independent extensions over the graphs of isomorphisms

between T r and T s. Let x P X and let ρ “ µR be the (ergodic) graph joining
for which the point pπpxq, πpxqq is generic. Then for each g P G, the point
ppx, gq, px, gqq is generic for the rρ, where ρ comes from Proposition 4.1 („ stands
for the relatively independent extension). Moreover,

(11) ppTψq
r ˆ pTψq

s,rρq and ppTψq
r ˆ pTψq

s, ĂµRq are isomorphic.

Proof. The point ppx, gq, px, gqq is quasi-generic for a pTψq
r ˆ pTψq

s-invariant
measure κ. By Proposition 4.1, px, xq is generic for ρ. Therefore, the projection

of κ on X ˆX is equal to ρ. Using Lemma 2.1 (applied to T
r
ˆ T

s
, ψ

prq
ˆψ

psq

and ρ), to conclude, we only need to prove that ppTψq
r ˆ pTψq

s,rρq is ergodic.
Notice that (11) is obvious since ρ “ µR and ρ yield isomorphic systems. This
gives immediately that ppTψq

r ˆ pTψq
s,rρq is ergodic, whence κ “ rρ.

4.2 Criterion for Sarnak's conjecture for �nite group ex-
tensions

In this section, we assume that pT,X,B, µq is an ergodic transformation with
discrete spectrum and ψ : X Ñ G is an ergodic cocycle with values in a �nite
group G.

Lemma 4.3. Let m “ |G|. Assume that r ě 2 is an integer such that pTψq
r is

ergodic and gcdpr,mq “ 1. Then CpTψq “ CppTψq
rq.

Proof. Assume that rS P CppTψq
rq. Since Tψ P CppTψq

rq, we have pTψq
´1 ˝ rS ˝

Tψ P CppTψq
rq. Since pTψq

´1 ˝ rS ˝ Tψ P CppTψq
rq is a lift of S and pTψq

r is
ergodic, it follows by Proposition 2.2 that

pTψq
´1 ˝ rS ˝ Tψ “ rS ˝ τg for some g P G.

Therefore

pTψq
´2 ˝ rS ˝ pTψq

2 “ pTψq
´1 ˝ rS ˝ τg ˝ Tψ “ pTψq

´1 ˝ rS ˝ Tψ ˝ σg “ rS ˝ τg2

and, in a similar way, pTψq
´m ˝ rS ˝ pTψq

m “ rS ˝ τgm “ rS, i.e. rS P CppTψq
mq.

Let a, b P Z be such that am ` br “ 1. We conclude that rS commutes with
pTψq

am`br “ Tψ which completes the proof.

Proposition 4.4. Assume that Tψ has continuous spectrum on the orthocom-
plement of L2pX,B, µq b 1G. Suppose that r ě 2 is such that T r is ergodic and
gcdpm, rq “ 1. Then CpTψq “ CppTψq

rq.
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Proof. Since, by assumptions, pTψq
r is ergodic, the assertion follows from

Lemma 4.3.

We can now formulate a general criterion concerning the validity of Sarnak's
conjecture for continuous �nite group extensions.

Proposition 4.5. Let T be a uniquely ergodic homeomorphism which is a con-
tinuous extension of an odometer T , measure-theoretically isomorphic to T . As-
sume that its (rational discrete) spectrum is determined by �nitely many prime
numbers. Assume that ψ : X Ñ G is a cocycle with G �nite, (10) is satis�ed,
and Tψ has continuous spectrum in the orthocomplement of L2pX,B,mXqb1G.
Assume moreover that the centralizers for all normal natural factors TψH of Tψ
are G{H-trivial whenever H ‰ G. Then, for each f P CpXq and j P CpGq of
zero mean, (1) is satis�ed for Tψ and pf ˝ πq b j P CpX ˆGq at each point.

Proof. Fix r, s two di�erent prime numbers su�ciently large (so that pTψq
r and

pTψq
s are ergodic). Notice that T r is then isomorphic to T s. Following Theo-

rem 2.4 (applied to T r isomorphic to T s, both isomorphic to T ) and Remark 2.5,
we �rst will prove that if H1, H2 are proper normal subgroups of G then pTψH1

qr

is not isomorphic pTψH2
qs. For this aim, it is enough to notice is that pTψH2

qs

cannot have an r-th root. Indeed, using the fact that the centralizer of pTψH2
qs

is G{H2-trivial and Proposition 4.4, if pTψH2q
s an r-th root then

pTψH2q
s “ ppTψH2q

k ˝ τgH2q
r “ pTψH2q

krτgrH2 .

It follows that τgrH2
“ pTψH2

qs´kr, which is an absurd as s, r are prime (s ‰ kr)
and Tψ is aperiodic.

Take any px, gq. By the �rst part of the proof and Proposition 4.2, we obtain

1

N

ÿ

nďN

δ
pTψq

rnˆpTψq
snppx,gq,px,gqq Ñ

rρ.

Therefore

1

N

ÿ

nďN

ppf˝πqbjqpTψq
rnˆpTψq

snppx, gq, px, gqq Ñ

ż

ppf˝πqbjq¨ppf ˝ πq b jq drρ

“

ż

pf b jq ¨ pf b jq dĂµR “

ż

X

f ¨ f ˝RdmX ¨

ż

GˆG

j b j dmG bmG “ 0,

where the last equality follows by the assumption on j. The result follows by
Theorem 1.1.

Remark 4.6. The assertion of Proposition 4.5 remains true if in the orthocom-
plement of L2pX,B,mXq b 1G there are �nitely many rational eigenvalues (in
the proof we need to exclude �nitely many r, s).

4.3 Special case: 2-point extensions of odometers

We now consider the special case whenG “ Z{2Z. As an immediate consequence
of Theorem 2.4, we obtain the following:

Corollary 4.7. Let T be an odometer and let φ, ψ : X Ñ Z{2Z be ergodic
cocyles. Then, either Tφ and Tψ are isomorphic or they are relatively disjoint
over T , i.e. JepTφ, Tψq “ trµR : R P CpT qu.

14



Remark 4.8. We give now a direct proof of Corollary 4.7. Fix ρ P JepTφ, Tψq.
We have pTφ ˆ Tψ, ρq » pTφˆψ˝R, κq where κ projects on µ and R P CpT q. If
φ ˆ ψ ˝ R is ergodic, it follows by Lemma 2.1 that κ “ µ b pmG b mGq, so
ρ “ rµR. If φˆ ψ ˝R is not ergodic, then

φ´ ψ ˝R “ ξ ´ ξ ˝ T for some measurable ξ : X Ñ Z{2Z.

It follows that Tφ and Tψ are isomorphic: Rξ ˝ Tφ “ Tψ ˝Rξ.

We also have the following (cf. Proposition 4.4).

Corollary 4.9. Let T be an odometer and let ψ : X Ñ Z{2Z be ergodic. Assume
that Tψ has continuous spectrum in the orthocomplement of L2pX,B, µqb1Z{2Z
and CpTψq is Z{2Z-trivial. Assume, moreover, that r ‰ s are prime numbers
such that T r and T s are ergodic. Then pTψq

r and pTψq
s are not isomorphic.

Now, using Corollary 4.7, the corresponding part of Proposition 4.5 takes
the following form.

Corollary 4.10. Let T be a uniquely ergodic homeomorphism which is a con-
tinuous extension of an odometer T , measure-theoretically isomorphic to T . As-
sume that its (rational discrete) spectrum is generated by �nitely many prime
numbers. Assume that ψ : X Ñ Z{2Z is a cocycle, (10) is satis�ed, and Tψ has
continuous spectrum in the orthocomplement of L2pX,B,mXq b 1Z{2Z. Assume
that for su�ciently large prime numbers r ‰ s, the automorphisms pTψq

r and

pTψq
s are not isomorphic. Then for each f P CpXq and 1 ‰ j P zZ{2Z, (1) is

satis�ed for Tψ and pf ˝ πq b j at each point.

5 Applications

5.1 Bijective substitutions

Let θ : A Ñ Aλ be a bijective substitution with the corresponding bijections
σi P Sr. Let Cpθq denote the centralizer of the set tσi : i “ 0, . . . , λ´ 1u in Sr.
Assume that η P Cpθq. Then η induces a map rη (both on �nite blocks over A
and on AZ) given by

rηpyqrns :“ ηpyrnsq for each n P Z.

We claim that rηpXpθqq “ Xpθq. Indeed, since ηpσip0qq “ σipηp0qq, it follows
that

rηpθnp0qq “ θnpηp0qq

and we use the transitivity of the action of the groupG generated by σ0, . . . , σλ´1

on A. Since rη commutes with the shift, rη P CpS,Xpθqq (indeed, pS,Xpθqq is
uniquely ergodic, so rη must preserve the unique measure). Now, the result from
[? ] shows that this is the only way to get non-trivial elements in the cen-
tralizer of the (measure-theoretic) dynamical system determined by a bijective
substitution:

Theorem 5.1 ([? ]). CpS,Xpθqq “ tSi ˝ rη : i P Z, η P Cpθqu.
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Suppose now that θ : GÑ Gλ is a group substitution, i.e. θpgq “ θpeq ˝ g for
g P G. Notice �rst that in each column j of the matrix for θ, we have elements
θpeqrjs ¨ g. Therefore

σj is the left translation on G by θpeqrjs

and the group generated by θpeqrjs, j “ 0, . . . , λ ´ 1, is G. It follows that the
group generated by σ0, . . . , σλ´1 is the group of all left translations on G. Its
centralizer Cpθq is equal to the group of all right translations. Thus, we obtain
the following consequence of Theorem 5.1:

Corollary 5.2. The centralizer of the group substitutions is G-trivial.

Remark 5.3. The discrete part of the spectrum of the dynamical system
pS,Xpθqq, where θ is a substitution, consists of the spectrum of the underlying
odometer and a cyclic group determined by the height h of the substitution [? ].
It follows that when the height is equal to 1, then the spectrum is continuous in
the orthocomplement of the L2-space of the underlying odometer. Otherwise,
in this orthocomplement we have the cyclic group of eigenvalues generated by
e2πi{h.

We are now ready to show that Sarnak's conjecture holds for dynamical
systems given by bijective substitutions.

Theorem 5.4. For each bijective substitution θ : A Ñ Ar, each function F P

CpXpθqq, each bounded by 1, aperiodic multiplicative function λ : N Ñ C and
each y P Xpθq, we have

(12)
1

N

ÿ

nďN

F pSnyqλpnq Ñ 0 when N Ñ8.

In particular, each topological dynamical system determined by a bijective sub-
stitution satis�es Sarnak's conjecture.

Proof. It follows by Lemma 3.19 that it is enough to prove (12) for the dynamical
system pS,Xpθqq corresponding to the group cover substitution θ of θ. Moreover,
in view of Lemma 3.8, we can study instead its topologically isomorphic model
pSϕ, Xppxq ˆGq.

Fix f b j with f P CpXppxqq, where j P CpGq,
ş

j dmG “ 0. In view of
Theorem 1.1, Lemma 3.17, Corollary 5.2 and Proposition 4.5, Remark 4.6 and
Remark 5.3, for each py, gq P Xppxq ˆG, we have

(13)
1

N

ÿ

nďN

pf b jqppSϕq
npy, gqqλpnq Ñ 0

for each multiplicative function λ, |λ| ď 1. If we now �x λ, then we have the
relevant convergence (against this �xed λ) for a linearly dense set of functions
in CpXppxq ˆGq, hence for all functions in CpXppxq ˆGq and the result follows.

Remark 5.5. Let j :“ 1G. Using (13), for each y P Xppxq, we have

1

N

ÿ

nďN

fpSnyqλpnq Ñ 0
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for each bounded by 1, aperiodic multiplicative function λ. This can be also
proved more directly. Notice that for each odometer pT,Xq we have (1) true
with µ replaced by λ since each �nite system enjoys this property and pT,Xq
is a topological inverse limit of such systems. If pT ,Xq is a uniquely ergodic
topological extension of pT,Xq, measure-theoretically isomorphic to pT,X,mXq,
we can apply Lemma 7 and Proposition 3 in [? ] to lift the orthogonality
condition (12) from the odometer to pT ,Xq.

Remark 5.6. The proof of Sarnak's conjecture also gives the following: when-
ever pS,Xpθqq is a subshift given by a bijective substitution, for each ergodic
powers Sr and Ss, each point py, zq P Xpθq ˆ Xpθq is generic (for an ergodic
measure).

5.2 Regular Morse sequences and the Rudin-Shapiro case

Remark 5.7. Theorem 5.4 is also true for all so called regular Morse sequences
[? ] x “ b0 ˆ b1 ˆ . . . (bt P t0, 1uλt , t ě 0) (their centralizer is Z{2Z-trivial [?
]), whenever the set tp : p is prime and p|λt for some tu is �nite. Indeed, the
result follows from Corollaries 4.9 and 4.10 and the proof of Theorem 5.4.

Remark 5.8. Theorem 5.4 also holds for the Rudin-Shapiro type sequences
considered in [? ]. These are 0-1-sequences x P t0, 1uN such that xrns is equal
to the mod 2 frequency of the block 1 ˚ . . . ˚ 1 (with �xed number of ˚) in the
block given by the binary expansion on n.11 As shown in [? ], the corresponding
subshift is given by a Toeplitz type Z{2Z-extension of the dyadic odomoter, and
the whole method applies. Indeed, since pS,Xpxqq has Lebesgue component of
multiplicity 2k in the spectrum in the orthocomplement of the space generated
by eigenfunctions [? ], it follows that its sth and rth power also have Lebesgue
components in the spectrum, of multiplicity s2k and r2k, respectively. Thus,
these powers cannot be isomorphic, unless s “ r.

6 Spectral approach and other methods

Let pS,Xq with X Ă AZ be a subshift over a �nite alphabet A with |A| “ r ě 2.

6.1 First remarks

Lemma 6.1. Suppose that (1) holds for arbitrary x P X, for each function
f “ 1B, where B P Ak is a block of �nite length (k ě 1 is arbitrary) that
appears on X. Then Sarnak's conjecture holds for pS,Xq.

Proof. It su�ces to show (1) for a linearly dense family of functions in CpXq:
e.g. functions which depend on a �nite number of coordinates. The space of
(continuous) functions depending on coordinates r´k, ks in the full shift has
dimension r2k`1, which is at the same time the number of possible blocks of
length 2k ` 1. In a similar way, for a subshift, we just need to count the
number of distinct p2k ` 1q-blocks appearing on X. Moreover, the family of
their characteristic functions is linearly independent.

11We can also consider 1 ˚ . . . ˚ 0.
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Remark 6.2. There are other choices of �nite families of functions than those
in Lemma 6.1 which also yield the validity of Sarnak's conjecture. For example,
when r “ 2 we can use the so called Walsh basis: for eachK ě 1, we consider the
characters of the group t0, 1u2K`1: fCpxq “ p´1q

ř

iPC xris for C Ă t´K, . . . ,Ku
and x P X Ă AZ.

Remark 6.3. In [? ? ] the convergence in (1) is proved at any point for fpyq “
p´1qyr0s (f “ ft0u in the notation from Remark 6.2) for Kakutani sequences.12 A
natural question arises whether this is su�cient to obtain Sarnak's conjecture
for the corresponding dynamical system. In general, it does not seem to be
automatic that (1) for functions depending on one coordinate implies (1) for
functions depending on more coordinates. E.g. in [? ], where Sarnak's conjecture
is proved for the 0-1-subshift generated by the Thue-Morse sequence, (1) for
fpyq “ p´1qyr0s is proved by completely di�erent methods than for continuous
functions invariant under the map y ÞÑ ry, where ryrns “ 1 ´ yrns.13 We note
that the method from Corollary 4.7 does not apply to Kakutani systems since
their centralizer can be uncountable: there are Kakutani sequences for which
the corresponding dynamical systems are rigid [? ]. However, in Section 6.2 we
provide an argument which in Section 6.3 will be used to show that [? ? ] yield
Sarnak's conjecture for the dynamical systems given by Kakutani sequences.

Remark 6.4. We have already shown that Sarnak's conjecture holds for the
dynamical system given by the Rudin-Shapiro sequence, see Remark 5.8. Recall
also that in this case (1) was show earlier in [? ] for fpyq “ p´1qyr0s (at any
point). Here the situation is more delicate if we want to apply the method from
Section 6.2: we need more functions, see Section 6.3 for more details.

6.2 Spectral approach

Lemma 6.5. Assume that T is a uniquely ergodic homeomorphism of a compact
metric space X. Denote the unique T -invariant measure by µ. Assume that
the unitary operator UT : L2pX,B, µq Ñ L2pX,B, µq, UT g :“ g ˝ T , has simple
spectrum. Assume that the maximal spectral type of UT is realized by F P CpXq.
If F satis�es (1) at each point x P X then pT,Xq satis�es Sarnak's conjecture.

Proof. Observe �rst that if F satis�es (1) at each point then the same is true

for each function ppUT qF of F (where ppzq “
řK
`“´K a`z

` is a trigonomet-
ric polynomial). By the simplicity of the spectrum of UT , functions of the
form ppUT qF are dense in L2pX,B, µq. We now repeat the argument from
Lemma 7 in [? ]. Fix G P CpXq, x P X and ε ą 0. Find a trigonometric
polynomial p so that }ppUT qF ´ G}2 ă ε. Let N0 be such that for N ě N0,
| 1
N

ř

nďN ppUT qF pT
nxqµpnq| ă ε for all N ą N0. Then (since T is uniquely

12The uniformity of estimates in these papers yields indeed (1) at any point y P Xpxqq.
13E.g. gpyq “ p´1qyr0s`yr1s is invariant under this map; notice that g “ ft0,1u from Re-

mark 6.2.
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ergodic and |µ| ď 1)

(14)

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

ÿ

nďN

GpTnxqµpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

N

ÿ

nďN

|pG´ ppUT qF qpT
nxq||µpnq| `

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

ÿ

nďN

pppUT qF qpT
nxqµpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

N

ÿ

nďN

|pG´ ppUT qF qpT
nxq| ` εÑ }G´ ppUT qF }1 ` ε

when N Ñ 8. Since }G ´ ppUT qF }1 ď }G ´ ppUT qF }2 ă ε, the result follows.

Remark 6.6. (A) The assertion of Lemma 6.5 remains true if we take any
bounded arithmetic function λ : N Ñ C instead of µ (both in (1) and in
Sarnak's conjecture). The proof is the same.

(B) Fr¡czek [? ] showed that for each automorphism T on pX,B, µq, where X is
a compact metric space, the maximal spectral type of UT is always realized
by a continuous function. However, in order to prove Sarnak's conjecture
using Lemma 6.5, we look for natural continuous functions realizing the
maximal spectral type for which we can show that (1) holds.

(C) Suppose that the continuous and discrete part of the maximal spectral
type of UT are realized by f P CpXq and g P CpXq, respectively. Then,
by elementary spectral theory, F “ f ` g P CpXq realizes the maximal
spectral type of UT and, clearly, it su�ces to check that (1) holds both for
f and g (at each point) to see that it holds for F (at each point).

(D) Lemma 6.5 has a natural extension to uniquely ergodic homeomorphisms
T such that UT has non-trivial multiplicity. All we need to know is
that L2pX,B, µq has a decomposition into cyclic spaces: L2pX,B, µq “
À

kě1 Zpfkq with fk P CpXq and check (1) for these generators.14 We will
�nd such functions in the next section in case of the dynamical systems
given by the Rudin-Shapiro type sequences.15

6.3 Applications

Generalized Morse sequences over A “ t0, 1u

Proposition 6.7. Let x be a generalized Morse sequence over A “ t0, 1u. Then
Sarnak's conjecture holds for pS,Xpxqq if and only if (1) holds (at each point)
for fpyq “ p´1qyr0s.

Proof. Recall that pS,Xpxqq is uniquely ergodic [? ] (with the unique invariant
measure µx) and has simple spectrum [? ]. As proved in [? ] (see also [? ])

14Recall however that it is open whether for an arbitrary automorphism T on pX,B, µq,
where X is a compact metric space there are continuous functions fk, k ě 1 such that
L2pX,B, µq “

À

kě1 Zpfkq and σfk`1
! σfk , k ě 1, see e.g. [? ] for more details.

15Recall that in the general case of dynamical systems given by the Rudin-Shapiro type
sequences, this multiplicity is of the form 2k, k ě 1 [? ].
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fpyq “ p´1qyr0s realizes the continuous part of the maximal spectral type of US
(on L2pXpxq, µxq). Moreover, the discrete part is given by the equicontinuous
factor of pS,Xpxqq, which is the odometer determined by λt, t ě 0. It follows
that the eigenfunctions gi, i ě 1, are continuous. If g “

ř

iě1 aigi, each ai ‰ 0,
ř

iě1 |ai| ă `8, then g is a continuous function realizing the discrete part of
the maximal spectral type of US . Since each odometer is a topological inverse
limit of systems de�ned on �nitely many points, and for �nite systems Sarnak's
conjecture holds because of the PNT in arithmetic progressions, therefore g
satisifes (1). Thus, in view of Lemma 6.5 and Remark 6.6 (C), it su�ces to
prove (1) for f to obtain the validity of Sarnak's conjecture.

Corollary 6.8. Sarnak's conjecture holds for the dynamical systems given by
Kakutani sequences.

Proof. In view of the above proposition, it su�ces to prove (1) for f which was
done in [? ? ] (cf. Remark 6.3).

Rudin-Shapiro type sequences Recall that the classical Rudin-Sharpiro
sequence x P t0, 1uN is de�ned in the following way:

• take the �xed point of the substitution a ÞÑ ab, b ÞÑ ac, c ÞÑ db and
d ÞÑ dc,

• use the code a, b ÞÑ 0 and c, d ÞÑ 1 to pass to the space of 0-1-sequences
(the map arising from this code yields a topological isomorphism of the
relevant subshifts on four and two letters).

The multiplicity of the corresponding dynamical system on the continuous part
of the spectrum is equal to 2 [? ? ]. It follows from [? ] and Remark 6.6 (D) that,
in order to obtain Sarnak's conjecture for the corresponding subshift, we need
to check (1) for two continuous functions f ¨ 1D2

0
and f ¨ 1D2

1
(cf. Remark 3.12).

It follows immediately from the de�nition of D2
0 and the recognizability of sub-

stitutions [? ] that 1D2
0
is a continuous function depending on a �nite number

of coordinates. Therefore, to obtain Sarnak's conjecture for the subshift given
by the Rudin-Shapiro sequence, we would have to check (1) for the elements
of the Walsh basis of order 4M , where M is the constant of recognizability,
see Remark 3.14. Recall that (1) was already shown for f in [? ? ]. Notice that
this approach to prove Sarnak's conjecture is completely di�erent from the one
presented in the preceding sections (cf. Remark 5.8). The above applies to all
Rudin-Shapiro type sequences.

6.4 Results of Veech [? ]

In the recent preprint [? ], Veech considers a class of systems for which Sarnak's
conjecture holds. We will now brie�y present his work and then compare it with
our results. Assume that λn ě 2 for n ě 0, then set n0 :“ 1 and nt :“

śt´1
k“0 λk,

t ě 1 and de�ne

X :“ liminvtÑ8Z{ntZ “ tx “ pxtq : 0 ď xt ă nt, xt`1 “ xt mod nt, t ě 1u.

This is a compact, Abelian, monothetic group on which we consider Tx “ x` θ
with θ “ p1, 1, . . .q. It is not hard to see that the systems obtained this way are
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naturally isomorphic to the odometers considered in Section 3.1. The sequence
of towers Dt, t ě 1, in the new coordinates is determined by

Dt
0 :“ tx P X : xt “ 0u,

and we obtain pairwise disjoint sets Dt
0, TD

t
0, . . . T

nt´1Dt
0 with

Ťnt´1
j“0 T jDt

0 “

X. Then de�ne
τpxq :“ mintt ě 1 : xt ‰ nt ´ 1u.

We have limxÑ´θ τpxq “ 8 and τ is continuous on Xzt´θu.
Let K be a compact group and take pΨptqqtě1 Ă K. Set

fpxq :“ Ψpτpxqq.

Then Ψ is locally constant on Xzt´θu and f P CpXzt´θu,Kq. There are some
assumptions on the sequence Ψ made in [? ]:

(i) limtÑ8Ψptq does not exist,

(ii) tΨptq : t ě 1u generates a dense subgroup of K,

(iii) pΨptqqtě1 is recurrent (that is, every initial block of Ψ repeats in�nitely
often).

Remark 6.9. If K “ Z{2Z, the conditions (ii) and (iii) are not necessary.

Let MΨ Ă KZ be the closure of all sequences pfpx ` nθqnPZ for x P XzZθ.
On MΨ, we consider the usual shift S. Let

m : MΨ Ñ K be given by mpyq “ yr0s.

Finally, let Sm : MΨˆK ÑMΨˆK be the skew product de�ned as Smpy, kq “
pSy,mpyqkq. Then Sm is a homeomorphism of MΨ ˆK.

Theorem 6.10 ([? ]). Suppose additionally that the set tλt : t ě 0u is �nite.
Then, under the above assumptions, pSm,MΨˆKq satis�es Sarnak's conjecture.

Remark 6.11. It is not hard to see that in the language of [? ], the function f
is a semicocycle over an odometer (that is, a function continuous on a residual
subset of an odometer). It follows from [? ] that the dynamical system given
by pS,MΨq is a Toeplitz dynamical system (cf. Section 3.1). The system is
regular [? ], hence uniquely ergodic and measure-theoretically isomorphic to
the odometer pT,Xq.

Notice that if xt “ nt ´ 1 then also xk “ nk ´ 1 for 1 ď k ď t ´ 1. It
follows immediately that τ is constant on each Dt

i , 0 ď i ď nt ´ 2. Therefore,
the cocycle f : X Ñ K de�ned above is a Morse cocycle (cf. Section 3.1). It has
the following additional property:

(15) f is constant on
ď

1ďjďλt`1´1

Dt`1
jnt´1.

Condition (15) yields the class of Morse sequences x “ b0ˆ b1ˆ . . . , where each

block bt, t ě 0, is of the form bt “ ek . . . k|b
t
|´1 (cf. Remark 3.9). In particular,

if K “ Z{2Z, we have x “ b0 ˆ b1 ˆ . . . , where bt “ 0 . . . 0, bt “ 01 . . . 01 or
bt “ 010 . . . 10, t ě 0. Notice that Kakutani sequences are of this form.

Notice also that pSm,MΨ ˆ Kq corresponds to pSϕ, Xppxq ˆ Gq de�ned in
Section 3.1, which is, in turn, topologically isomorphic to pS,Xpxqq.

It follows that Theorem 6.10 yields, in particular, that the dynamical systems
given by Kakutani sequences satisfy Sarnak's conjecture (cf. Corollary 6.8).
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