M. Antonakakis and T. , Understanding the Mirai botnet, Proceedings of the USENIX Security Symposium (USENIX Security, pp.1093-1110, 2017.

, Mirai source code, 2016.

, Netscout threat intelligence report, 2018.

E. B. Alexander-khalimonenko and O. Kupreev, DDoS attacks in Q1 2018, 2018.

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, Surveying port scans and their detection methodologies, The Computer Journal, vol.54, issue.10, pp.1565-1581, 2011.

, MAWI working group traffic archive, 2018.

, Source code for split-and-merge detection algorithm, 2018.

R. Fontugne and P. Borgnat, Mawilab: Combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking, Proceedings of the International COnference on emerging Networking EXperiments and Technologies (Co-NEXT), 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00552071

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, Network anomaly detection: Methods, systems and tools, IEEE Communications Surveys & Tutorials, vol.16, issue.1, pp.303-336, 2014.

, Snort -network intrusion detection & prevention system

V. Paxson, Bro: a system for detecting network intruders in real-time, Computer Networks, vol.31, issue.23-24, pp.2435-2463, 1999.

G. Gu, J. Zhang, and W. Lee, Botsniffer: Detecting botnet command and control channels in network traffic, Proceedings of the Network and Distributed System Security Symposium (NDSS), 2008.

, MAWILab database

A. G. Tartakovsky, A. S. Polunchenko, and G. Sokolov, Efficient computer network anomaly detection by changepoint detection methods, IEEE Journal of Selected Topics in Signal Processing, vol.7, issue.1, pp.4-11, 2013.

C. Callegari, S. Giordano, and M. Pagano, Entropy-based network anomaly detection, Proceedings of International Conference on Computing, Networking and Communications (ICNC), 2017.

J. Dromard, G. Roudiere, and P. Owezarski, Online and scalable unsupervised network anomaly detection method, IEEE Transactions on Network and Service Management, vol.14, issue.1, pp.34-47, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01406273

C. V. Zhou, C. Leckie, and S. Karunasekera, A survey of coordinated attacks and collaborative intrusion detection, Computers & Security, vol.29, issue.1, pp.124-140, 2010.

P. K. Shanmugam and N. D. Subramanyam, DEIDtect: towards distributed elastic intrusion detection, Proceedings of the ACM SIGCOMM workshop on Distributed cloud computing (DCC), 2014.

A. Aqil and K. Khalil, Jaal: Towards network intrusion detection at isp scale, Proceedings of the International COnference on emerging Networking EXperiments and Technologies -(CoNEXT, 2017.

D. Singh and D. Patel, Collaborative IDS framework for cloud, International Journal of Network Security, vol.18, pp.699-709, 2015.

J. Francois, I. Aib, and R. Boutaba, FireCol: A collaborative protection network for the detection of flooding DDoS attacks, IEEE/ACM Transactions on Networking, vol.20, issue.6, pp.1828-1841, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00959439

S. A. Mirheidari, S. Arshad, and R. Jalili, Alert correlation algorithms: A survey and taxonomy, Cyberspace Safety and Security, pp.183-197, 2013.

S. Panjwani and S. Tan, An experimental evaluation to determine if port scans are precursors to an attack, 2005 International Conference on Dependable Systems and Networks (DSN), 2005.

C. Kao and Y. Chang, A predictive zero-day network defense using long-term port-scan recording, 2015 IEEE Conference on Communications and Network Security (CNS), 2015.

B. Iglewicz and D. Hoaglin, How to detect and handle outliers, The ASQC Basic References in Quality Control: Statistical Techniques, vol.16, 1993.

E. W. Zakir-durumeric and J. A. Halderman, ZMap: Fast internet-wide scanning and its security applications, Proceedings of the USENIX Security Symposium (USENIX Security), 2013.

. Adb and . Miner, More information, 2018.

, IoTroop botnet: The full investigation, 2018.

S. Edwards and I. Profetis, Hajime: Analysis of a decentralized internet worm for IoT devices, 2016.