
HAL Id: hal-02119024
https://hal.archives-ouvertes.fr/hal-02119024

Submitted on 3 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CertiCAN: A Tool for the Coq Certification of CAN
Analysis Results

Pascal Fradet, Xiaojie Guo, Jean-François Monin, Sophie Quinton

To cite this version:
Pascal Fradet, Xiaojie Guo, Jean-François Monin, Sophie Quinton. CertiCAN: A Tool for the Coq
Certification of CAN Analysis Results. RTAS 2019 - 25th IEEE Real-Time and Embedded Technology
and Applications Symposium, Apr 2019, Montreal, Canada. pp.1-10. �hal-02119024�

https://hal.archives-ouvertes.fr/hal-02119024
https://hal.archives-ouvertes.fr

CertiCAN:
A Tool for the Coq Certification

of CAN Analysis Results
Pascal Fradet1, Xiaojie Guo1,2, Jean-François Monin2 and Sophie Quinton1

1Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000 Grenoble France
2Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, F-38000 Grenoble France

Abstract—This paper introduces CertiCAN, a tool produced
using the Coq proof assistant for the formal certification of CAN
analysis results. Result certification is a process that is light-
weight and flexible compared to tool certification, which makes
it a practical choice for industrial purposes.

The analysis underlying CertiCAN, which is based on a
combined use of two well-known CAN analysis techniques, is
computationally efficient. Experiments demonstrate that Certi-
CAN is faster than the corresponding certified combined analysis.
More importantly, it is able to certify the results of RTaW-Pegase,
an industrial CAN analysis tool, even for large systems. This
result paves the way for a broader acceptance of formal tools for
the certification of real-time systems analysis results.

I. INTRODUCTION

A. Motivation

There is a general trend toward certified1 proofs for real-
time systems analysis. One reason for this is the need to
increase our confidence in the analysis techniques developed
by the research community. A recent series of mistakes in the
analysis of self-suspending tasks [9] underlines the limitations
of pen-and-paper proofs for such complex problems. This issue
is not new, as illustrated by the flaw in the original Response
Time Analysis (RTA) of CAN messages proposed by Tindell
et al. [26], [28], [27], which was found and fixed only many
years later [12]. This motivated the development of Prosa [11],
an open-source library of definitions and proofs for real-
time systems analysis based on the Coq [4] proof assistant.
Computer assisted proofs provide the additional advantage that
they make it easier to build on top of existing results and to
precisely identify the hypotheses required for a result to hold.

A second reason behind the need to certify real-time systems
analysis results comes from industry. Standards such as ISO
26262 for automotive or DO-178C for avionics advocate the
use of formal methods for the development and validation of
safety critical systems. In particular, proof assistants have now
reached a level of maturity where they are used for industrial
applications – see, for example, the use of the CompCert C
compiler [3], [18] based on Coq or the Sel4 microkernel [8]
based on Isabelle/HOL [6]. It is only natural that such a

1Throughout this paper, the term certified means formally verified using a
proof assistant, in our case Coq.

general trend towards formal proofs also affects real-time
aspects. For all these reasons, we aim at providing certified
real-time guarantees for industrial systems.

As a first example of a (not so) simple analysis with indus-
trial relevance and following our Work-in-Progress paper [16],
we focus in this work on the CAN analysis cited earlier.
The underlying analysis is a RTA for task sets with offsets
under Fixed Priority Non Preemptive (FPNP) scheduling, with
a notion of transaction, i.e., messages sent from the same
electronic control unit (ECU). The CAN [10] protocol is
widely used in automotive applications and there exist several
commercial tools performing CAN analysis. Among these, we
focus on RTaW-Pegase [7], for which we obtained an academic
license.

B. Certifying the results of a CAN analysis tool

Rather than certifying RTaW-Pegase, that is, formally prov-
ing that the CAN analysis implemented in RTaW-Pegase is
correct, we choose to build a tool based on the Coq proof
assistant that can certify the results of the CAN analysis
performed by RTaW-Pegase. In other words, our tool, called
CertiCAN, can be called every time a result obtained with
RTaW-Pegase 2 must be certified. This choice is motivated by
the fact that result certification is a process that is light-weight
and flexible compared to tool certification, which makes it a
practical choice for industrial purposes. Indeed, RTaW-Pegase
is a complex tool for which we do not have the source code. It
is likely to be highly optimized and subject to regular changes.
All this would make it difficult to certify the tool directly and
this correctness proof would need to be updated regularly.

Our problem is then: Can we certify efficiently enough the
analysis results computed by RTaW-Pegase? Compared to a
traditional RTA, can we use the fact that a result certifier is
given as input the bound it is expected to certify?

Our solution is based on the following idea: We use a combi-
nation of two existing analysis techniques, one precise but with
high computational complexity and another that is much faster

2Note that CertiCAN does not depend on the internals of the RTA tool
considered. It is interoperable with any other tool analyzing the same CAN
system models as RTaW-Pegase.

but approximate (it may compute pessimistic upper bounds
on response times). These two analyses were introduced by
Tindell for the RTA of tasks with offsets dispatched according
to the Fixed Priority Preemptive policy [24], [25]. The precise
analysis was adapted to CAN by Meumeu Yomsi et al. [29].

Our tool first tries to certify the result provided as input
using the approximate analysis only, then resorts to the exact
analysis for cases which cannot be certified using the ap-
proximate analysis. Experiments demonstrate that CertiCAN is
faster than the corresponding certified combined analysis tool.
More importantly, it is able to certify the results of RTaW-
Pegase even for fairly large systems.

C. Contribution

The main contribution of this paper is CertiCAN, the first
formally proven tool able to certify the results of commercial
CAN analysis tools. This is however not the only contribution
of the paper. More specifically, we propose:

1) A new RTA for CAN that combines two well-known
analyses, one precise and another approximate;

2) The correctness proof in Coq of the three analyses;
3) Three Coq-certified tools in OCaml extracted from the

proofs, one for each analysis;
4) Based on the same principle as the new RTA, a method

and its corresponding tool formally verified in Coq; The
tool, called CertiCAN, is entitled to certify the results of
non certified tools such as RTaW-Pegase.

5) Experiments that show the differences in efficiency be-
tween the various techniques, and which demonstrate the
usability of CertiCAN for industrial practice.

Beyond CertiCAN, we believe that the results presented in this
paper are significant in that they demonstrate the advantage of
result certification over tool certification for the RTA of CAN
buses. In addition, the underlying technique can be reused
for any other system model for which there exist RTAs with
different levels of precision.

All the Coq specifications and proofs are available on-
line [2].

D. Paper structure

The rest of this paper is laid out as follows. Section II in-
troduces the system model and some notations and definitions
used later on. We present in Section III the two existing CAN
analyses on which our certifier is based. Sections IV and V
describe the main contributions of the paper: first, an optimized
RTA combining the previous CAN analyses, then CertiCAN,
a tool based on Coq for certifying CAN analysis results, and
finally their experimental evaluation. Additional details about
the proofs and the generality of the approach are provided in
Section VI. Related work is presented in Section VII and we
conclude in Section VIII.

II. CONTEXT

The analyses of CAN networks proposed by RTaW-Pegase
are based on a precise RTA of periodic tasks with offsets

dispatched according to the FPNP scheduling policy [29]. In
addition to the precise analysis, RTaW-Pegase proposes an
approximate but faster version. The implementation of these
analyses uses several undocumented optimizations.

In this section, we present the system model considered
in these analyses as well as notations and definitions used
throughout this article.

A. System model

The system model considered consists of a set of transac-
tions representing ECU nodes

S := {Tr1,Tr2, . . . ,TrN}

where each transaction Tr i is a set of periodic tasks (repre-
senting messages):

Tr i := {τi,1, τi,2, . . . , τi,M}

Each task τi,k has a fixed and unique priority k (a smaller
number means a higher priority) and is characterized by a
4-tuple

(Ci,k, Di,k, Ti,k, Oi,k)

where
• Ci,k denotes its worst-case execution time (WCET),
• Di,k its relative deadline,
• Ti,k its activation period, and
• Oi,k its offset, i.e., the delay between the first activation

of the task and the first release of its transaction Tr i.
In this paper, constrained offsets are assumed, formally
Oi,k < Ti,k.

Tasks within the same transaction share the same clock. All
tasks of Tr i being periodic, their offsets define a precise timing
relation between them.

Task τi,k activates periodically its jobs at Oi,k+m.Ti,k with
m ≥ 0. A job  of a task τi,k is characterized by
• its activation time acti,k(),
• its finishing time endi,k() and
• its computation time ci,k() (ci,k() ≤ Ci,k)

Its response time RTi,k() is defined as endi,k()− acti,k().
The worst-case response time (WCRT) of task τi,k, denoted
wcrti,k, is the largest possible response time among all jobs
of task τi,k.

The model does not suppose any global synchronization
between transactions. Any possible time shift between any two
transactions is assumed to be possible and must be considered
by the analysis.

B. Notations and definitions

We note hep(k), hp(k), lp(k) the sets of tasks of the system
under study whose priorities are higher than or equal to, higher
than or lower than k, respectively.

The RTAs considered here rely on the well-known concept
of busy window which we define now.

Qx,2(1)

Qx,2(2)

τx,2

τx,1

0 5 10 15 20

Figure 1: Example of queueing prefixes in a busy window.

Definition 1 (Level-k quiet time). An instant t is said to be a
level-k quiet time if all jobs of priority higher than or equal
to k released strictly before t have completed at t.

Definition 2 (Level-k busy window). A time interval [t1, t2[
is said to be a level-k busy window if:

1) t1 and t2 are level-k quiet times;
2) there is no level-k quiet time in]t1, t2[; and
3) at least one job with a priority higher than or equal to

k is released in [t1, t2[.

Clearly, a job with a priority higher than or equal to k has
completed by the end of its level-k busy window. In other
words, its response time can be bounded by the length of the
corresponding busy window. Such a bound is however quite
coarse. In particular, there may be several jobs of the same
task activated in the same busy window. We thus consider the
response time of each level-k job in a level-k busy window.
To this aim, we use the notions of phase and queueing prefix
as defined in [15].

Definition 3 (Queueing prefix). The q-th queueing prefix of
task τi,k in a level-k busy window [t1, t2[is the time interval
[t1, tq] where tq is the instant at which the q-th job of task τi,k
receives its first service (i.e., is scheduled for the first time).

Fig. 1 shows the first and second queueing prefixes of a
task τx,2 in a level-2 busy window, Qx,2(1) and Qx,2(2)
respectively.

Definition 4 (Phase). The phase of the q-th job  of task τi,k
in a level-k busy window [t1, t2[is the duration acti,k()− t1.

Due to the FPNP scheduling policy, a lower priority job than
k can be executed at the beginning of a level-k busy window.
This is referred to as the blocking factor. It is easy to prove
that the blocking factor of a level-k busy window is bounded
by:

Bk = max
τi,x∈lp(k)

(Ci,x − 1) (1)

Indeed, the worst case is when the lower priority task with the
largest worst-case execution time activates a job with such an
execution time just one time unit before the start of the level-k
busy window.

Another key notion for RTA is the workload of a task, which
quantifies its request for resources.

Definition 5. The workload bound function of task τi,k for a
given interval [t1, t1 + ∆[is defined as:

wl+τi,k(t1,∆) = (d∆− θi,k(t1)

Ti,k
e︸ ︷︷ ︸

na

)Ci,k (2)

where θi,k(t1) = (Ti,k + Oi,k − (t1 mod Ti,k)) mod Ti,k is
the time duration between t1 and the first activation of τi,k
after t1.

When the tasks of the same transaction have distinct periods,
the RTA presented in the next section makes use of the so-
called hyper-period of transactions.

Definition 6. (Hyper-period). The hyper-period T+
i of a

transaction Tr i := {τi,1, τi,2, . . . , τi,M} is the least common
multiple of the periods of all its tasks. Formally,

T+
i = lcm{Ti,1, Ti,2, . . . , Ti,M} (3)

III. CERTIFIED RTAS FOR CAN

In this section, we describe the two RTAs for CAN that
we use to certify the results of the RTaW-Pegase tool. The
correctness of these RTAs has been proved using the Coq
proof assistant [4] on top of the Prosa library [1]. In the
following, we consider a task τi,k and describe how the two
RTAs compute an upper bound on its worst-case response
time. The presentation follows the Coq specification. We omit
proofs of lemmas and theorems and refer the interested reader
to the Coq source [2].

The two RTAs follow the same procedure:
1) Let  be a job of task τi,k.
2) For all possible scenarios (precise or approximate) com-

pute an upper bound RTBWk
() of that job  by exam-

ining all level-k queueing prefixes in its corresponding
level-k busy window BWk.

3) The upper bound on the response time of , denoted
by RTBWk

(), is the maximum of the results for all
scenarios.

Both analyses rely heavily on the analysis of busy windows
and queueing prefixes introduced in the previous section.

A. Busy window analysis

We start by describing how to analyze the response time of
of a task τi,k in a concrete busy window. Assume that there
exists a level-k busy window [t1, t2[in which a job  of τi,k is
released. It can be shown that if the utilization is below 100%,
it is always possible to compute that busy window. Assume
that this job is the q-th job of task τi,k arrived in the busy
window [t1, t2[. Let Qi,k(q) denote the q-th queueing prefix
of task τi,k (see Def. 3) in that busy window, then  finishes
at the latest at

t1 +Qi,k(q) + ci,k()− 1

The response time of this instance is bounded by:

RTi,k() ≤ t1 +Qi,k(q) + ci,k()− 1− acti,k()

The phase of  (see Def. 4) can also been defined as

acti,k()− t1 = θi,k(t1) + (q − 1) ∗ Ti,k

As a result, the bound of the response time of job  can be
rewritten as

RTi,k() ≤ Qi,k(q)− (θi,k(t1) + (q − 1) ∗ Ti,k)︸ ︷︷ ︸
phase

+ci,k()− 1

Let us write BWk = t2 − t1 to denote the size of the busy
window. We know that there are at most

q+τi,k,BWk
=

⌈
BWk

Ti,k

⌉
jobs of task τi,k in that busy window. Therefore, within busy
window [t1, t2[, the WCRT of task τi,k can be locally bounded
by RTBWk

() defined as

max
q≤q+τi,k,BWk

(Qi,k(q)− (θi,k(t1) + (q − 1) ∗ Ti,k)︸ ︷︷ ︸
phase

+ci,k(q)− 1)

where q represents the q-th job of task τi,k released in the
busy window.

To find the WCRT of task τi,k, we must find, for any
possible scenario,

1) an upper bound on BWk;
2) an upper bound on Qi,k(q) for any q ≤ q+τi,k,BWk

;
3) a lower bound on θi,k(t1).
BWk and Qi,k(q) are defined as fixed points of two

workload functions. In order to define these functions, we must
first define the notion of workload. Note that this definition is
different from the workload bound function defined in Sec. II.

Definition 7 (workload). The workload wlτj,l(t1,∆) of task
τj,l in a time interval [t1, t1 + ∆[is the cumulative cost
(i.e., required service time) of its jobs released in that interval.

BWk can be found by computing the least fixed point of
the following equation:

BWk = fB(BWk)

where

fB(∆) = bk(t1,∆) +
∑

τj,l∈Trj
Trj∈S
l≤k

wlτj,l(t1,∆)

and bk(t1, BWk) is the blocking factor, that is the time
duration at the beginning of the busy window when a lower
priority task may execute.

Similarly, Qi,k(q) can be found by computing the least fixed
point of the following equation:

Qi,k(q) = fQ(q,Qi,k(q))

where

fQ(q,Qi,k(q)) = bk(t1,∆) +
∑
τj,l∈Trj
Trj∈S
l<k

wlτj,l(t1,∆)

+ wlτi,k (t1, θi,k(t1) + (q − 1) ∗ Ti,k) + 1

A static analysis will have to find upper bounds of BWk

and Qi,k(q). To this aim, it is sufficient to find two functions
that bound fB(∆) and fQ(q,∆) and to compute their fixed
points. The correctness of this approach is expressed by the
following lemma.

Lemma 1. Let f , g : N → N be two functions and ∆1 and
∆2 be fixed points of the equations ∆ = f (∆) and ∆ = g(∆)
then, if for all x : N, f(x) ≤ g(x) and, for all x : N+, x <
∆1, we have x < f(x), then ∆1 ≤ ∆2.

Finally, computing an upper bound on the WCRT of task
τi,k amounts to finding a finite set of scenarios such that
fB(∆) and fQ(q,∆) for any busy window are bounded by the
corresponding functions of a scenario in that set. The WCRT
of the task τi,k is found by taking the maximum WCRT found
for all these scenarios.

B. Precise analysis

The precise analysis considers the finite set of scenarios
corresponding to the cases where

1) all jobs in the busy window take their worst-case execu-
tion time to complete; and

2) t1 is aligned with an activation in each transaction.
The set of possible alignments corresponds to the set of
scenarios.

We must show that, for any concrete busy window starting at
t1, there is a scenario belonging to the set described above that
maximizes the functions fB(∆) and fQ(q,∆) and minimizes
θi,k(t1).

First, we show a lower bound of θi,k(t1),

Lemma 2 (Alignment-θ). For any task τj,l in the system, and
for any time duration ∆,

θi,k(Ot1j) ≤ θi,k(t1) (4)

where Ot1 is the duration between the beginning of the busy
window and the first activation with a priority higher than or
equal to k in Tr j that occurs after t1.

Next, let us compute upper bounds of functions fB(∆) and
fQ(q,∆). To this aim we bound the blocking time and the
workload.

It is easy to prove that the actual blocking time in a level-k
busy window is bounded by Bk (see Equation. 1):

Lemma 3. bk(t1, BWk) ≤ Bk
For any task τj,l in the system, and for any time instant t1

and time duration ∆, the workload of task τj,l is maximized
when all its jobs take their WCET (see Def. 5). Formally,

Lemma 4 (WCET). wlτj,l(t1,∆) ≤ wl+τj,l(t1,∆)

For any task τj,l in the system, and for any time instant t1
and time duration ∆, the workload of task τj,l is maximized
when we right shift the interval [t1, t1 + ∆[to align it with
Ot1j .

Lemma 5 (Alignment-wl). wl+τj,l(t1,∆) ≤ wl+τj,l(O
t1
j ,∆)

With the three above lemmas, we can provide upper bounds
to the functions fB(∆) and fQ(q,∆).

Lemma 6 (Bound-fB(∆)). For any time duration ∆,

fB(∆) ≤ f+B (∆) (5)

where
f+B (∆) := Bk +

∑
Trj∈S

wl+Trj
(Ot1j ,∆) (6)

and
wl+Trj

(Ot1j ,∆) =
∑

τj,l∈Trj
l≤k

wl+τj,l(O
t1
j ,∆) (7)

Lemma 7 (Bound-fQ(q,∆)). In any level-k busy window
BWk and for any time duration ∆

fQ(q,∆) ≤ f+Q (q,∆) (8)

where

f+Q (q,∆) := Bk

+
∑

Trj∈S
j 6=i

wl+Trj
(Ot1j ,∆)

+
∑

τi,h∈Tri
h<k

wl+τi,h(Ot1i ,∆)

+ wl+τi,k
(
Ot1i , θi,k(Ot1i) + (q − 1) ∗ Ti,k

)
+ 1

(9)

Let LO t1 be a list of alignments which consists of one Ot1j
for each transaction Tr j ∈ S and let BW+

k be the least fixed
point of the following equation:

BW+
LO t1

= f+B (BW+
LO t1

) (10)

For any q ≤ q+
BW+

LOt1

, we compute the least fixed point of

equation:
Q+

LO t1
= f+Q (q,Q+

LO t1
) (11)

Then, the response times of jobs of task τi,k released in
the busy window [t1, t2[are upper bounded by RT+

LO t1
(τi,j)

defined as:

max
q≤q+

BW
+

LOt1

Q+
LO t1

(q)− (θi,k(Ot1i) + (q − 1) ∗ Ti,k)︸ ︷︷ ︸
phase

+Ci,k − 1


(12)

To upper bound the WCRT wcrti,k of the task τi,k, we
need to test all possible such Ot1j for each transaction Tr j .
The list LOj of candidates for Ot1j for each transaction Tr j
is composed of all possible activations of jobs with a higher
priority than k (∈ hep(k)) in the transaction Tr j within its
hyper-period T+

j :

LOj =
⋃

τj,l∈Trj∩hep(k)

{o | o = Oj,l + x ∗ Tj,l, o < T+
j , x ∈ N}

This list represents all possible alignments of the busy
window with an activation. The list of all scenarios is made
of all combinations of alignments over all transactions. The
WCRT wcrti,k of task τi,k is bounded by the maximal WCRT
of all scenarios. Formally,

Theorem 1. Let × denote the cartesian product, then

wcrti,k ≤ max
o∈LO1×···×LON

RT+
o (τi,k)

C. Approximate analysis

For large systems, the number of precise scenarios explodes
and the precise analysis quickly becomes intractable. In this
subsection, we present a more efficient but approximate anal-
ysis. It follows the same approach as presented in [24]. Its
principle is to maximize the workload of each transaction.

First, we define the approximate workload bound function
of a transaction.

Definition 8. The approximate workload bound function of a
transaction Tr j for the duration ∆ is defined as the maximum
workload among all possible alignments represented by LOj:

wl∗Trj (∆) = max
o∈LOj


∑

τj,l∈Trj
l≤k

wl+τj,l(o,∆)


Functions f+B (∆) and f+Q (q,∆) are upper bounded by using

wl∗Trj (∆) for each transaction Tr j . However, in order to
obtain a tighter bound, we compute the precise workload of
transaction Tr i of task τi,k (i.e., the task we analyze).

Lemma 8 (Bound-f+B (∆)). For any time duration ∆ and any
o ∈ LO i

f+B (∆) ≤ f∗B(∆)

where

f∗B(∆) := Bk +
∑

Trj∈S
j 6=i

wl∗Trj (∆) +
∑

τi,l∈Tri
l≤k

wl+τi,l(o,∆)

Lemma 9 (Bound-f+Q (q,∆)). For any time duration ∆

f+Q (q,∆) ≤ f∗Q(q,∆)

where

f∗Q(q,∆) := Bk

+
∑

Trj∈S
j 6=i

wl∗Trj (∆)

+
∑

τi,h∈Tri
h<k

wl+τi,h(Ot1i ,∆)

+ wl+τi,k
(
Ot1i , θi,k(Ot1i) + (q − 1) ∗ Ti,k

)
+ 1

(13)

We compute BW ∗
O
t1
i

the least fixed point of equation

BW ∗
O
t1
i

= f∗B(BW ∗
O
t1
i

)

and, for each q ≤ q+BW∗
O
t1
i

, the least fixed point of equation:

Q∗
O
t1
i

= f∗Q(q,Q∗
O
t1
i

)

then, the response time of jobs of task τi,k released in the busy
window [t1, t2[is upper bounded by RT ∗

O
t1
i

(τi,k) defined as:

max
q≤q+

BW∗
O
t1
i

Q∗Ot1i (q)− (θi,k(Ot1i) + (q − 1) ∗ Ti,k)︸ ︷︷ ︸
phase

+Ci,k − 1


Then, the WCRT wcrti,k of task τi,k is the maximum of these
values for all possible alignments represented by LO i.

Theorem 2.
wcrti,k ≤ max

o∈LOi

RT ∗o (τi,k)

Compared to the precise analysis, we do not consider all
possible combinations (the cartesian product) of all alignments
of all transactions. The approximate scenarios consist in the
alignments of the considered transaction Tr i only; the other
transactions are represented by the approximate workload
bound function.

IV. COMBINED RTA AND RESULT CERTIFIER

In the previous section, we presented two analyses for CAN
with offsets: a precise analysis and an approximate analysis.
The precise analysis computes a tight bound of the WCRT but
is potentially very costly. The approximate analysis is much
more efficient but yields pessimistic bounds.

In this section, we present
1) a RTA that combines both analyses to compute a tight

bound of WCRT more efficiently; and
2) CertiCAN, a certifier combining two certified precise and

approximate analyses, which can certify the results of
industry analyzers for large systems.

A. Combined RTA

The combined analysis is based on a precise and approxi-
mate analyses. Its main features are:
• It uses the approximate analysis to avoid unnecessary

computations and thus increase performance;
• It nevertheless computes the same results as the precise

analysis.
The precise analysis, Rp, considers a list of precise scenar-

ios Sp and computes a worst case response time for each. Its
result is the maximum of all these computations that is

max
sp∈Sp

(Rp sp)

The approximate analysis, Ra, does the same on a list of
approximate scenarios Sa . The two key properties of a valid
approximate analysis are that:
• Each approximate scenario sa dominates a list of precise

scenarios written Dsa i.e.,

maxsp∈(Dsa)(Rp sp) ≤ Rasa (14)

• The list Sa of approximate scenarios dominates all pre-
cise scenarios of Sp .

Therefore, we know that the result of the approximate analysis
is an over approximation of the precise result, that is

maxsp∈Sp
(Rp sp) ≤ maxsa∈Sa

(Rasa) (15)

The combined analysis is based on the following observa-
tion: If the WCRT obtained for an approximate scenario sa
is smaller than the WCRT found so far on the set of precise
scenarios visited, then there is no need to analyze the precise
scenarios dominated by sa.

Algorithm 1 Combined Response Time Analysis

procedure CRTA(n, l)
match l with
| nil => return n . l empty: returns the WCRT
|(r, s) :: l′ => . otherwise
if n ≥ r then CRTA(n, l′)
else m← maxsp∈(D s)(Rp sp); . local precise result

CRTA(max(n,m), l′)
end if

end procedure
CRTA(0,sort (map (λs.(Ras, s)) Sa))

The structure of the combined analysis is shown in
Algorithm 1. First, the approximate analysis is applied
to each approximate scenario. These results paired with
the corresponding scenario are sorted in descending order
(sort(map(λs.(Ras, s)) Sa). Sorting the list in that order
leads to considering the largest approximate WCRTs first. This
heuristic relies on the intuition that the largest precise WCRT
(which is the value to be found) is more likely to be dominated
by a large approximate WCRT and therefore, will be found
earlier with that ordering.

The CRTA function is called with this list and 0 as the
initial WCRT to be found. CRTA considers each approximate
WCRT of the argument list in turn. If the approximate WCRT
is less than the current WCRT then CRTA proceeds with the
next element of the list. Otherwise (and that is always the
case in the first call of CRTA), the function computes the
maximal response time on all precise scenarios dominated by
the current approximate scenario (maxsp∈(D s)(Rp sp)). This
response time replaces the current WCRT if it is greater than
the latter and CRTA proceeds with the next element in the list.
When all the elements of the list have been considered, the
computed WCRT, which can be proved to be the same as the
precise WCRT, is returned.

Example 1. Consider an example with 2 approximate scenar-
ios, each one dominating 3 precise scenarios. In Fig. 2, ver-
tices represent scenarios, edges represent the domination rela-
tion and labels next to vertices are their corresponding worst
case response times. For this example, the combined analysis

sa1 sa2

sp2sp1 sp3 sp5sp4 sp6

20 16

19 15 17 16 11 14

Figure 2: Scenario dominations.

CRTA which is called with 0 and the list [(20, sa1); (16, sa2)]
and proceeds as follows:

• the current approximate response time (20) is greater
than the current WCRT (0) then the maximum response
time of the three dominated precise scenarios is computed
(19) and becomes the current WCRT;

• because 19 is greater than the next approximate response
in the list (16), the response times of the corresponding
dominated scenarios do not need to be computed (they
are necessarily smaller);

• the analysis returns 19 which is the precise WCRT.

The combined RTA returns the same WCRT as the precise
analysis. Formally,

Theorem 3. Let Rp, Ra, Sp and Sa verifying the domination
equations 14 and 15 then

CRTA(0, sort(map(λs.(Ras, s)) Sa)) = max
s∈Sp

(Rp s)

B. Result certifier

The procedure of the result certifier is very similar to the
combined RTA and they share the same time complexity in
theory. In practice, since it starts with the precise WCRT to
be checked, it is more efficient. Our experiments show that
it has a reasonable scalability and can certify results of quite
large systems.

To check that R0 is equal to, or larger than the precise
WCRT, CertiCAN considers each approximate WCRT of the
argument list in turn. If the approximate WCRT is equal
to, or less than R0 then the certification is complete (and
returns True) since all remaining approximate WCRT of the
ordered list are also less than R0. Otherwise, the local precise
WCRT is computed on all precise scenarios dominated by the
current approximate scenario. If it is equal to, or less than
R0, CertiCAN proceeds with the remaining list. Otherwise, it
means that there is a precise WCRT greater than R0 which is
incorrect and CertiCAN returns False.

If the certifier returns true for a value R0, it means that R0

is greater than or equal to the precise WCRT. Formally,

Theorem 4. Let Rp, Ra, Sp and Sa verifying the domination
equations 14 and 15 then

CertiCAN(sort(map(λs.(Ra s, s)) Sa))⇒ R0 ≥ max
s∈Sp

(Rp s)

Algorithm 2 The CertiCAN result Certifier

The variable R0 contains the WCRT to certify

procedure CERTICAN(l)
match l with
| nil => return True . l empty: returns True
|(r, s) :: l′ => . otherwise ...
if R0 ≥ r then return True
else m← maxsp∈(D s)(Rp sp) . local precise result

if R0 ≥ m then CERTICAN(l′)
else return False
end if

end if
end procedure
CertiCAN(sort (map (λs.(Ras, s)) Sa))

V. EXPERIMENTAL EVALUATION

Having completed the Coq formalization of our analyses, we
used the Coq extraction feature to obtain four certified tools:
a precise analyzer, an approximate analyzer and a combined
analyzer as well as CertiCAN, the result certifier based on the
combined analysis.

In this section, we evaluate these certified tools in terms
of performance and scalability. We use synthetic test task
sets that are generated by a simple homemade generator. It
starts from an initial configuration based on the configuration
for CAN analysis presented in [29] (see Table I). Then, the
generator sets several parameters: the number of transactions,
the number of tasks in each transaction, and the period of each
transaction.

Table I: Initial configuration for the simple generator.

Payload 1 - 8 bytes
Period {20, 50, 100, 200, 500}
Offset {10, 20, . . . , 500}
Priority unique, arbitrary distribution
Transmission speed 500 kbits/s

In all figures, all results are obtained from an Intel Core
i7@2.6GHz, 8Gb, 64bits laptop and reported only for schedu-
lable systems, and passed the artifact evaluation [2].

A. Evaluation of extracted analyzers

First, we compare the three analyzers (precise, approximate
and combined).

Fig. 3 shows that the precise analyzer has a very high
time complexity compared to the approximate and combined
analyzers. Even if it returns precise results, the performance
of the combined analyzer efficiency remains close enough to
the approximate analyzer.

Note that a figure showing the number of precise scenarios
evaluated rather the runtime of the analysis would look very
similar to Figure 3. The runtime of the analyses depends
directly on the number of precise scenarios that are evaluated.

0 5 10 15 20 25
Number of tasks in each transaction (nbTrans = 5)

0

100

200

300

400

500

An
al

ys
is

tim
e

(s
)

Precise
Combined
Approximate

Figure 3: Comparison of the three certified analyzers

0 5 10 15 20 25 30 35 40
Number of tasks in each transaction (nbTrans = 5)

0

5

10

15

20

25

An
al
ys
is
tim

e
(s
)

Precise
Combined
Approximate
Certifier
RTaW-Pegase

Figure 4: Certifying the results of RTaW-Pegase (nbTrans=5)

B. Evaluation of the CertiCAN certifier

Next, we evaluate CertiCAN by verifying the results pro-
duced by the industrial tool RTaW-Pegase. The CAN analyzer
of RTaW-Pegase has a very good scalability due to some
optimization techniques. On the other hand, CertiCAN is based
on two unoptimized (but formally proved) analyses.

In Fig. 4, we consider models with five transactions and a
number of tasks up to 40 (i.e., systems with up to 200 tasks).
After evaluating about 400 task sets (systems), we observe that

• the RTaW-Pegase analysis is very efficient;
• CertiCAN is much slower but still tractable. It is able to

certify results of large systems at least with a reasonable
number of transactions;

• Up to 35 tasks per transaction, the runtime of CertiCAN

10 15
Number of tasks in each transaction (nbTrans = 10)

0

1000

2000

3000

4000

5000

An
al

ys
is

tim
e

(s
)

Figure 5: Certifying the results of RTaW-Pegase (nbTrans=10)

is close to that of the certified approximate analyzer.
In Fig. 5, we consider models with ten transactions and

evaluate two different sizes of systems: one with 10 tasks
in each transaction and the other with 15 tasks in each
transactions. The utilization of generated systems lies between
0.2 and 0.9 and 80% of systems are analyzed in less than
1000 seconds. It takes up to 1.5 hours to certify results of the
most complex systems (e.g., 10 transactions and 15 tasks per
transaction). The number of transactions is the main factor
of complexity growth as it quickly increases the number of
scenarios to analyze. The number of tasks and the utilization
have a much lower impact.

These results show again that CertiCAN is able to certify
the result of relatively large systems. As far as we know, even
in modern cars, no more than 15-20 ECUs are connected to a
single CAN bus [20]. Furthermore, not all tasks connected to
a CAN bus are periodic [21] and among them sporadic tasks
would not increase the number of scenarios to analyze. Note
however that all systems analyzed above are such that tasks
in the same transaction share the same period.

According to all our experiments, we found that CertiCAN
is as efficient as our certified approximate analyzer, which is
good sign even though it remains much slower than RTaW-
Pegase. The main reason is that the implementation of Cer-
tiCAN has been kept quite simple to facilitate correctness
proofs. We believe that it can be optimized by proving some
additional lemmas. In particular, when transactions have tasks
with harmonic periods all analyses are an order of magnitude
slower. Indeed, the analyses must consider the hyper period
and the number of scenario increases considerably. Optimiza-
tions should be considered to mitigate this effect; this is a
topic for future work.

Even as it is, CertiCAN can certify the results of relatively
large systems in less than a few hours. This can be considered

time consuming but it can also be argued that it is a small price
to pay to obtain formal guarantees before putting a system into
production.

VI. DISCUSSION

A. Experience with the Coq proof assistant

We have formally proven in Coq the correctness of the
precise and approximate RTAs presented in Section III [5].
Our proofs build upon the Prosa library [1] and use the
basic definitions that it provides (task, job, arrival sequence,
schedule, busy window, etc.). The combined analyzer and
the result certifier (see Sec. IV) have also been specified
and proved correct in Coq. Note that if proofs are machine-
checked, this cannot be the case for specifications and theorem
declarations. Besides using some basic definitions from Prosa,
we also had to define the FPNP scheduling policy and the
task model. Those specifications are quite small and simple
compared to the proofs and can be scrutinized by the interested
reader [2].

Here are a few figures to illustrate the complexity of the
proof effort. The specifications and proofs related to task
arrival and workload represent around 2500 LOC, the busy
window analysis about 3000 LOC, the RTA analyses approx-
imately 700 LOC and CertiCAN around 800 LOC.

Formalizing these developments in Coq requires more time
and effort than on paper, but it also brings important benefits:

• It gives formal guarantees about the soundness of the
specification and the absence of flaws in the proofs;

• It provides a better understanding of the role of each
assumption, which helps to generalize proofs;

• The Coq extraction technique permits to produce formally
verified tools (such as analyzers and certifiers) in the form
of OCaml programs.

B. Possible extensions of the approach

One of the most interesting by-products is that formalization
often leads to more general and reusable proofs. For instance,
our proof of busy window analysis does not rely on a specific
task model but on abstract functions. It can be reused for other
task models as long as we have the corresponding abstract
functions.

Also, we defined two RTAs by instantiating the abstract
functions with two different workload functions. Actually, the
approach could be applied to get other RTAs with different
levels of approximation. The combined analysis and certifier
depend of generic properties (domination relations) that do
not rely on the specific real-time model under study. The
correctness proofs for the combined algorithm would apply to
many other kinds of analyses possibly disconnected to real-
time theories. For the time being, we have considered only
two different levels of approximation but the principle should
hold for an arbitrary number of levels as long as they have the
relevant domination properties.

C. On result certification versus tool certification

Proving the correctness of highly optimized analyzers is
usually very costly and complex. Furthermore, each new
version of the analyzer requires additional, potential large,
proof effort. This makes the certification of results a very
appealing alternative. The results of complex, optimized and/or
changing analyzers can be checked by the same certifier. Of
course, the certifier itself should be proved correct. In our
context, the efficiently of a certifier is not too critical: the
analyzer can be used to experiment and tune the system and
only its final results have to be certified once. Still, without the
combination of precise and approximate analyses, CertiCAN
could not have been used to certify the results of large systems.
CertiCAN has been kept as simple as possible and its code is
a naive implementation of the algorithm 2. It is likely that
its efficiency could be improved without demanding too much
additional proof work.

VII. RELATED WORK

To the best of our knowledge, CertiCAN is the first tool for
certifying real-time systems analysis results. It does, however,
build on top of existing results in different areas.

A. Formal proofs for real-time systems analysis

CertiCAN uses definitions and lemmas from the Prosa
library [1]. Prosa already contains RTA proofs, from which one
can directly extract certified RTA tools. These proofs, however,
do not cover task sets with offsets and the bounds they could
provide would be unnecessarily pessimistic.

Prosa is the largest effort to date regarding the certification
of real-time systems analyses. It is however not the first one.
Previous publications in the area include [13], [14] and [17]
based on the PVS proof assistant and which use state machines
as the underlying formalism. The first two papers focus on the
priority ceiling protocol and the latter on the scheduler of the
Deos real-time operation system. While related to our work in
a broader sense, these contributions do not tackle the problem
of certifying RTA results.

Closer to us, a recent attempt [19] aims at certifying the
results of Network Calculus computations using the interactive
proof assistant Isabelle/HOL. In particular, [19] makes a case
for result certification. The presented results are however
preliminary and appear to have been discontinued. Our paper
can thus be seen as the concrete realization, with a different
proof assistant and another underlying analysis technique, of
the idea proposed in [19].

B. Abstraction refinement

Our combined RTA follows a principle that is similar to the
abstraction refinement method used in [22] and [23]. In par-
ticular, these two papers already use two different abstraction
levels to compute precise bounds with increased efficiency.
The main difference is that [22] deals with the analysis of
digraph tasks with constrained deadlines, which does not fit

the CAN context. Also, this approach proves to be particularly
well suited for result certification: Having the response time
bound to certify given as input makes the combined analysis
all the more efficient.

VIII. CONCLUSION

In this paper, we have presented CertiCAN, a tool extracted
from Coq proofs for the certification of CAN analysis results.

The analysis underlying CertiCAN is based on a combined
use of two well-known CAN analysis techniques, one precise
and the other approximate. The resulting analysis is as tight as
the precise analysis, but much faster. All three analyses have
been proven correct in Coq on top of the Prosa library.

We have shown that the CertiCAN approach, which pro-
vides result certification rather than tool certification, is a
realistic solution for industrial practice. The reason for this is
twofold: First, it is flexible and light-weight in the sense that it
does not depend on the internal structure of the analysis tool
that it complements. Second, it is efficient enough in terms
of computation time. In particular, it is able to certify results
computed by RTaW-Pegase, an industrial CAN analysis tool,
even for large systems.

We believe that this work represents a significant step
toward a formal certification of real-time systems analysis
results in general. In particular, the underlying technique can
be reused for any other system model for which there exist
RTAs with different levels of precision. Future work includes
the extension of the approach to networks of CAN buses, and
to other communication protocols. Also, we plan to use the
results presented in this paper, which have been obtained using
synthetic test cases, to convince industrial partners to provide
us with real case studies.

ACKNOWLEDGMENT

This work has been partially supported by the LabEx
PERSYVAL-Lab (grant ANR-11-LABX-0025-01) through the
CASERM project and the French national research organiza-
tion ANR (grants ANR-15-CE25-0008 and ANR-17-CE25-
0016) through the VOCAL and RT-PROOFS projects. We
would like to thank RealTime-at-Work for granting us an
academic license and Jiajie Wang for providing an XML
parser.

REFERENCES

[1] A Library for formally proven schedulability analysis. http://prosa.
mpi-sws.org/.

[2] A Tool for the Coq Certification of CAN Analysis Results. https://team.
inria.fr/spades/certican/.

[3] The CompCert C compiler. https://www.absint.com/compcert/.
[4] The Coq proof assistant. http://coq.inria.fr.
[5] Coq sources and Ocaml code of CertiCAN. Available from the track

chair upon request.
[6] The Isabelle proof assistant. https://isabelle.in.tum.de/.

[7] RTaW-Pegase: a Tool for Modeling, Simulation and automated Con-
figuration of communication networks. http://www.realtimeatwork.com/
software/rtaw-pegase/.

[8] The seL4 microkernel. https://sel4.systems/.
[9] K. Bletsas, N. C. Audsley, W. Huang, J. Chen, and G. Nelissen.

Errata for three papers (2004-05) on fixed-priority scheduling with self-
suspensions. LITES, 5(1):02:1–02:20, 2018.

[10] Bosch. CAN specification version 2.0. Technical report, Robert Bosch
GmbH, Postfach 30 02 40, D-70442 Stuttgart, 1991.

[11] F. Cerqueira, F. Stutz, and B. B. Brandenburg. Prosa: A case for readable
mechanized schedulability analysis. In Real-Time Systems (ECRTS),
2016 28th Euromicro Conference on, pages 273–284. IEEE, 2016.

[12] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised.
Real-Time Systems, 35(3):239–272, 2007.

[13] B. Dutertre. Formal analysis of the priority ceiling protocol. In 21st
IEEE Real-Time Systems Symposium (RTSS), pages 151–160, 2000.

[14] B. Dutertre and V. Stavridou. Formal analysis for real-time scheduling.
In 19th Digital Avionics Systems Conference (DASC), 2000.

[15] P. Fradet, X. Guo, J.-F. Monin, and S. Quinton. A generalized digraph
model for expressing dependencies. In RTNS’18-26th International
Conference on Real-Time Networks and Systems, pages 1–11, 2018.

[16] X. Guo, S. Quinton, P. Fradet, and J.-F. Monin. Work-in-progress:
Toward a coq-certified tool for the schedulability analysis of tasks with
offsets. In Real-Time Systems Symposium (RTSS), 2017 IEEE, pages
387–389. IEEE, 2017.

[17] V. Ha, M. Rangarajan, D. Cofer, H. Rues, and B. Dutertre. Feature-
based decomposition of inductive proofs applied to real-time avionics
software: An experience report. In 26th International Conference on
Software Engineering (ICSE), pages 304–313, 2004.

[18] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

[19] E. Mabille, M. Boyer, L. Fejoz, and S. Merz. Towards certifying network
calculus. In Interactive Theorem Proving - 4th International Conference,
ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, pages 484–
489, 2013.

[20] A. Monot, N. Navet, B. Bavoux, and C. Maxim. Fine-grained simulation
in the design of automotive communication systems. In ERTSS-
Embedded Real Time Software and Systems-2012, 2012.

[21] S. Quinton, T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean, and
R. Ernst. Typical worst case response-time analysis and its use in
automotive network design. In The 51st Annual Design Automation
Conference 2014, DAC ’14, San Francisco, CA, USA, June 1-5, 2014,
pages 44:1–44:6, 2014.

[22] M. Stigge, N. Guan, and W. Yi. Refinement-based exact response-time
analysis. In 26th Euromicro Conference on Real-Time Systems, ECRTS
2014, Madrid, Spain, July 8-11, 2014, pages 143–152, 2014.

[23] M. Stigge and W. Yi. Combinatorial abstraction refinement for feasibility
analysis of static priorities. Real-Time Systems, 51(6):639–674, 2015.

[24] K. Tindell. Using offset information to analyse static priority pre-
emptively scheduled task sets. Technical report YCS 182. University
of York, Department of Computer Science, 1992.

[25] K. Tindell. Adding time-offsets to schedulability analysis. University of
York, Department of Computer Science, 1994.

[26] K. Tindell and A. Burns. Guaranteeing message latencies on controller
area network (CAN). In Proceedings of 1st international CAN confer-
ence, pages 1–11, 1994.

[27] K. Tindell, A. Burns, and A. Wellings. Calculating controller area
network (CAN) message response times. Control Engineering Practice,
3(8):1163–1169, 1995.

[28] K. Tindell, H. Hanssmon, and A. J. Wellings. Analysing real-time
communications: Controller area network (CAN). In Proceedings of
the 15th IEEE Real-Time Systems Symposium (RTSS ’94), San Juan,
Puerto Rico, December 7-9, 1994, pages 259–263, 1994.

[29] P. M. Yomsi, D. Bertrand, N. Navet, and R. I. Davis. Controller area
network (can): Response time analysis with offsets. In 2012 9th IEEE
International Workshop on Factory Communication Systems, pages 43–
52, May 2012.

http://prosa.mpi-sws.org/
http://prosa.mpi-sws.org/
https://team.inria.fr/spades/certican/
https://team.inria.fr/spades/certican/
https://www.absint.com/compcert/
http://coq.inria.fr
https://isabelle.in.tum.de/
http://www.realtimeatwork.com/software/rtaw-pegase/
http://www.realtimeatwork.com/software/rtaw-pegase/
https://sel4.systems/

