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COH, SRT2, AND MULTIPLE FUNCTIONALS

DAMIR D. DZHAFAROV AND LUDOVIC PATEY

ABSTRACT. We prove the following result: there is a family R = (Ro, Ru1,...)
of subsets of w such that for every stable coloring ¢ : [w]?> — k hyperarithmeti-
cal in R and every finite collection of Turing functionals, there is an infinite
homogeneous set H for ¢ such that none of the finitely many functionals map
R @ H to an infinite cohesive set for R. This extends the current best partial
results towards the SRT% vs. COH problem in reverse mathematics, and is
also a partial result towards the resolution of several related problems, such as
whether COH is omnisciently computably reducible to SRT3.

1. INTRODUCTION

The SRT3 vs. COH problem is a central question in computable combinatorics
that aims to clarify the relationship between two well-studied combinatorial conse-
quences of Ramsey’s theorem for pairs in terms of their effective content. In this
article, we establish a new partial result towards the resolution of this question, as
well as a related more general one.

For completeness, and also to fix some notation, we begin by briefly reviewing
the most relevant definitions below. We refer the reader to Hirschfeldt [? , Chapter
6] for a more thorough discussion and overview of computable combinatorics. We
assume familiarity with computability theory and reverse mathematics, and refer
to Soare [? | and Simpson [? ], respectively, for background on these subjects.
We also assume the basics of Weihrauch reducibility and computable reducibility,
and refer, e.g., to Brattka, Gherardi, and Pauly [? ] for a detailed survey, or, e.g.,
to Cholak, Dzhafarov, Hirschfeldt, and Patey [? , Section 1] for an introduction
aimed more specifically at the kinds of questions we will be dealing with here.

Definition 1.1. Fix numbers n, k > 1.
(1) For every set X Cw, let [X]" = {(x0,...,Zp_1) EW" 129 < -+ < Tp_1}.
(2) A k-coloring of [w]™ is a map ¢ : [w]|™ — {0,...,k —1}.
(3) A set H Cw is homogeneous for c if ¢ [[H|" is constant.

(4) A k-coloring of [w]? is stable if lim, c((x, y)) exists for all z € w.

(5) A set L Cw is limit-homogeneous for a stable ¢ : [w]* — k if lim, c(z,y) is
the same for all « € L.

When n = 2, we call ¢ : [w]?> = k a k-coloring of pairs, or simply a coloring of pairs
if k is understood. We will write ¢(z,y) in place of c({z,y)).

The following definition is somewhat nonstandard and technical, but it will sim-
plify the presentation in the sequel.

Definition 1.2. Let R = (rg,71,...) be a family of functions r; : w — w.

Dzhafarov was supported by a Collaboration Grant for Mathematicians from the Simons
Foundation.
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(1) Risa bounded family of functions if for all n there is a k so that ran(r,,) < k.

(2) For k € w, Ris a k-bounded family of functions if r,(x) < k for all n and z.

(3) A set X is cohesive for R if for each n there is a y € w such that f,(z) =y
for all but finitely many = € X.

The more typical definition of cohesiveness is with respect to a family (Rg, Ry,...)
of subsets of w, for which a set X is cohesive if for each n, either XN R, or X N R,,
is finite. Of course, if we identify sets with their characteristic functions then we
see that this is just the same as being cohesive for a 2-bounded family of functions.
We return to this below.

We follow the now-standard practice of regarding IT3 statements of second-order
arithmetic as problems, equipped with a set of instances, and for each instance, a
set of solutions, all coded or represented by subsets of 2% (see [? ], Definition 1.1).
This facilitates their study both in the framework of reverse mathematics and in
terms of Weihrauch and computable reducibilities. We shall not be explicit about
this identification moving forward, as it is obvious for all of the principles we will
be looking at. These are the following.

Definition 1.3.

(1) Ramsey’s theorem is the statement that for all n,k > 1, every c: [w]™ — k
has an infinite homogeneous set.

(2) Stable Ramsey’s theorem for pairs, denoted SRT2<OO, is the restriction of
Ramsey’s theorem to stable colorings of pairs.

(3) The AY subset principle, denoted D2<OO, is the statement for all £ > 1, every
stable ¢ : [w]? — k has an infinite limit-homogeneous set.

(4) The cohesiveness principle for bounded families, denoted COH,,, is the prin-
ciple that every bounded family of functions has an infinite cohesive set.

(5) For fixed n,k > 1, RT} denotes the restriction of Ramsey’s theorem to
k-colorings of [w]™.

(6) For fixed k > 1, SRT; and D7 denote the restrictions of SRTZ  and D2,
respectively, to k-colorings.

(7) For fixed k > 1, COHy, is the restriction of COH,, to k-bounded families of
functions.

For n = 2, the traditional notation for COHs is COH, and we shall follow this
below. However, we can really use the various restrictions of COH,, defined above
interchangeably, as the following lemma shows.

Lemma 1.4. For all k > 2, we have COH =;w COHj =,w COH,,.

Proof. Obviously, COH < w COH; <gw COH,. It remains only to show that
COH,, <gw COH. For all k,y € w, let y; be y written in binary, either truncated or
prepended by 0s to have exactly "log, k™ many digits. We view y;, as a string, and
write y (¢) for its ith digit. Now fix a bounded family of functions R = (rg,ry,...).
Let b : w — w be the function b(n) = (uk)(Vz)[r,(z) < k] for all n € w. Then b is
uniformly R’-computable. So we can fix a uniformly R-computable approximation
b:w? = w to b, so that limsg(n, s) = b(n) for all n. Define a 2-bounded family of
functions R’ = (r{,r},...) as follows: for all m,x € w,

' (2) = {rn(a:)/l;(n’s) (i) if (In, s € w)(Ji < Tlog, b(n,s)7) m = (b(n, s), 1)

rm .
0 otherwise.
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Then R’ is a uniformly R-computable, and it is not difficult to see that every infinite
cohesive set for R’ is also cohesive for R. This completes the proof. (]

A well-known fact about COH (in the parlance of Definitions ?? and ??) is that if
X computes an infinite cohesive set for some 2-bounded family of functions R =
(ro,r1,...), then so does any set Y satisfying R <t Y and X’ <t Y’. By the
preceding lemma, we see that the same holds for any bounded family of functions.

The relationship between the stable Ramsey’s theorem and the cohesiveness
principle is the focus of a longstanding and ongoing investigation (see, e.g., [? 7 ?
7?77?7777 7]). Werefer the reader to [? , Section 1] for a discussion of some
of the history of these principles, and their larger significance in the exploration
of the logical strength of combinatorial principles. Our focus is on the questions
below, which have emerged as the most central in this work. We first recall the

definition of omniscient reducibility, introduced by Monin and Patey [? , Section
1.1].

Definition 1.5. Let P and Q be problems.

(1) Pis ommsczently computably reducible to Q if for every P-instance X there
is a Q instance X with the property that if Y is any Q-solution to X then
XY computes a P-solution to X.

(2) P is omnisciently Weihrauch reducible to Q if there is a Turing functional ¥
such that for every P-instance X there is a Q-instance X with the property
that if Y is any Q-solution to X then (X @ 17) is a P-solution to X.

The reductions above are strong if the relevant computation of a P-solution to X
works with just Y as an oracle, rather than X ® Y.

Question 1.6 (the SRT3 vs. COH problem). Does every w-model of DZ__ also

<oo
satisfy COH?
Question 1.7. Is COH computably reducible to D3, or to D% _?
Question 1.8. Is COH omnisciently computably reducible to D3, or to D% _?

It is easy to see that SRT<OO =, D2 ., and that for each specific k, also SRT; =
D2. (This extends to eqmvalences over RCAO, as shown by Chong, Lempp, and
Yang [? ].) Over w-models, DZ, D | SRT?, and SRT2<DO are equivalent, for all & >
2. In particular, in Question 7?7 we could replace D2 by any of these principles,
while in Question ??, we could replace D3 by SRT5, and D2 by SRTZ . If we
replace D2 by SRTZ in Question ??, then the answer is known: COH is omnisciently
computably reducible even to SRT3 (see [? ], Proposition 2.2). However, here we
could replace D3 by RT%, as these are easily seen to be omnisciently computably
equivalent, and similarly for D2< oo and RT1< - Here, it will be easier to work with D?
and D2<OO, so the rest of our discussion is formulated in terms of these principles.
For completeness, we note also that Dzhafarov [? , Theorem 3.2 and Corollary
3.5] showed that SRT2 is not omnisciently Weihrauch, or strongly omnisciently
computably, reducible to D2<OO, while Patey [? , Corollary 3.3] showed that for all
k > ¢ > 1, D% is not strongly omnisciently computably reducible to SRT%. Thus,
the relationships between different versions of the stable Ramsey’s theorem and the
AY subset principle in terms of known reducibilities are fully understood.
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Question ?? is ostensibly simpler than Question ??, but as described in [?
Sections 1 and 2], it already encapsulates most of the combinatorial difficulty in-
volved in attacking Question ?7?7. Question 7?7 be seen as The best partial results
towards the resolution of the above questions are by Dzhafarov [? ] and Dzha-
farov, Patey, Solomon, and Westrick [? ] who established that COH £ SRT2<OO
and COH £ SRT2<OO, respectively. Pushing the techniques from these papers to
obtain a negative answer to Question 77, let alone to Question ?? or the SRT% vSs.
COH problem, has so far proved difficult. There is thus a wide gap between the cur-
rent best results and the above questions. Our approach here is to narrow this gap
by allowing for multiple functionals in the “backward” direction. For succinctness,
we introduce the following definition:

Definition 1.9. Let P and Q be problems.

(1) P is Weihrauch reducible to Q with finitely many functionals if there is a
Turing functional ® such that for every P-instance X there is a finite set of
Turing functionals ¥y, ..., ¥;_; such that ®(X) is a Q-instance and if Y is
any Q-solution to ®(X) then there is a t < s with U;(X & Y) a P-solution
to X.

(2) P is computably reducible to Q with finitely many functionals if for every
P-instance X there is a Q-instance X <7t X and a finite set of Turing
functionals ¥, ..., ¥;_1 such that if Y is any Q-solution to X then there
isat<swith U (X ® 17) a P-solution to X.

(3) P is hyperarithmetically computably reducible to Q with finitely many func-
tionals if for every P-instance X there is a Q-instance X hyperarithmetical
in X and a finite set of Turing functionals W¥g,..., ¥;_1 such that if Y is
any Q-solution to X then there is a t < s with ¥;(X & Y) a P-solution to
X.

(4) P is omnisciently computably reducible to Q with finitely many functionals
if for every P-instance X there is a Q-instance X and a finite set of Turing
functionals Wy, ..., W, _; such that if Y is any Q-solution to X then there
isat<swith (X ®Y) a P-solution to X.

The basic relationships between the above reducibilities are as follows:

P<wQ = P is Weihrauch reducible to Q with finitely many functionals
=—> P is computably reducible to Q with finitely many functionals

— P is hyperarithmetically reducible to Q with finitely many
functionals

—> P is omnisciently computably reducible to Q with finitely mamy
functionals

= P is omnisciently computably reducible to Q.

Note also that while Weihrauch reducibility with finitely many functionals is a
generalization of Weihrauch reducibility, computable reducibility with finitely many
functionals is a restriction of computable reducibility. A good example here is to
look at SRT3 and D3: as mentioned, SRT3 Zw D3, but it is easy to see that SRT3
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is Weihrauch reducible to D2 with finitely many (in fact, two) functionals. We can
now state our main result:

Theorem 1.10. COH is not hyperarithmetically computably reducible to D2<Oo (or,
therefore, to SRT2<OO) with finitely many functionals.

That is, we build a family of sets R = (R, Ry, ...) such that for every stable
coloring hyperarithmetical in R and every finite collection of Turing functionals
Wo,...,VUs_q, there exists an infinite limit-homogeneous set H for ¢ such that
U,(G @ H) is not an infinite cohesive set for G, for any ¢ < s. (Note that the
parenthetical comment follows from our remark in the preceding paragraph.)

The rest of this paper is dedicated to a proof of Theorem ?7?7. For ease of
understanding, we organize this into two parts. In Section 7?7 we present a proof
just for the case of stable 2-colorings. Then, in Section 7?7, we explain how the
argument can be adapted to obtain the theorem in its full generality.

2. CONSTRUCTION

Our approach uses an elaboration on the forcing methods introduced by Dzha-
farov [? ] for building instances of COH, and by Cholak, Jockusch, and Slaman [?
, Section 4] for building solutions to D%. With respect to the latter, our proof here
has a crucial innovation. As in other applications, we force with Mathias condi-
tions, defined below. But here, our reservoirs are not computable or low, or indeed
absolute sets of any other kind. Rather, they are names for sets in the forcing
language we use to build our COH instance. This allows us to control not just the
COH instance and the D2 solution separately, as is done, e.g., in [? | or [? ], but
also to control their join. We refer the reader to Shore [? , Chapter 3] and Sacks [?
, Section IV.3] for background on forcing in arithmetic, and the latter specifically
for an introduction to forcing over the hyperarithmetic hierarchy.

In what follows, several notions of forcing are defined. When no confusion can
arise, we refer to the conditions and extension relation in each of these simply as
“conditions” and “extension”, without explicitly labeling these by the forcing itself.

2.1. Generic instances of COH.

Definition 2.1. Let P be the notion of forcing whose conditions are tuples p =
(00, -+, 01p|—1, f) as follows:

* [p| €w;

e 0, € 3<% for each n < |p|;

e fis a function |p| — 3 U {u}.
A condition ¢ = (7o, ...,7T|q—1,9) extends p, written ¢ < p, if:

f =g
on <X 1, for all n < |pl;
if f(n) # u for some n < |p| then 7,(z) = f(n) for all x € [|o,], |Tnl)-

Given a P-condition p = (oo, ...,0)p—1, f), we also write ¢, and f? for o,, and
f, respectively. If G is a (sufficiently) generic filter on P then we can define

ng U b

PEG,|p|>n
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and GY9 = @,,,, G. Note that this is an instance of COHs, and that by genericity,
there are infinitely many n such that lim, GY(z) exists, and infinitely many n such
that lim, G¢(x) does not exist.

The P forcing language and forcing relation are defined inductively as usual, and
we use G,, and G as names for GY9 and GY9. More generally, we help ourselves to
names (or P-names) for all definable sets in the forcing language and use these as
parameters in other definitions.

Lemma 2.2. Let go(G) be a Eg(G) formula in the forcing language that is forced
by some condition p. Let q be the condition that is the same as p, only there is
some n < |p| such that fP(n) =u and f9(n) # u. Then q forces (G).

Proof. As we are employing strong forcing, it suffices to consider the case that
©(Q) is TIY(G). Thus, ©(G) can be put in the form —(3z)¢ (G, x), where 1 has only
bounded quantifiers and has no free variables other than z. If ¢ does not force this
formula then by definition there is some r < ¢ and some a € w such that r forces
w(G’,a). Now, as \II(C;’7a) has no free variables, it can be put in quantifier-free
conjunctive normal form. But the fact that each clause in this conjunction is forced
by r depends only on the strings oy, ..., alrrlfl' So let 7’ be the condition that is

the same as r, except that f7(n) = f(n) = u. Then ¢’ still forces ¥(@&, a), and
hence also (3z)¥(G,z). But r’ is an extension of p, and hence witnesses that p
could not force =(3z)y (G, x) or p(G), a contradiction. O

Lemma 2.3. If G is a generic filter on P then there is no infinite cohesive set for
GY which is low over GY.

Proof. By the remark following Lemma ??, it suffices to show that G9 has no G9-
computable infinite cohesive set. Fix any functional A, and any condition p. We
exhibit an extension of p forcing that A(G) is not an infinite cohesive set for G.
This density fact and the genericity of G will yield the lemma. Let n = |p|. Let
q be any extension of p with |¢g| = n+ 1 and f9(n) = u. If ¢ forces that for each
i < 3 and each z € w there is an = > z such that A(G)(z) =1 and G, (z) = 1,
then we can take ¢ to be the desired extension. So suppose otherwise. Then there
isani < 3, a z € w, and an r < ¢ such that no extension of r forces that there is

an x > z with A(G)(z) =1 and G,,(x) = i. In this case, let s be the condition
that is the same as r, except that f*(n) = 4. Then s < p and forces that for all
x > max{z,|o:|} we have A(G)(x) ~ 0. O

2.2. Generic limit-homogeneous sets. Throughout this section, let I" be a fixed
hyperarithmetical operator, and let Wg,..., ¥, 1 be fixed Turing functionals. Let
pr be a fixed P-condition forcing that I'(G) is a stable coloring [w]?> — 2 with no
infinite limit-homogeneous set which is low over G. For each i < 2 we let A; be a

name for the set {z € w: lim, I'(G)(z,y) = i}.

Definition 2.4. Let @Q,. be the notion of forcing whose conditions are tuples

(p, Do, D1,1) as follows:

e p is a P-condition extending pr;

e D; is a finite set for each i < 2, and p forces that D; C Ai;

e [ is a P-name, and p forces that I is an infinite set which is low over G,
and max Dy U Dy < min I.
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A condition (q, Ey, E1, J) extends (p, Dg, D1, 1) if:
® q<p;
e D; C E; for each i < 2;
e ¢ forces that F; \ D; C I for each i < 2, and that J - I.

Thus, we can think of Q,.-condition as p, together with a pair of Mathias condi-
tions, (D, I) and (D1, I), that share a common reservoir.

For the remainder of this section, let g, ..., ¥s_; be a fixed collection of Turing
functionals.

Lemma 2.5. The collection of P-conditions p* with the following property is dense

below pr: there exists a Qpp-condition (p*,D§, Di,I)x and a mazimal subset M
of 2xs such that for all (i,t) € M, p* forces.that there is a z € w such that
(G @ (Df UF))(x) ~0 for all finite sets F C I* and all x > z.

Proof. Let p < pr be given. We exhibit a p* as above below p. Fix an enumeration
of all pairs (i,t) € 2 x 5. Define My = (), and and let (p°, DY, DY, I°) be the Q,.-
condition (p, 0,0, w). By induction, suppose that we have defined My, C 2 x s for
some k < 2s, along with some Q,.-condition (p*, DF, D¥, I*). Let (i,t) be the
(k + 1)-st element of our enumeration of 2 x s. If there is a condition (g, Ey, E1, J)
extending (p*, DE, D¥, I*) such that g forces there is a z € w such that W,(G @
(E; U F))(x) ~ 0 for all finite sets ' C J and all z > z, let My, = My U {(i,t)}
and let (pF*1, DEFL DI [*+1) be such a (q, o, E1,J). Otherwise, let My =
M, and let (pk+1,D§+1,D’f+1,f'ﬁ+1) = (p*, D, D%, I*). Clearly, M = My, and
(p*, Dg, Dy, I*) = (p*%, D3%, D3, I?*) satisfy the conclusion of the lemma. O

For the duration of this section, let (p*, D, D5, I*) and M as above be fixed.

Definition 2.6. Let R . p. p- ;. be the restriction of Q. to conditions extending

(p*, D}, Dy, I*) of the form (p, Do, D1, I* N [u,o0)).

To visually distinguish R, DD, j«-conditions from more general QQ,.-extensions

of (p*, D§, Df, I*), we denote the R,. DD j+-condition (p, Do, D1, I* N [u,00)) by

(p, Do, D1, u). Note that (p*, D§, D5, I*) is of course an Rp*,Dg DT’I*—condition.
We now assemble a couple of density facts that we will use to prove our theorem.

Lemma 2.7. Let (p, Do, D1,u) be an R,. D.D: j«-condition. The collection of P-
condition q for which there exists an RP*,DS,DTJ* -condition (q, Eo, E1,v) extending
(p, Do, D1,u), and satisfying |E;| = |D;

+ 1 for each i < 2, is dense below p.

Proof. Fix any r < p. Let ¢ be any extension of r deciding, for each i < 2, if
there is an x > u in I* N A;. If for some i < 2, ¢ forces that there is no such =,
then ¢ forces that I* N [u,00) € A1_;. But as ¢ < p*, we have that ¢ forces that
I* is an infinite set which is low over G, and hence that I* N [u, 00) is an infinite
set which is low over G. But by assumption, pr forces that there is no such set
contained in A;_;, so since q < pr this is a contradiction. Thus, it must be that ¢
forces, for each i < 2, that there is an x > u in *n Al We can thus fix an z; > u
for each i < 2 such that ¢ forces that z; € I* N A;. Let E; = D; U {z;} for each
i, and let v = max{xo,z1} + 1; then (q, Fo, E1,v) witnesses that ¢ is the desired
extension. ([



8 DAMIR D. DZHAFAROV AND LUDOVIC PATEY

Lemma 2.8. Let (p, Do, D1,u) be an Rp*’DS,DT’j*—condition, and assume that
fP(n) = u for some n € [|p*|,|p|). For all z € w, j < 3, and {(0,ty),(1,t1) €
2 x s~ M, the collection of P-conditions q with the following property is dense be-
low p: there exists an R . Dy.D; i+ -condition (g, Ey, E1,v) extending (p, Do, D1, u)
and numbers i < 2 and x > z such that q forces that U, (G @ E;)(z) |= 1 and

Proof. Fix any r < p. Consider the (G, I*) formula ¢ (G, I*, Xo, X1) of two set
variables asserting:
e X; and X partition I* N [u, c0);
e for each ¢ < 2, each x > z, and each finite set FF C X, it is not the case
that U;,(G @ (D; U F))(z) =1 and G,,(z) = j.
Let o(G,1*) be the formula (3Xo, X1)(G, I*, Xo, X1). Then ¢(G,I*) is also
I19(G, I*), and we can thus fix some 7 < r that decides this formula.

Suppose first that 7 forces ¢(G, I*) Let 7’ be the condition that is the same as
7 except that f7 (n) = j for each i < 2. We claim that 7 forces ¢(G,I*). Indeed,
as (G, T1*) is TIY(G, I*) and p* forces that I* is low over G, it follows that there
is a X9(G) formula A(QG) that p* forces is equivalent to ¢(G,I*). Since n > [p*|
we have that 7,77 < p*, and so this equivalence is still forced by 7 and 7’. Thus,
7 forces 6(G), and hence so does 7 by Lemma ??. Now it follows that 7 forces
o(G, f*), as desired.

By the uniformity of the low basis theorem, we can fix names X, and X; and a
condition 7/ < 7 forcing that Xo @ X; is low over G and w(G7f*7X0, Xl) holds.
We may further assume that 7 decides, for each ¢ < 2, whether or not X; is
infinite. Since 7 forces that I* is infinite and Xo U X; = I* N [u, 00), we can fix
i < 2 such that 7 forces that X; is infinite. But now consider the Q,.-condition
(7", Do, D1, X;). This is an extension (in Q,.) of (p*, D, D, 1*), and 7 forces
that ¥, (G @ (D; U F))(x) J~ 0 for all finite subset F' of X; and all > 2. By
maximality of M, this means that (i,t¢;) should be in M, even though we assumed
it was not. This is a contradiction.

We conclude that 7 actually forces ﬁcp(G', I *), and so some ¢ < 7 must force

(G, I*,I* N [u, 00) N Ay, I* N [u, 00) N Ap).

In particular, there is an ¢ < 2, an x > z, and a finite set F' such that ¢ forces that
F C I* N [u,00) N A; and that ¥, (G & (D; U F))(z) =1 and G, (z) = j. Let
E; =D;UF and Fy_; = F;, and let v = max F. Then ¢ is the desired extension of
r, as witnessed by (¢, Eo, E1,v). O

2.3. Putting it all together. We are now ready to prove the main theorem of
this section, which is Theorem 77 for stable 2-colorings. In fact, we prove following
stronger result which clearly implies it.

Theorem 2.9. Let G be a generic filter on P. Then for every stable coloring
c: [w)? — 2 hyperarithmetical in GY, and every finite collection of Turing function-
als g, ..., Us_q, there exists an infinite limit-homogeneous set L for ¢ such that
U,(GY @ L) is not an infinite cohesive set for GY, for any t < s.

Proof. Let ¢ and Uy, ..., ¥,_; be given. Fix a hyperarithmetical operator I" such
that ¢ = I'(GY). If ¢ has an infinite limit-homogeneous set which is low over GY,
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then we can take this to be L and then we are done by Lemma ??. So assume
otherwise, and choose pr € G forcing that T'(G) is a stable coloring [w]? — 2 with
no infinite limit-homogeneous set which is low over G. Define Ay, Ay, and Qpy as
in the previous section. Since G is generic, we may fix a p* € G, a Qp.-condition
(p*, D, Df,f*), and a maximal subset M of 2 x s as in Lemma ??. We define a
sequence of R . . . j.-conditions

(pos Do,o, Do1,wo0) > (p1, D10, D1,1,u1) > (p2, Do, Da1,ug) > -

with p, € G for all z € w.

If there is an ¢ < 2 such that (i,t) € M for all t < s, let (po, Do, Do1,u0) =
(p*, D}, D7, I*). Now given (pzy D20, D2 1,u,) for some z, apply Lemma ?? to find
an extension (p,41, D.41,0,Dsv1,1,Uz+1) With p,o1 € G and [D,yq ] = |D, | + 1
for each i < 2. Thus, L = |J,¢,, D-,; is an infinite limit homogeneous set for I'(GY),
and by assumption, and the definition of M, we have ¥;(GY @ L)(z) ~ 0 for all t < s
and all sufficiently large 2. In particular, ¥;(GY @ L) is not an infinite cohesive set
for G9, as desired.

Now suppose that for each i < 2 there is at least one t < s with (i,t) ¢ M.
Let pg be any extension of p* in G such that fP°(n) = u for some n € [|p*|, |pol),
and denote the least such n by ng. Let DY = D} for each i < 2, and ug = 0,
so that (po, Do, Do, uo) = (po,DS,Di‘,f*). Assume next that we have defined
(pz: D20, Dz 1,u;) for some z. If z is even, define (p,41, D>41,0, Dat1,1, Us41) a8 in
the preceding case, thereby ensuring that |D,41 ;| = |D,:|+1 for each i < 2. Next,
suppose z is odd. Assume we have a fixed map h from the odd integers onto the
set

({0} x 5) x ({1} x 5) ~ M?] x 3,
in which the pre-image of every element in the range is infinite. Say h(z) =
((0,t0), (1,t1),5). We then apply Lemma ?? to find (p.+41, Ds+1,0, Dat1,1, Uzt1)
extending (p,, D0, D, 1,u,) with p,11 € G such that for some ¢ < 2 and x > z we
have that p, 1, forces Uy, (G ® D,41.)(x) }= 1 and G, (z) = j.

Now, let L; = {U,¢,, D=, for each i < 2, which is an infinite limit-homogeneous
set for T'(GY9). 1If, for each i < 2, there is t; < s such that ¥;,(GY9 @ L;) is an
infinite cohesive set for GY, then by genericity of G and the definition of M, it
must be that (i,t;) ¢ M. For each j < 3, there are infinitely many odd numbers
z such that h(z) = ((0,t0), (1, 1), j), and by construction, for each such z, there is
an i < 2 and an « > z such that ¥;,(GY @ L;)(x) |= 1 and GY (z) = j. Denote
the least such ¢ by i,. Thus, for each j < 3 there must be a k; < 2 such that
i. = k; for infinitely many z with h(z) = ((0,t0),(1,t1),j). Fix j,j’ < 3 with
J # j' and k; = kj/, and denote the latter by 7. Then there are infinitely many «
such that Wy, (G9 ® L;)(z) =1 and GY (x) = j, and infinitely many z such that
Uy, (G9@ L;)(x) =1 and Gy (z) = j. Thus, ¥, (GY ® L;) is not cohesive for GY,
a contradiction.

We conclude that there is an i < 2 such that ¥;(GY @ L;) is not an infinite
cohesive set for GY, for any t < s, as was to be shown. O

3. EXTENSIONS TO ARBITRARY COLORINGS

To prove Theorem ?7 in full generality, we need to modify our construction of
the family G = (Go, G1, . ..). Specifically, whereas a 3-bounded family of functions
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sufficed to defeat all potential stable 2-colorings, we will in general need a (k + 1)-
bounded family to defeat all stable k-colorings. For this reason, we introduce the
following modification of the forcing notion P defined earlier.

Definition 3.1. Let P, be the notion of forcing whose conditions are tuples p =
(005 -,0p|—1,0, f) as follows:

e |pl€w;
e 0, € w<¥ for each n < |p|;
e b is a function |p| = w, and maxrano, < b(n) for all n < |pl;
e f is a function |p| — 3 U {u}, and if f(n) # u for some n < |p| then
f(n) < b(n).
A condition ¢ = (7o, ..., T|q—1,¢, g) extends p, written ¢ < p, if:
e Ip| <lql;
e h=¢
e f=2y
e 0, =7, for all n < |p|;
e if f(n) # u for some n < |p| then 7,(x) = f(n) for all x € [|o,], |Tnl]).

We write o, bP, fP for o, b, and f, as before. It is clear that if G is a generic filter
on P, then Gg = P GY, where again GY = Upeg,|p|>n Th» is now an instance of
COH,,. Everything else transfers from P to P, analogously, with obvious changes.
In particular, this is true of Lemmas 7?7 and ?77.

Now, fix a hyperarithmetical operator I', and Turing functionals Ug,..., ¥,_.
Suppose pr is a P,-condition forcing, for some k > 2, that I'(G) is a stable coloring
[w]> = k with no infinite limit-homogeneous set which is low over G. For each
i < k, let A; be a name for the set {z € w : lim, I'(G)(x,y) = i}. We define a
suitable modification of the forcing notion Qpr.

Definition 3.2. Let Q, ,. be the notion of forcing whose conditions are tuples
(p, Dy, ..., Dy_1,1) as follows:

e p is a P-condition extending pr;

e D, is a finite set for each i < k, and p forces that D; C A;;

e I is a P,-name, and p forces that I is an infinite set which is low over G,

and maXUKkD < min I.
A condition (q, Fo, ..., Fr_1, J) extends (p, Do, ...,Dg—1, I) if:
®q=p;

oDigEiforeachi<k‘;. . .
e g forces that F; . D; C I for each i < k, and that J C I.

We get an analogue of Lemma 77, stated below. The proof is entirely the same.

Lemma 3.3. The collection of P, -conditions p* with the following property is
dense below pr: there exists a Qy, p. -condition (p*, D, ..., Df_, I*) and a mazrimal
subset M of k x s such that for all (i,t) € M, p* forces that there is a z € w such
that U, (G @ (Df U F))(x) ~ 0 for all finite sets F C I* and all > z.

Fixing (p*,D§, ..., Dj_4, I)* and M as above, we can define an analogue of the
restricted forcing of Definition ?7?, and obtain analogues of Lemmas 7?7 and ?7. For
clarity, we include the definition and statements, and omit the proofs, which carry
over from above, mutatis mutandis.
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Definition 3.4. Let R, . p.  p. . be the restriction of Qup, to conditions

extending (p*, D§j, ..., Di_q, I*) of the form (p, Do, ..., Dg_1, I*n [, 00)).
As before, we write (p, Dy, ..., Dy_1,u) for (p, Do, ..., Dy_1,1* N [u, 00)).

Lemma 3.5. Let (p, Do, ..., Di_1,u) be an R, p* D50, DY j«-condition. The col-
P*Dg, s Dy,

lection of P -conditions q for which there exists an Rw,p*,DS,‘-.,D,’;,l,I'* -condition

(g, Eo,...,Ex_1,v) extending (p, Do, ..., Di_1,u), and satisfying |E;| = |D;| + 1
for each i < k, is dense below p.
Lemma 3.6. Let (p, Do, ...,Dk_1,u) be an Rw)p*’DSW)DZilJ*—conditz'on., and as-

sume that b’ (n) = k+1 and fP(n) = u for some n € [|p*|,|p|). Forallz € w, j <3,

and (0,t0),...,{k—1,tx_1) € k x s~ M, the collection of P,,-conditions q with the

following property is dense below p: there ewists an R " D DI -condition
P Dg s Dy,

(¢, Eoy ..., Ex—1,v) extending (p, Do, . . .,Dk,l,u). and numbers i < k and x > z
such that q forces that U, (G @ E;)(x) l=1 and G,(x) = j.

Everything can now be put together as in the proof of Theorem ?7 above, to
prove the theorem below, from which Theorem 7?7 follows.

Theorem 3.7. Let G be a generic filter on P,,. Then for every k > 2 and every
stable coloring c : [w]> — k hyperarithmetical in G9, and every finite collection of
Turing functionals Wy, ..., Ws_1, there exists an infinite limit-homogeneous set L
for ¢ such that W,(GY & L) is not an infinite cohesive set for GY, for any t < s.
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