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Credit default swaps in two-dimensional

models with various information flows®

Pavel V. Gapeev! Monique Jeanblanct

We study a credit risk model of a financial market in which the dynamics of intensity
rates of two default times are described by linear combinations of three independent
geometric Brownian motions. The dynamics of two default-free risky asset prices are
modeled by two geometric Brownian motions which are dependent of the ones describing
the default intensity rates. We obtain closed form expressions for the rational prices of
both risk-free and risky credit default swaps given the reference filtration initially and
progressively enlarged by the two default times. The accessible default-free reference

filtration is generated by the standard Brownian motions driving the model.

1 Introduction

In the present paper, we derive closed form expressions for the rational (or no-arbitrage) prices
of credit default swaps (or CDSs for short) without and with consideration of counterparty

risk in a model of a financial market given the flows of information which are expressed by
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the reference filtration progressively and initially enlarged by means of the default times. It is
assumed that the recovery payoffs depend on the default times and the current prices of the
underlying default-free risky assets taken at the times of defaults. The dynamics of market
prices of the two risky assets are described by geometric Brownian motions driven by con-
stantly correlated standard Brownian motions. The default times are given by the first times
at which linear combinations of three integral processes of independent geometric Brownian
motions hit certain random thresholds which are independent of each other and of the stan-
dard Brownian motions driving the model. The dependence between the default times is then
expressed by means of the dynamics of their intensity rates given by linear combinations of
the three independent geometric Brownian motions which are driven by standard Brownian
motions constantly correlated with the ones related to the risky asset prices. The default-free
reference filtration accessible from the market is generated by the standard Brownian motions
driving the model. The rational prices of the resulting defaultable European style contingent
claims are explicitly expressed through the transition densities of the marginal distributions of
the geometric Brownian motions and their integral processes describing the model.

The credit risk models in which the default times are defined as the first times at which
the associated cumulative intensity processes reach certain random thresholds were initiated
by Lando [21]. The computations of conditional distributions of the default times given the
observable filtrations in such a first passage intensity model with independent default intensi-
ties and correlated thresholds were presented in Schénbucher [23; Chapter X, Proposition 10.9].
Brigo and Chourdakis [7] studied the problem of pricing of CDSs in such a model with coun-
terparty risk in which the intensities of the default times are independent of each other, but
the associated random thresholds are correlated. Brigo, Capponi, and Pallavicini [6] developed
the rational pricing framework for bilateral counterparty credit risk models and specified the
credit and debit valuation adjustments in the cases in which the default intensity rates are
expressed by means of the (strictly positive) Feller’s square root diffusion processes, and the
associated thresholds are correlated through a Gaussian copula. Bielecki et al. [3] provided the
analytic basis for the quantitative methodology of dynamic hedging of the counterparty risk
and developed the main theoretical issues of dynamic hedging of credit valuation adjustments.
Assefa et al. [1] derived a model-free general counterparty risk representation formula for the
credit valuation adjustment of a netted and collateralised portfolio. Some related discussions
on modelling and computational aspects regarding managing of exposure to counterparty risk

are provided in the recent monographs by Gregory [20], Cesari, Aquilina, and Charpillon [10],



Brigo, Morini, and Pallavicini [8], and Crépey, Bielecki, and Brigo [11].

El Karoui, Jeanblanc, and Jiao [15]-[16] emphasised the roles of conditional distributions
of several default times in the intensity credit risk models given the appropriate filtrations
and presented general expressions for the rational prices of various defaultable European style
contingent claims. In this paper, we consider a model in which the default intensity rates are
explicitly given as linear combinations of three independent geometric Brownian motions which
are dependent of the ones describing the dynamics of the risky asset price processes. We then
use the Markov property of the resulting multi-dimensional process describing the model and
apply the explicit formula from Yor [25] for the joint marginal density of a geometric Brownian
motion and its integral process to derive closed form expressions for the rational prices of both
risk-free and risky CDSs given the reference filtration progressively and initially enlarged by
means of the default times. The model of a financial market with such dynamics of prices of
dependent risky assets and default intensity rates in which the rational prices of defaultable
European style contingent claims can be computed explicitly appears to be novel for the related
literature, to the best of our knowledge. We also note that the model proposed in the paper
keeps its Markovian feature in the filtrations which are obtained by means of the progressive
and initial enlargements of the initial Brownian reference filtration. The results of this paper
can naturally be extended to the case of credit risk models with more than two default times
and more than two underlying risky assets of a similar dependence structure. The rational
prices of CDSs and other European style defaultable contingent claims can then be expressed
through the transition densities of the marginal distributions of the resulting multi-dimensional
continuous Markov process describing the model.

The paper is organised as follows. In Section 2, we introduce a credit risk model of a
financial market with the dependence structure of the dynamics of prices of two risky assets
and two default intensity rates described above. In Section 3, we derive explicit expressions
for the conditional distributions of two default times given the accessible default-free reference
filtration and the observable filtrations. In Section 4, we compute closed form expressions
for the rational prices of risk-free CDSs (without consideration of counterparty risk) in the
models with one and two underlying risky assets given the reference filtration progressively and
initially enlarged by the default times. In Section 5, we compute closed form expressions for
the rational prices of risky CDSs (with consideration of counterparty risk) in the model with
two underlying risky assets given the reference filtration progressively and initially enlarged by

the default times. The main results of the paper are stated in Propositions 4.1-4.3, and 5.1.



2 The model

In this section, we introduce a model of a financial market with two defaultable risky assets.
We also define the accessible default-free reference filtration as well as the observable filtrations

and refer some known results and distribution laws.

2.1 The dynamics of default intensities and firm values

Let (2,G, P) be a probability space supporting independent standard Brownian motions W7 =
(Wtj)tzo and B/ = (Bg)tzo, j =0,1,2, as well as the random variables U;, ¢ = 1,2, which
are uniformly distributed on (0,1). Suppose that the variables U;, i = 1,2, are independent
of each other and of the processes W7 and B?, j = 0,1,2. We define the random times 7;,
1=1,2, by

7, =inf {t > 0| &A) + N4, > —InU;} (2.1)

where the processes A7 = (A{)tzo, j=0,1,2, are given by

t
Al = / Y7 ds (2.2)
0

for all ¢ > 0, and some §;,\; > 0, i = 1,2, fixed, so that the processes (6;A? + \;A%);>0,
i = 1,2, form the cumulative intensities, and the processes (6;Y," + \;Y )0, @ = 1,2, are
the intensity rates of the random times 7;, ¢ = 1,2. These notions mean that the processes
(I(1; < t) — 8 AL, — NiAlLs )i>0, @ = 1,2, are martingales in their natural filtrations. Assume

that the processes Y7/ = (Ytj )t>0, J = 0,1,2, admit the representations

Y/ =exp ((B] - %]2> t+; Wtj) (2.3)

for all ¢ > 0, and some constants 3; € R and v; > 0, j = 0,1,2. Note that the random times
7, @ = 1,2, defined in (2.1) with (2.2) and (2.3) can occur simultaneously only with probability
zero, and thus, the property P(7; = 73) = 0 holds, by construction.

Suppose that the random times 7;, i = 1,2, represent the default times of two firms (ref-
erence credits) with the value dynamics described by the processes X' = (X})i>0, ¢ = 1,2,
given by X} = (Y;))*(Z0)%Z}, for some a; and (; € R, i = 1,2, fixed. Here, the processes
77 = (Zg)tzo, j=0,1,2, are defined by
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7] = exp ((77]- - 5‘7> t+0; Bi) (2.4)



for all ¢ > 0, and some constants n; € R and 6; > 0, j = 0,1,2. We further assume that
the discounted firm value processes (e " X})i>o, @ = 1,2, are martingales with respect to the
pricing measure P under which the processes Y7 and Z7, j = 0, 1,2, admit the representations
in (2.3) and (2.4), where r > 0 is the interest rate of a riskless bank account. Thus, taking into
account the independence of the driving processes W7 and B, j = 0,1,2, we may conclude

that the equality ) )
: )
Bia; + %z a;(a; — 1) + moG; + EO GG —1)+m=r (2.5)

should hold, for every i =1, 2.

2.2 Some filtrations and distribution laws

Let us denote by (F;);>0 the natural filtration of the processes Y7 and Z7, j =0, 1,2, defined
by Fr = o(Y7,Z] |0 < s <tj=0,1,2), for all t > 0, which coincides with the one of the
driving standard Brownian motions W7 and B7, j =0,1,2, given by o(W/, B |0 < s <t,j =
0,1,2), for all ¢ > 0. We define the progressively enlarged filtrations (G});>o, @ = 1,2, by
G = FVo(rAt), and (G0 by G = FtVo(r At)Vao(rs_i At), for all t > 0. Let us
also introduce the initially enlarged filtrations (F});>o, @ = 1,2, by F; = F V o(r;), for all
t > 0. We actually consider the smallest right-continuous completed filtrations that contain
the appropriate filtrations defined above. The default-free reference filtration (F;):>¢ reflects
the information flow which is accessible for the investors trading in the market, while the
filtrations (G})i>0, ¢ = 1,2, and (G;)i>o reflect the accessible information including the one
about the appearance of the default times. Note that, by virtue of the independence of the
random variables U;, i = 1,2, and the filtration (F;);>0, it follows that (F;);>¢ is immersed
in the filtration (F;V o(U;) V o(Us_;))e>0, and thus, in the smaller filtrations (G!)i>o, i = 1,2,
and (G)i>o (see, e.g. [5] and [17]). Moreover, by virtue of the independence of the random
variable Uz _; and the filtration (G!);>o, it follows that (G});>o is immersed in the filtration
(FeVo(U;) Vo(Us—;))iso0, and thus, in the filtration (G;);>0, for every ¢ = 1,2. This notion is
also known as the (H)-hypothesis for the filtrations (F;):>0 and (G)i>o in the literature (see,
e.g. [5], [22; Chapter V, Section 4], [4; Chapter VIII, Section 3], or [2; Chapter III]). Note that
the immersion of (F});>0 in (G!);>o is equivalent to the conditional independence of G; and
Foo with respect to Fy, for i = 1,2, while the immersion of (F;)i>0 in (Gi)i>o is equivalent to
the conditional independence of G; and F,, with respect to F, for all t > 0 (see, e.g. [13]).
Let us now consider a filtration (K;);>¢ larger than the filtration (F):;>0, that is, F; C Ky,



for all t > 0. Then, if K; coincides with F; on the event J; € K; such that P(J;) > 0, that
is, if for any K, € K;, there exists an event F;, € F; such that J, N K; = J; N F}, then the
conditional expectation E[V | K;] of an integrable random variable V' on the event J; is equal
to an J;-measurable random variable. Hence, according to the results in [12; page 122] and [4;

Section 5.1], this fact leads to the equality
I(3) E[V | K] P(Ji| F)) = I(J) E[V I(J,) | ] (2.6)

and thus, taking into account the fact that P(J;|F;) > 0 on the event J;, we have

EVI(L)|F]

(2.7)

for any (positive) integrable random variable V' and all ¢ > 0. We further refer to the result
in (2.6)-(2.7) as to the generalised key lemma for the filtrations (KC;)¢>o and (F3)i>0. Observe
that G/ coincides with F; on the event {7; > t}, and G; coincides with F; on the event
{7; AN ms_; > t}, while G/ V o(m3_;) coincides with F;* = F, V o(r3_;) on the event {7; > t},
for all t > 0 and every i = 1,2. In these cases, the expressions in (2.6)-(2.7), together with
the tower property for conditional expectations, imply that, for each G'-measurable integrable
random variable V7., the equality

EViP(r; > t| Fr)| F]
P(Tz>t|ft)

I(ri > t) B[V |Gl =1(mi > 1) (2.8)

holds, for all t > 0 and every i = 1,2 (see, e.g. [2; Lemma 2.9]). Moreover, it follows that, for

each (F;);>o-progressively measurable process V' = (V}");>0, the equality

P(Tl>t’,;rt)

E[ViI(n>1)|6G] =1 >t)E[/t

ﬂ] (2.9)

holds, for all ¢ > 0 and every i = 1,2 (see, e.g. [2; Corollary 2.10]). We further refer to the
results in (2.8) and (2.9) as to the first and second part of the key lemma for the filtrations
(G0 and (F;)s>0, for every i =1,2.

For any (positive measurable) bounded function ;(u), for u > 0, let us now compute the

conditional expectation
\Ili(Tgfi) = E [wz(7—1> I(Tz > t) ‘ .F;g V O'(Tgfl')} (210)

for all ¢ > 0 and every i = 1,2. For this purpose, we apply the result of [9; Proposition 2.7] to

conclude that any JF; V o(73_;)i>0-progressively measurable process can be written as Wi(73_;)
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where U'(v) = (Pi(v));>o is (Fi)eso-progressively measurable, for any v > 0 fixed, while
the function v + W!(v) is (Borel) measurable, for all ¢ > 0 and every i = 1,2. Then, we
observe that, by definition of conditional expectation, for any event F; € F;, and any (positive
measurable) bounded function ¢3_;(v), the equality

E[ / T W) I(F) s i(0) P(7s_i € dv]| ]—"t)} (2.11)

=0

= E{I(Ft) /uoo h i(u) ps—i(v) P(1; € du,13_; € dv| .7-})}

=t Jov=0
holds, for all t > 0 and every ¢ = 1,2. Hence, the application of the equality in (2.11) yields
the fact that the expression

Wi(rs i) = /°° Vi(u)P(1; € du,13_; € dv | F)
A u=t P(Tgfi € dU|ft)

(2.12)

v=T3_;
is satisfied, for all ¢ > 0 and every i =1, 2.

Let us finally refer the explicit expressions for the transition density functions of the pro-
cesses (Y7, A7), 7 =0,1,2, defined in (2.2)-(2.3) above. For this purpose, we recall from [25;
page 527] that the random variable Aﬁ”j ) = fg e2Wi+v5%) 75 has the conditional distribution

P(Aﬁ”j) € da ‘ Wi + vt = SU) = p;(t,z,a)da (2.13)

where the density function p; is given by

1 z?* + 72 1+ e
(t = - 2.14
pi(t,@,a) ma? exp( 2t T 2a ) (2.14)
o0 2 T
X /0 exp (—Z—t - % cosh(w)) sinh(w) sin <¥> dw

with ¢,a > 0 and 2 € R, and v; € R given and fixed. This fact yields that the random vector
2(W] + v;t), Aﬁuj )) has the distribution:

P(Q(Wtj +vt) € dx,A,(fyj) € da) = q;(t,z,a)dxda (2.15)

where the density function g; is given by

q;(t,z,a) = p; (t z a>L L exp (— 1 (x——Qth>2) (2.16)
o 202Vt Vo 2\ 2Vt
B 1 72 v +1 1/]2 1+e*
C(2n)32a2V/t P (% * ( 2 >x a ?t 2 )

) 2 x/2
X / exp (_w_ S cosh(w)) sinh(w) sin <¥> dw
0 a

2t



with ¢,a > 0 and = € R (see also [14] and [24] for related expressions in terms of Hermite

functions). Therefore, using the fact that the scaling property of W7 implies

2 | :
P((ﬂj — %) t+y W/ < :z:/ el et We g < a) (2.17)
0

. ¢ i fyza
= P(2(Wt], +yt') < x,/ 2WiHvis) gs < jT)
0

with ¢’ = ~7t/4 and v; = 2f;/~7 — 1, by virtue of the expressions in (2.15)-(2.16), it follows
from the definition in (2.3) and the Markov property of the process (Y7, A7), j = 0,1,2, that
the random vector (Y3/Y7, (A}, — A])/Y/) has the distribution

P(Y})Y] € dy, (A}, — A]))Y/ € da) = P(Y}_, € dy, A}, € da) = g}_,(y,a)dyda  (2.18)

where the density function ¢’ is given by

2 2 2
gr-i(y,a) = ﬁ%‘ (ZJ (T'— 1), In(y), iT) (2.19)
- 2v2 1 eXp(z—Wz_,_&ln(y)_(@_E)Q(T—t)_Z(l—H/))
73/275’ a?yT —t VJQ»(T — ) 7]2 v 2 2 f)/?a

oo 2w? 4,/y > ) i ( 4w )
X exp| — — cosh(w) | sinh(w) sin | ——— | dw
/0 < T —t) a (w) (w) (T —t)

J
for all T'—t,y,a > 0, and every 7 = 0,1,2. Note that the formulas above were also used in

[19; Section 4] for the computation of the marginal density of the posterior probability process
in the one-dimensional quickest change-point detection problem.
We also recall the transition density functions of the geometric Brownian motions Z7, j =

0,1,2, defined in (2.4) above. It follows that the random variable Z3./Z/ has the distribution
P(Z4)Z] € dz) = P(Z}_, € dz) = W%_,(2) dz (2.20)

where the density function h’ is given by
j _ 1 (In(z) — (n; — 67/2)(T —1))*
W (z) = exp | — 5
0,2/ 2n(T — 1) 205(T — )

forall T —t,z >0, and every j =0,1,2.

(2.21)

3 Conditional distributions of the default times

In this section, we derive explicit expressions for the conditional distributions of two default
times given the accessible filtration generated by the market prices of the risky assets as well

as given the observable filtrations.



We first compute the conditional distributions P(7; > u | ;) of the default times 7, i = 1,2,
given the reference filtration (F;):>o, for all £,u > 0. In this case, we see from the independence

of the random variables U;, ¢ = 1,2, and the filtration (F;):>o that the equalities

P(1; > t| Fs) = P(6;A) + NA, < —InU; | Fuo) (3.1)

— 0N = P(ry > | F) for >0
hold, so that the equalities
P(r; € dt | Foo) = e 5424 (6,Y0 + \Y)) dt = P(r; € dt| F,) for t>0 (3.2)

are satisfied, for every i = 1,2. In particular, it follows from the representation in (3.1) that

the equalities
P(r; > u|F) = P(§AL+ NAL < —InU; | F) = e %44 for 0<u<t (3.3)

hold, for every ¢« = 1,2. Then, according to the tower property for conditional expectations,

we obtain that the equalities

P(r; > u|F,) = E[P(§;Ay + NA, < —InU; | F,) | F] (3.4)

— AN A E[efathO(AﬁifA?)/YPfAm%A:fAi)/YZ Fi]

= WA O (YR Y)) for 0<t<u

are satisfied, for every ¢ = 1,2. Here, by means of the Markov property of the processes
(Y7, A7), j = 0,1,2, and the fact that the random variables Y7/ Ytj have the same laws as
Yuj_t, j =0,1,2, for each 0 < t < u, taking into account the independence of the driving

standard Brownian motions W7, j = 0,1,2, we have

y07yz — E'|: _5zy0Au t AlyzA i| — E'|: _‘SzyOAu t] E[e_)\iyiAiL—t:I (35)

/ / ~bw0e 0 (0 a0) dyhdag / / o g (! ;) dylda,

for all 0 < ¢t < u, and the functions ¢/, j = 0,1,2, are given in (2.19) above. Moreover,
taking into account the representation in (3.2), according to the tower property for conditional

expectations, we obtain that the equalities
P(r, € du| F) = E[P(r; € du| F,) | Fi] = E[e A A (5,Y0 + \Y7) | F] du (3.6)
= ML RTINS ADT (5 Y (V) /YE) + MY (YY) | Fi) du

= ¢ SN DL (VO Y du for 0<t<u



are satisfied, for every ¢ = 1,2. Here, by means of the Markov property of the processes

(Y7, A7), j = 0,1,2, and the fact that the random variables Yuj/Ytj have the same laws as

Y, j=0,1,2, for each 0 <t < u, we have

0

Di_(yo,ys) = Ee™dWodue 2t (50 VO |+ NVl ,)] (3.7)
= / / / / e~ 0woa0 MY (000 + Nyt go_y (Yo, ao) Gy (Yl @) dypdaodyday
0 0 0 0

for all 0 <t <u < T and every i = 1,2, while the functions ¢/, j =0, 1,2, are given in (2.19)
above.

We proceed with computing the conditional distribution P(7; > u,73—; > v|F;) of the
default times 7;, ¢ = 1,2, given the reference filtration (F;);>¢, for all ¢,u,v > 0. For this
purpose, we observe from the independence of the random variables U;, ¢ = 1,2, and the

filtration (F;):>o that the equalities

P(r; > u,m3_; > v| Foo) (3.8)
= P(6:; Ay + NA, < —InU;, 03 A) + Mg AY ' < —InUs_; | Fuo)

S A0 N AT 8. A0 _N. . A3—i
— e 0 AL =N AL =03 Ag—A3_i Ay P(Tz > U, Ty > U | JT.'U) for 0<wv<u

hold, so that the equalities

P(TZ’ € du,Tgfi € dv ‘ -Foo) (39)
— AN AV AT (50 LAY (83 Y0 4 Mg YY) dudw
=P(redu,m; €dv|F,) for 0<v<u

are satisfied, for every i = 1,2. In particular, it follows from the representation in (3.8) that

the equalities

P(Ti > U, T3—; >V | ./_';5) (310)
= P((SzAg + AZA?[‘L < —1n Ui; (53_1'142 -+ Ag_iA?}_i < —1In Us_; } ,Ft)

—5: A0 ). A% — A0 _ L A3—1
= e 0w A AL A i fr ) <y o <t

hold, for every ¢ = 1,2. Hence, according to the tower property for conditional expectations,

10



we obtain

P(Ti > U, T3—; > ’U|./T"t) = E‘[P(TZ > U, T3—; > ’Ul./—"u) |./T"t] (311)
= E[P((;ZA?L + )\ZA:L < —1n Ui, 53_Z'Ag + )\3_Z'Ai_i < —1n Us_; ‘ fu) | ft]
— o AP NATT =05 AY = Ns i A E[6—5¢Yt0(Aﬂ—A?)/Y}O—)\iiﬁ(Ai—Ai)/Yf ]_“t]
_ 6—51'14?—Az’Ai—53—z‘A8—>\3—iA%_i Ozi—t(KtO? Ytz) for 0<v<t<u
while
P(Ti > U, T3—; >V ‘ ./T';g) (312)

A0 2. Al A0 _ A3t i —i
— 6—5114“ )\ZAL 63—7~At >‘3—1At CS_Z(Yt07Yt3 Z) for 0 S U S t <

where C°_,(yo, ;) and C27}(yo,ys_;) are given as in (3.5) above, for every i = 1,2. Moreover,
taking into account the representation in (3.9), according to the tower property for conditional

expectations, we obtain that the equalities

P(r; € du,13_; € dv| F) (3.13)
_ E[6—51-142—)\1-142—63_iA2—>\3_iA13;_i (5iY£ + )\iYJ) (53—¢Yvo + /\S_in:a—i) }ft] dudv
_ eféiA?—/\iAg—63,¢A8—/\3,,‘A%’i (5371,}/;0 4 >\37iY;,37i)

% E[6_5%’(Az—A?)/W—Aini(Az—Az‘)/w (8:Y2(Y0/Y0) 4 NV (Y /YY) | F] dudy

= DAl N ALY A (05 Y2 4+ X3, Y2 ) DL (VP Y ) dudv for 0<v<t<u

are satisfied, where D! _,(yo,y;) is given in (3.7) above, for every i = 1,2. Finally, taking into

account the representation in (3.9), according to the tower property for conditional expectations,

we obtain
E[P(ri > u,m3_; > v|F,) | F] (3.14)
= E[P(6;A) + NA, < —InU;, 63 A0 + A3 AY < —InUs_; | F,) | Fo]
— o (BiF03 ) AQ= N AL X5 AT E[e—dsfiYUO(Aﬂ—AQ)/YUO—Ag,iYUB’i(Ai’i—A%*i)/YE*i 7]
= o O AN AT O (VDY) for 0< v <
while
E[P<Ti>u77—3—i >’U‘~Fv)‘fu} (315)

(88 VAO —Xs AP —Na AB— 3 »
= = (Oitds-)Au—didy —As—idu C3HY2 Y2 for 0<u<w
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where C°_ (yo,v;) and C>=%(yo,ys_;) are given as in (3.5) above, for every i = 1,2. Thus,

according to the tower property for conditional expectations, we obtain

P(ri > u,m3_; > 0| F,) = E[6_(5i+53—i)Ag—AiA%—As—iA%_i Ci (YO, Y ‘ ]_—t} (3.16)

::efwﬁﬁ&4»w4AwﬁfA&%A?”l;k;«&+%7»Y?uﬁfA$VY?fAﬂ7u%fAD/ntahfﬂf*%A%%fA?%VY?“

x Ci (VY (V2 )Y0), Y (YY) | Fi
= 67(5¢+53—i)A?*)‘¢A§7)‘37“4?72. d—t,ufv(

YOV for 0<t<v<u

while
_ —(85+63_i)AO—N; AL —X3 ;A3 ~3—i v 0 yr3—i
P(Ti > U, Tg—j > U | ‘Ft) - E[€ ( 3=1) : Cv—u(Yuayu ) “F.t} (317)
= e—(5¢+53—i)A?—AiAi—As—iA?_i E [e—(5i+63—i)Yt°(AE—A?)/%O—Ai%i(AL—Ai)/YJ—A:s—iW_"(Ai_i—Ai”_i)/Yf’_i

X C3L Y2V /Y0, YR (Y2 YR | A

—(5: ) AT —Da s ASTE—=3—1 i ;
—e (5z+§3—1)A? NiAj=A3—i Ay C ’ ()/t(]’}/t?) Z,E/tz) for 0 S t<u<v

u—t,v—u

for every i = 1,2. Here, by virtue of the Markov property of the processes (Y7, A7), j =0, 1,2,
and the fact that the random variables Y7 /Y7 have the same laws as Y7 ,, j = 0, 1,2, for each

0 <t <w, we have

—

Cvft,ufv (y07 Yi, y3—i) (318)

_ —(8i+03-)yo A, —Niyi AL _,~A3_iy3_i AD_% i 0 A%
= E [6 t t t Cu—v(yDY;;—b ylyu—t)]

00 pOO OO OO P00 OO

— — 61“1’5 —i a 7)\1 Z(zl—)\ _iY3—iA3_; i ’ ,

_/ / / / / / e~ (6i+03—i)yoao—Aiy 3-iY3-ia3 Cuﬂ)(yoyo’yiyi)
o Jo Jo Jo Jo Jo

X Go_i(Yh, a0) 9oy (Yl ai) ot (Yh_s, az—;) dygdaodyida;dyly_,das_;

forall 0 <t <wv <u<T and every i = 1,2, while the functions ¢/, j = 0, 1,2, are given in
(2.19) above.

Let us now compute the conditional distributions P(7; > u|G}) and P(r; > u|G;™") of the
default times 7;, i = 1,2, given the filtrations (G!)i>o and (G} ");>0, for all t,u > 0. In this
case, we obviously have P(r; > u|G!) = I(1; > u), for all 0 < u < t. Then, we apply the first
part of the key lemma in (2.8) for the filtrations (G});>o and (F;)i>0, and use the expressions
in (3.1) and (3.4) to get

P(r; >u|G) = I(1; > t) P(r > 1| F)

=I(r; >t)C._, (Y2 V)) for 0<t<u (3.19)
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where C"_,(yo,y;) is given in (3.5) above, for every i = 1,2. Moreover, taking into account the
expressions in (3.1) and (3.2), we see from the independence of the random variable U; and the

filtration (G7™");>o that the equalities

P(r; > t|G2') = P(6;A + NA, < —InU; | G3) (3.20)

= AN = P(r, > t|F) for t>0
hold, so that the equalities
P(r € dt|G31) = e 5424 (5,Y0 + \ Y,V dt = P(r; € dt | F,) for >0 (3.21)

are satisfied, for every i = 1,2. In particular, it follows from the representation in (3.20) that

the equalities

— ¢ 0N = P > u|F) for 0<u<t

hold, for every ¢ = 1,2. Then, we apply the first part of the key lemma in (2.8) for the

filtrations (G;™");>0 and (F;);>0, where G; " coincides with F;~* on the event {73_; <t} and

with F; on {r3_; > t}, for all t > 0, and use the equality in (2.12) as well as the expressions

in (3.1), (3.4), and (3.13) to get

P(ri > u, 13- > t| Fp)
P(r5_; > t|Fp)

— e AN G (Y2 Y = P> u|F) for 0<t<u

P(ry>u|GE ) =11 <) P(r > u| FH) 4 I(m3_; > t) (3.23)

where C"_,(yo, ;) is given in (3.5) above, for every i = 1,2.

We finally compute the conditional distributions P(7; > wu,73; > v|G;) of the default
times 7;, ¢ = 1,2, given the filtration (G;);>o, for all t,u,v > 0. In this case, we obviously
have P(1; > u,m3; > v|G) = I(1; > u,m3; > v), for all 0 < w,v <t and every ¢ = 1,2.
Then, we apply the first part of the key lemma for the filtrations (G;)i>o and (F;)i>0, where
G; coincides with G} V o(73_;) on the event {v < 73_; <t} and with G/ on {73_; > ¢}, and use
the expressions in (3.14)-(3.15) and (3.19) to get

P(1i > u, 13- > v|G) (3.24)
P(Ti > U, T3—; > t|f;g>

:I('U<7'3,i St)P(Tl>U|gtl\/0'(7'371))+[(7'1 >t,7’3,i>t) P(T S >t|f>
3 y 13—1 t

=I(ri>t, 13 >0)C, (YY) for 0<v<t<u

13



while
P(ri>u,m;>v|G)=1(1i>u,m_; >t)C> Y Y?) for 0<u<t<w (3.25)

where C?_,(yo, ;) and C>~}(yo,ys_;) are given as in (3.5) above, for every i = 1,2. Moreover,
by means of the first part of the key lemma for the filtrations (G;)i>o and (F;)i>0, and taking
into account the expressions in (3.16) and (3.17), we have

P(1; > u, 13 > v|F)
P(r; > t, 13 >t|F)
YO,V YE) for 0<t<v<u

P(TZ‘ > U, T35 >V ‘ gt) = I(Tz >t, T3 > t) (326)

—t

= I(TZ > 1,73 > t) Cv—t,u—v(

while

—3—1

P(ry >u,m3; >v|G)=1(1; >t, 13 >t)C Y2V Y for 0<t<u<wv (3.27)

u—t,v—u

where Ui_t’u_v(yo,yi,yg_i) and ﬁi:iw_u(yo,yg_i,yi) are given as in (3.18) above, for every

i=1,2.

4 The rational prices of risk-free CDSs (Main results)

In this section, we derive explicit expressions for the rational prices of credit default swaps
without consideration of counterparty risk in the model defined above with some (continuously
compounded) premia 3; > 0 and (non-negative measurable) deterministic recovery payoff
functions Ri(x;), i = 1,2, for all z; > 0 and 0 < t < T, and every ¢ = 1,2. In order to
simplify the notations, without loss of generality, we further assume that the payoffs are already
discounted by the dynamics of the bank account, that is equivalent to letting the interest rate
r equal to zero. We compute the rational prices for the holders of risk-free CDSs in various
particular cases of available information contained in the filtrations (G!);>0, or (Gi)i>0, or
(G! V 0(73-i))i>0 defined above, for every i = 1,2. In those cases, the holders of CDSs can
observe only the default time 7;, or observe the both default times 7;, + = 1,2, or observe the

default time 7; but know the default time 73_; from the beginning of observations, respectively.

4.1 The case of filtration (G}):>o

Let us begin by computing the rational price P’ = (P});>¢ for the holder of a CDS in the model
with the filtration (G!);>o given by

Pl=E[—s (AT —t)I(t<mn)+R (X)) It <7 <T)|G] (4.1)
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for 0 <t <TAm7, and P/ =0, for t > T A 7;, so that the premium 3; is then determined

from the equation Pj = 0, for every i = 1,2. In order to compute the both terms in (4.1), we

apply the second part of the key lemma in (2.9) for the filtrations (G!);>o and (F;);>0, and use

Fubini’s theorem for interchanging the order of conditional expectation and integration to get

E[(m AT —t)I(t < 1) | F]
Pt < 7| F)

B C(uAT —t)P(r; € du|F)
} ~1<m) [ Pl < 7| 7)

E[(mAT—t)It<m)|G=1(t<m)

B C(uNT —t)P(r; € du| F,)
_I(t<7i)E{/t PG <7

(4.2)

and
E[Ri_z (X;Z)[(t <7< T) ‘.7:,5]
P(t < T; ’ ft)

_ T EIRL(X1) P(r; € du| F,) | F]
t} _I<t<ﬁ)/t Pt <1 |F)

E[R(X)It<7<T)|G]=1It<m)

_ T RI(X)P(r; € du| F,)
_1(t<Ti>EU e

(4.3)

forall 0 <t < T and every i = 1,2. Here, we recall from the expressions in (3.1)-(3.2) and
(3.6)-(3.7) that P(t < 7;| F;) = e %4 ~%Al and P(r; € dt | F,) = e %A 24 (5,0 + \Y}), for
all t >0, as well as P(r; € du|F;) = e %44 DI (Y2, V) du, for all 0 <t < u and every
i = 1,2. Then, taking into account the expressions in (3.2), according to the tower property

for conditional expectations, for each 0 <t < u, we obtain that

E[RL(XY) P(r; € du| F,) | F] = E[RL(X]) e A4 (5, Y2 + N Y | F] du (4.4)
AN R (X (YY) (220525 ) o =AYt
x (Y (/Y + NYI (YY) | R du
= e hAI A Q;u—t(Xti’ Y;O’ Y;) du
holds. Here, by means of the Markov property of the processes (Y7, A7) and Z7, j = 0,1, 2,

and the fact that the random variables Y7/Y/ and ZJ/Z] have the same laws as Y7 , and
ZJ

u—t»

7 =0,1,2, for each 0 <t < u, respectively, we have

Qt i (i, Y0, Yi) (4.5)
- E Rz (JZZ(YZ )a’(ZO )CzZZ ) —6iy0 A% _, —Niy; Al _ t(5 on _|_)\Zylyz )}

/ / / / / / RZ xz yl 0‘1 )Cl ) diyoao—Aiyia; ((5 yoyo + )\Zyzyz)

X gu—t(%a ao) gu—t(yi7 a;) hg—t(z()) hz—t(zi) dyodaodyidaidz(’)dzg

for all 0 <t < u < T and every i = 1,2, while the functions ¢/ and A7, j = 0, 1,2, are given
n (2.19) and (2.21) above.
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Therefore, summarising the facts proved above, we now formulate the following assertion.

Proposition 4.1. Suppose that r = 0. The rational price for the holder of a risk-free credit
default swap in (4.1) is given by the sum of the expressions in (4.2) and (4.3). The latter terms
are computed by means of the expressions in (3.6) and (4.4) with (3.7) and (4.5), respectively.

4.2 The case of filtration (G;):>g

Let us now continue by computing the rational price pPi = (ﬁf)tzo for the holder of a CDS in

the model with the filtration (G;);>0 given by
Bl=E[-%(nAT—t)It<n)+R(X)It<7<T)|G] (4.6)

for 0 <t <T AT, and ﬁti =0, for t > T A 7;, so that the premium 3; is then determined
from the equation 183 = 0, for every ¢« = 1,2. It is seen that the equality >2; = s should hold
with s, i = 1,2, from (4.1), since we have Gy = Fy. In order to compute the both terms in
(4.6), we apply the second part of the key lemma for the filtrations (G;);>0 and (F;)i>0, where
G, coincides with 7% on the event {r5_; < ¢t < 7;} and with F;, on {t < 7; A 73_;}, for all
t > 0, and use the equality in (2.12) as well as Fubini’s theorem for interchanging the order of

conditional expectation and integration to obtain

E[( AT —t)1(t<7)|G] (4.7)
E[(n AT —t)I(t <7)| FF
Pt <1 | F
E[(i NT —t)I(t <7 A13_) | Fi]
Pt <1, N13_i| Ft)

® (uAT —t)P(r; € du,m3_; € dv | F,)
(7'3 S <T) [/ P(t<7—“7-3 i del]:t) E V=T34

/ / (uANT —t)P(7; € du, 73 € dv | Fuvw)
Fi
u=t Jov=t t<T’/\T3Z‘E)

© (AT —t)P(7; € du, 73_; € dv|F;)
=I(r3; <t
(T3 T )/ P(t < Tiy T3—i € dU‘.;Ct) V=T34

(uNT —t)P(7; € du, m5_; € dv| F)
+1(t <7 ANT3-4)
u=t Jv=t t<7—l/\7—3z‘~’rt)

= I(Tg_i <t< Ti)

‘|‘I(t < Ti/\Tg_i)

+[(t<7’i/\7'3
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and

B[R (Xi)I(t <7 <T)|G] (48)
BIRL(X;)I(t<m <T)|F7
Pt <1 |F™
ERL(XL)I(t <7 A73i <T A73.3)| Fi
P(t <1 AN13_i| Ft)

oo

R (X)) P(1; € du,3_; € dv | F,)
=71 s <t ) E L
(75 <) [/ P(t < 1i,13-; € dv| F) S

R(X))P(1; € du, 73 € dv | Fuve)
It < T NT3-4)
i AT |:/ut/vt P(t <7 A1 | Fp) d

= I(Tg_i <t< Ti)

+I(t < T; /\7'3_1')

E[R(X\)P(r; € du,m3_; € dv|F,) | Fi
— I(rs; <t
(73— < )/ Pt <m,m €dv|F) S

[RL(XL)P(1; € du, 3—; € dv | F,) | Fi]
It z/\ i
+ < T N T3- /ut/vt Pt <1 N73_i| Ft)

for all 0 <t < T and every ¢ = 1,2. Here, we recall from the expressions in (3.8) and (3.9)
that P(t < 7, A 13| Fy) = e‘(5i+53—i)A?_AiAi_M—iA?_i, for all ¢ > 0, and P(t < 7,73 €
dv | Fp) = e 0N =0miA-Xamidi™! (5, .y 0 4 N\, Y37 for all 0 < v < ¢ and every i =
1,2. Moreover, it is seen from the expressions in (3.13) that P(7; € du,73_; € dv|F,) =
e SATNAL B A Na i AT (5, Y0 4\ Y3 DU (YY) dudw, for all 0 < v < t < u, where
D (yo,y:) is given in (3.7) above, for every i = 1,2.

Observe that, taking into account the expressions in (3.9), according to the tower property

for conditional expectations, for each 0 < v <t < u, we obtain

E[RL(X)) P(r; € du,5_; € dv| F,) \]—"t] (4.9)
:E[Ri(Xi) SO AL e A T (65, V0 N V) (05 YO A+ N YT | F] dudv
= e TN AT (5 YD N Y E[RL(XG (YY) (20) 20)4(2,/2))
X e—éi‘@°<A2-A9>/K°—AiYﬂA%—Ai MG YRYYD) + N YAV V) | F] dudv
= e IANAT AN A (5, YO Ny YT Q) (XYL, YY) dudy

where @} ,_ (i, 0, y;) is defined in (4.5) above, for every 7 = 1,2. Furthermore, taking into

account the expressions in (3.9), according to the tower property for conditional expectations,
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we obtain

E[P(Tl € du , T3—; € d'U|.F ‘.F] (410)
= Ble MM AT (570 4 AV (85 Y0) 4+ N\ V2T | F] dudv

—(8i403_1)AQ—X; A% —X5_, A3 —63_;YO(AY —A0) /YO N5, VST (ASTT A3 /Y3
=€ ( +3 ) v v 3 ((SzYUO—i_)\'LS/jUZ)E[e 3 ’U( U v)/v 3 ( )/

X (05 Y, (Y /YY) + MY (Y2 )Y | Fo dudv
e~ (BitBs- ) AL XA, — X AV (63 Y2+ X3, Y2 )DL (YO Y ) dudv for 0<v<u

vt

while

E[P(1; € du,m3_; € dv | F,) | Fu] (4.11)
— o Oit O AN AL A AT (&Y +ANY Y DL (YO YA ) dudv for 0<u<w

where D! _ (yo,y:) and D3! (yo,y3_;) are given as in (3.7) above, for every i = 1,2. Hence,

according to the tower property for conditional expectations, we obtain

P(Ti € dU,Tg_Z’ € dv | .Ft) (412)
= Bem 0t dMNA e 5,y 0 4 \ VI DE_ (Y0, YET) | F] dudv

— o (Bit03_i) AN A —A3_; AYT iE[e—(5z‘+537i)5@0(143—A?)/Yto—Ain(AQ—A%‘)/W—A:*HYE%(Agfi—AZq’*i)/YtS*i

x (YL (V) /YY) + XY (YY) D, (YY) /YE), YT (YT YY) | i dudo

) NAO . Al A3~ —1 : )
67(5l+5371)At N A=Az A} Di}_tu_’l}(}/;(%y;l’}/f 1) dudv for 0 <t<ov<u
while

P(TZ' c d'LL Ty—; € dv‘ﬂ) (413)

o~ (Gitd3-1) AP =X Af X3 i A} 1Ei 11; LR YR Y dudy for 0<t<u<w

for every i = 1,2. Here, by virtue of the Markov property of the processes (Y7, A7), j =0, 1,2,
and the fact that the random variables Y7/ Ytj have the same laws as Y;j_t, j=0,1,2, for each
0 <t <w, we have

E:J—tu U(y07yi7y3—i) (414)
e BetDrm AL NN S (G YO+ AV ) D (oY s V)]

/ / / / / / _(6 +d3-4 yoao AiYi@i—A3—iY3—ia3—; (5 y()yo + )\Zyly )

X Dl oy, Ys—i¥s—:) ot (Y0» @0) Gy (Yls ai) 9ot (Y5_s, as—s) dypdaody;da;dys_das_;
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forall 0 <t <wv<wu<T and every i = 1,2, while the functions ¢/, j = 0,1,2, are given in
(2.19) above.
On the other hand, taking into account the expressions in (3.9), according to the tower

property for conditional expectations, for each 0 < v < u, we obtain

E[R(X}) P(r; € du,75_; € dv| F,) | F,] (4.15)
= e AT (5 YD Ay YET) B[R (XE) e SN (5, Y0 1 N YY) | F) dudv
= ¢ O N (5, Y+ M Y B[R (XYY (20 2042,/ 2)
x VAL AD YENYI LAY (5, YO (YO /Y0) 4 N YI(YE/Y))) | ] dude
— o (Bitd3 i) AN AL A3 AT (85— YUO S sz—i) i (Xi V0 Yi) dudv

V,u—v v Tuo to

where Q) ,_,(x;,%0,%:) is given as in (4.5) above, while, for each 0 < u < v, we get

E[R,(X}) P(r; € du,T3_; € dv|F,) | F] (4.16)
_ E[RZ(X;) e*éz‘A%*)@Ai*&—iAg*/\371'14%71‘ (51 Yz? + )\z Yul) (5371' K)O + )\Z K}S*i) ‘ Fu:| dudv
— RZH(X;) 6—(5i+53—i)Ag—/\iAi—As—iAi_i (6; Yz? + N\ Yuz)
X E[67634‘49(ASfASl)/YSfAHYE”(A%*tAi*i)/yj*i
X (035 YV (V) /Y3) + Xams YETI(YV)TH/YET0) | Fu] dudv
= RL(X1) e Gitds- Ab-Ndu=Xs ™ (5,70 4\ V) D374 (VO Y37) dudo

where D2~ (yo,ys_;) is given as in (3.7) above, for every i = 1,2. Hence, according to the

tower property for conditional expectations, for each 0 <t < u < v, we obtain

= F [R:L(XZL) e—(5i+53—i)A2—AiAZ—A3—¢Ai—i ((51 Yuo Y YJ) Dg:z(yqi)7 Yj_l) ‘ ]_—t} dudu
= ¢ O NN AT BIR, (XY Y)(20/20)(2,) 21)
s e~ (Bit05-) YL (A= AD) YL XY (AL =AD /Y =XV HAYT = AT /Y

< (GYP (YY) + MY (YY) Dy, (YR /Y0), YET (Y /YET) | A dudy

o (8i4065_ ) AV N AL g A3 A i v0 i v3—i
=€ (0s85-2) ‘ e Qt,u—t,v—u(Xtﬂy;f 7Y;t 7Yt )dUdU
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while, for each 0 <t <wv < u, we get
E[RL(X}) P(7; € du,73_; € dv y Fu) | Fi] (4.18)
— E[e—(5i+53—i)Ag—>\iAl A3 A (53 ZyO + /\3 zY3 z) i (Xz YO }/Uz |JT';5] dudv

vu—v\ror Ly
_ 6*(51+537i)A?*/\iA§*)\3—7;A? :

X E[6—(6#63-»%0(AS—A?)/YtO—AiY;(Az—Az')/Y;‘—As-iYE"'(A%‘i—Af"")/n?’"’
X (05 YO (V) /Y1) + X V(Y /YY)
X Qe (XL (VS /YY) (20 Z0)(2,) 20), Y (V) /YY), Y (Y /YY) | ] dudv

— o (BitS3- ) A=A A=A AT @i,vft,ufv(X; YO, Vi, Y3 dudv
for every i = 1,2. Here, by virtue of the Markov property of the processes (Y7, A7) and Z7,
j=0,1,2, and the fact that the random variables Y7 /Y7 and ZJ/Z! have the same laws as
Yj cand Z;_,, 7=0,1,2, for each 0 < < u, respectively, we have
@:u tu— u(xi7y07yi7y3fi) = E[RZ (‘T(Y’L )ai(ZO )ClZl ) (419>

X e~ (6i+03— l)yoAu s AYIAL = X3_iyz—i ALY (5 yOYo _{_)\Zyzyz )DS z( Oyo Y3 zY?’ z)]

/ / / / / / / / RZ xl yl az ZO)Q Z) —(0;+03-1)Y0a0—AiY:ai —A3_;Y3_5a3_;

X (85900 + Aiyii) Do (Y0Yos Ys—is—s) Gu—t (Yo» @0) Guums (Yir @) Guy (Ui, @i) g (20) iy (27)
X dypdaody;da;dy;_,das—;dzydz,

forall 0 <t<u<wv<T,as well as
Q\i v—t,u—v (xiu Yo, Yi, y3—i) - E[e_(6i+65 )yOAU ¢ )\ZyiA%_t_AB_iyg_iAg:i (420)

63 zyOY t+)\3 iY3— zYB Z) QZ (:UZ(YZ )al(Zq(;) )CZZZ; tayOK;O—tvy?)fiY;;S__ti)]

/ / / / / / / / 6+53 Z)yOCLO )\zyzaz >\3 iY3—ia3—4

X (03—iYolo + As—iYs—i¥s_;) v (x2<yz> #(20)% 24, Yoo, Z/zy;)
X Go—t(Y0> @0) Gt (Yis @i) 904 (Y3—s: az—i) Wy (20) iy y(2]) dypdaodyidaidys_;das—dzdz;
forall 0 <t <wv<u<T and every i =1, 2.
Therefore, summarising the facts proved above, we now formulate the following assertion.
Proposition 4.2. Suppose that r = 0. The rational price for the holder of a risk-free credit

default swap in (4.6) is given by the sum of the expressions in (4.7) and (4.8). The latter terms

are computed by means of the expressions in (3.13), (4.9), (4.12)-(4.13), and (4.17)-(4.18) with
(3.7), (4.5), (4-14), and (4.19)-(4.20), respectively.
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4.3 The case of filtration (G! V o(73_;))i>0

Let us now continue by computing the rational price ﬁi(Tg_i) = (ﬁti(Tg_i))tZD for the holder of

a CDS in the model with the filtration (G; V o(73_;))¢>0 given by

for 0 < ¢t < T AT, and ]373(73_1-) = 0, for t > T A7, so that the premium ;(73_;) is
then determined from the equation ﬁé(Tg_i) = 0, for every ¢ = 1,2. It is seen that ¢ (73_;)
depends on 73_;, since we have G} V o(13_;) = Fo V 0(13_) = 0(13_4), i = 1,2. In order to
compute the both terms in (4.21), we apply the second part of the key lemma for the filtrations
(GiV o(73-4))>0 and (F ")i>0, and use the equality in (2.12) as well as Fubini’s theorem for
interchanging the order of conditional expectation and integration to obtain
E[(s AT —t)I(t < 7)) | FF
Pt <1 | F

C (uNT —t)P(7; € du,13_; € dv | Fyvw)
E<m) |:/ut P(t <7,m3- € dv| F) ' S
o0 T — \P(r .
:[(t<7'i)/ (u A t)P(1; € du,13_; € dv | F)
u—=t P(t < T;, T3—i € dv | ./T';g) v=Ts_;

and

ER,(X) It <m < TR o
P(t<7’i|./—';37i) .

E[RL(X) It <7 <T)|GVo(rsy)] =1t<m)

T RUXDP(1; € du,73_; € dv | Fuve)
— I t < 5 E u u 1 ) (2 uvv F
( T) |:/u:t P(t < T3, T3—; € dv ‘ E) t:| vers_;
=I(t <) / U E[R,(X,)P(ri € du, 7y € dv | Fu) | T
N R - P(t <713 €dv|F) —

for all 0 <t < T and every ¢ = 1,2. Here, we recall from the expressions in (3.6)-(3.7) and
(3.8)-(3.9) that P(t < 7,73 € dv|F,) = e 0Al-NAi=0aidb=damidi™ (5, V0 4 N\, V30 for
all 0 < v <t and P(t <75, 735 € dv|F,) = e~ Ot A-NAi=Xa—i ™ D3~i(y 0 y3=iy gy for all
0 <t <wv and every i« = 1,2, respectively. Note that all the terms of interest in the integrands
on the right-hand sides of the expressions in (4.22) and (4.23) were computed in the previous

subsection. Therefore, we may formulate the following assertion.

Proposition 4.3. Suppose that r = 0. The rational price for the holder of a risk-free
credit default swap in (4.21) is given by the sum of the expressions in (4.22) and (4.23). The
latter terms are computed by means of the expressions in (3.13), (4.9), (4.12)-(4.13), and
(4.17)-(4.18) with (3.7), (4.5), (4.14), and (4.19)-(4.20), respectively.
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5 The rational prices of risky CDSs (Conclusions)

In this section, we derive explicit expressions for the rational prices of credit default swaps
in the model defined above with consideration of counterparty risk in the cases of available
information contained in the filtrations (G;)i>0 or (Gi V o(73_;))i>0 defined above, for every
1=1,2.

Let us consider the rational price II! = (ﬁi)tzo of a CDS in the model with consideration

of counterparty risk with the filtration (G;);>o given by

ﬁi :E[_Q* (i N3 NT — 1) I(t < TiATs—i)+Ri¢<Xi¢>I(t<Ti < T A75-i) (5.1)
+R3 z(X3zY0 Y?’ZYZ )](t<7'3_2~§T/\7'¢)‘gt}

7T T34 T T3—4) T T3—

for 0 <t <TAT; AN73_;, and ﬁi =0, for t > T A 7; A 73, so that the premium 3¢ is then
determined from the equation ﬁ’o =0, for every ¢+ = 1,2. Here, we set ﬁf_i(l’g_i, Yo, Y3—is Yi) =
Rf’_i(xg_i)(ﬁf_i)*(xg_i, Yo, Y3—is Yi) — (ﬁtg_i)*(xg_i, Yo, Ys—i, Yi), for all t > 0 and every i = 1, 2.
In this case, we apply the generalised key lemma for the filtrations (G;);>0 and (F;)¢>0, where
G; coincides with F; on the event {t < 7; A 73_;}, for all t > 0, and use the equality in (2.12)

as well as Fubini’s theorem for interchanging the order of expectation and integration to obtain

E[(Ti/\Tg_i/\T—t) I(t <Ti/\7‘3_i)‘gt} (52)
E[(Ti/\Tg z/\T_t)I(t<7—z/\7-3—i)|~Ft]
Pt <1 N13_i| Ft)

T _ H\P(+ .
CIt<mATs ) E / / (uAvA t)P(1; € du, 13—; € dv | Fuvy) 7
(t<7'i/\7'3,i|./rt)

=I({t<7A / / (uANvAT —t)P(1; € du, 73_; € dv|F)
Ti T
" Pt <1 N7s_i| Ft)

=1t <7 NT3_)

and

B[R (X)) I(t <7 <TA7s0)|G] (5-3)
E[R;(Xi VIt <7 <TAT34)| Fi
Pt <1iN73_i| F)
™ RUXDP(r; € du, 33 € dv | F,)
:](t<Ti/\7—3—i)E[/Ut/ Pt <1 N1 | F) ‘}—t]
™™ BIR (X)) P(1; € du, 73_; € dv| Fy) | Fi]
t/ P(t <1 NT3_ | F)

:I(t < Ti/\Tgfi)

:](t<7-i/\7_3—i)/

v=
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as well as

B[RZ(X2 YO Y2V VIt <7 <TAT)|G] (5.4)
B[RS (X370, Y0  YELYE VIt <7 <TAT)|F)

:I(t<7'i/\7'3_i) T

P(t <1 N13_i | Ft)

TAu D3—i 34 0 3_i i

RA-i(X31, YO, Y3 Vi) P(ri € du, 7s; € dv | F,
=It<mAT34)FE / / Yoy Xy P(7; € du,3_; € dv | F,) e
u=t P(t<7—l/\7—3—i|]:t)
T/\uE D3— zX3 7 YO Y3 i YZ ' p
_I(t<7—l/\7—3z/ / R ) (TZGdU’77—3 zEdU|Fv)’ft]
u=t

v ) v

P(t<7‘l/\7'3_i|f—';g)

for all 0 < ¢t < T and every i = 1,2. Here we recall from the expressions in (3.8) that
Pt <1 ATy_i | Fp) = e Oit0s—i DAI=NAT= XA for all ¢ > 0.
We also consider the rational price II'(73_;) = (Ht(Tg_Z‘))tZO of a CDS in the model with

consideration of counterparty risk with the filtration (G!V o(73_;));>0 given by

Hi(’rg_i) = E[ — ;f?k(Tg_i) (Ti ANTs_; NT — t) ](t <7 N T3—i) + R:_Z(X;_Z) ](t <1 <TA 7—3—i)
FRE(XET YO VATYE VIt <7 <TAT)|GEV o(rs)] (5.5)

T3—i \" " T3—3? T T3—3? T T3—§7 " T3—

for 0 <t < T AT AT13_;, and ﬁi(Tg,i) =0, for t > T A 1; A 134, so that the premium
52*(75_;) is then determined from the equation IT)(73_;) = 0, for every i = 1,2. Here, we recall
that Ry~ (xsi, 40, ys—i,01) = Ry *(x3-0) (B )" (230,90, Ys—io v1) — (PP (34, Y0, Ys—i, 0i),
for all £ > 0 and every ¢ = 1,2. In this case, we apply the generalised key lemma for the
filtrations (Gi Vo (73_))>0 and (F; )0, where G!V o(73_;) coincides with F; " on the event
{t <7 A3}, for all t > 0, and use the equality in (2.12) as well as Fubini’s theorem for

interchanging the order of expectation and integration to obtain

E[(Tl N T3_; NT — t) [(t <T; /\Tgfi) ‘ Qf V O'(Tg )] (56)
E[(TZ'/\Tg_Z‘/\T—t>I<t<Tl)|f3 Z]
Ft:|

:[(t<7’i/\7'3,i) P(t<7'4’f3 Z)
? t

C(uANVANT —t)P(1; € du, 13_; € dv| Fuve)
— P(t < 1,13 € dv | F)
C(uANvANT —t)P(1; € du, 133 € dv | F)
=1t<m NT3_
E<mnm >/ut Pt < 7,13 € dv|F)

:](t<T,;/\73_Z»)E[/u

V=T3—i

V=T34
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and

ERL(X)It <7 <T A7) | F
P(t < Tz‘ftgiz)

:I(t < Ti/\Tgfi)

TAv i (i
RZ (Xl)P<Tl € du,Tgfi € d?) ‘ Fv>
S5 ATS) [/u:t P(t <7,m3- € dv|F) gl .
™™ BIRU (XD P(1; € du, 13— € dv| F,) | Fi
=1(t<7 NT3 Lz : ; : “

( T T ) /u:t P(t < T T3—i € dv | ft) v=rs_;

as well as, on the event {73_; < T}, we have
BIR(XEYS Y3V VIt <m i <TAT)|GiVa(r)] (5.8)

E E?"—i‘ X3—i., YO y YS_’L,YZ ‘ ] t < T i < T A T f3—i
= ](t < T /\ 7_3_Z) [ T37'L( T3—i T3—i T3—4 7'3,2) ( - 3 >~ ) | t ]
Pt <t ANTs_i| Fi")

o R3i(X31 Y0 Y371 YOP(1; € du, T3_; € dv | F)
— ]' t < 2/\ i E v v Y v v Y v Y _F
( AT ) |i/1;v P(t < T, T3_; € dv | .7:;5) t‘| vV=T3_;
© E[RU(X3 YO Y3 YIP(r, € du, 5 € dv | F,) | F
:[(t<7'i/\7'3—i)/ [ - ( e U) (T AL U| )l t]
P P(t < T3, T3—i € dv ‘ .F;g) v=Ts_;

forall 0 <t < T and every i = 1,2. Here, we recall from the expressions in (3.6)-(3.7) and
(3.8)-(3.9) that P(t < 73, 75_; € dv|F,) = e SA-NA=Ssidi=daidi™" (5, y0 4 \s V371) | for
all 0 <o <t,and P(t <75, 75_; € dv|F,) = e~ Ot A=NAi=Xsi & D3—i(y0 y3=i\ gy for all
0 <t <wv and every i = 1,2, respectively. Note that all the terms of interest in the integrands
on the right-hand sides of the expressions in (5.2)-(5.4) and (5.6)-(5.8) can be computed by
means of arguments similar to the ones applied in the previous subsection. Therefore, we may

formulate the following assertion.

Proposition 5.1. Suppose that r = 0. The rational prices for the holders of a risky credit
default swap in (5.1) and (5.5) are given by the sums of the expressions in (5.2)-(5.4) and (5.6)-
(5.8), respectively. The latter terms are computed by means of arguments similar to the ones
applied for the derivations of the expressions in (3.13), (4.9), (4.12)-(4.13), and (4.17)-(4.18)
with (3.7), (4.5), (4.14), and (4.19)-(4.20), respectively.
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