S. Horike, S. Shimomura, and S. Kitagawa, Nat. Chem, vol.1, p.695, 2009.

G. Férey and C. Serre, Chem. Soc. Rev, vol.38, p.1380, 2009.

F. Millange, C. Serre, N. Guillou, G. Férey, and R. I. Walton, Angew. Chem., Int. Ed, vol.47, p.4100, 2008.

C. Mellot-draznieks, J. Mater. Chem, vol.17, p.4348, 2007.

F. Salles, G. Maurin, C. Serre, P. L. Llewellyn, C. Knöfel et al., J. Am. Chem. Soc, vol.132, p.13782, 2010.

A. M. Walker, B. Civalleri, B. Slater, C. Mellot-draznieks, F. Corà et al., Angew. Chem., Int. Ed, vol.49, p.7501, 2010.

S. Watanabe, H. Sugiyama, H. Adachi, H. Tanaka, and M. Miyahara, J. Chem. Phys, vol.130, p.164707, 2009.

F. Coudert, A. Boutin, M. Jeffroy, C. Mellot-draznieks, and A. H. Fuchs, ChemPhysChem, vol.12, p.247, 2011.

D. Bahr, J. Reid, W. Mook, C. Bauer, R. Stumpf et al., Phys. Rev. B, vol.76, p.184106, 2007.

M. Tafipolsky, S. Amirjalayer, and R. Schmid, J. Phys. Chem. C, vol.114, p.14402, 2010.

A. V. Neimark, F. Coudert, A. Boutin, and A. H. Fuchs, J. Phys. Chem. Lett, vol.1, p.445, 2010.

I. Beurroies, M. Boulhout, P. L. Llewellyn, B. Kuchta, G. Férey et al., Angew. Chem., Int. Ed, vol.49, p.7526, 2010.

A. V. Neimark, F. Coudert, C. Triguero, A. Boutin, A. H. Fuchs et al., Langmuir, vol.27, p.4734, 2011.

Q. Ma, Q. Yang, A. Ghoufi, G. Férey, C. Zhong et al., Dalton Trans. 41, p.3915, 2012.

P. Serra-crespo, E. Stavitski, F. Kapteijn, J. Gascon, and . Adv, , vol.2, p.5051, 2012.

A. U. Ortiz, A. Boutin, A. H. Fuchs, and F. Coudert, Phys. Rev. Lett, vol.109, p.195502, 2012.

J. M. Ogborn, I. E. Collings, S. A. Moggach, A. L. Thompson, and A. L. Goodwin, Chem. Sci, vol.3, p.3011, 2012.

R. H. Baughman, S. Stafström, C. Cui, and S. O. Dantas, Science, vol.279, p.1522, 1998.

A. B. Cairns, A. L. Thompson, M. G. Tucker, J. Haines, and A. L. Goodwin, J. Am. Chem. Soc, vol.134, p.4454, 2012.

W. Li, M. R. Probert, M. Kosa, T. D. Bennett, A. Thirumurugan et al., J. Am. Chem. Soc, vol.134, p.11940, 2012.

R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders et al., Z. Kristallogr, vol.220, p.571, 2005.

A. D. Becke, J. Chem. Phys, vol.98, p.5648, 1993.

S. Grimme, J. Comput. Chem, vol.27, p.1787, 2006.

D. W. Lewis, A. R. Ruiz-salvador, A. Gómez, L. M. Rodriguez-albelo, F. Coudert et al., CrystEngComm, vol.11, p.2272, 2009.

W. Perger, J. Criswell, B. Civalleri, and R. Dovesi, Comput. Phys. Commun, vol.180, p.1753, 2009.

J. Tan, B. Civalleri, C. Lin, L. Valenzano, R. Galvelis et al., Phys. Rev. Lett, vol.108, p.95502, 2012.

J. F. Nye, Physical Properties of Crystals-Their Representation by Tensors and Matrices, 1985.

, Depending on the system's space group, some deformations may be equivalent and thus fewer than 6 deformation modes will have to be considered. In the case of the orthorhombic and monoclinic lattices studied here

A. Marmier, Z. A. Lethbridge, R. I. Walton, C. W. Smith, S. C. Parker et al., Comput. Phys. Commun, vol.181, p.2102, 2010.

, for the tensorial analysis code of the second-order elastic constants and visualization of the strain of lowest Young's modulus in MIL-140A

J. W. Morris, J. , and C. R. Krenn, Philos. Mag. A, vol.80, p.2827, 2000.

P. G. Yot, Q. Ma, J. Haines, Q. Yang, A. Ghoufi et al., Chem. Sci, vol.3, p.1100, 2012.

C. Volkringer, T. Loiseau, N. Guillou, G. Férey, and E. Elkaïm, Solid State Sci, vol.11, p.1507, 2009.

V. Guillerm, F. Ragon, M. Dan-hardi, T. Devic, M. Vishnuvarthan et al., Angew. Chem., Int. Ed, vol.51, p.9267, 2012.