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While the energetic stability of the large number of possible SiO2 polymorphs has been widely addressed by both experimental 
and theoretical studies, there is a real dearth of information on their mechanical properties. We performed a systematic study of 
the elastic properties of 121 pure silica zeolites, including both experimentally synthesized and hypothetical structures, by means 
of density-functional theory calculations. We found that most frameworks exhibit high elastic anisotropy, and the experimentally 
synthesized structures are among the most mechanically stable ones. We propose to extend the “feasibility” criterion proposed 
in earlier literature to include elastic anisotropy, allowing to further reduce the number of possible targets for synthesis of SiO2 
polymorphs. We also predict that a small number of hypothetical pure silica zeolites present large negative linear compressibility 
(NLC), which we attribute to the wine-rack motif of their framework.

1 Introduction

Pure silica zeolites are metastable porous phases of SiO2,1,2 

also known as all-silica zeolites, siliceous zeolites, zeosils, 
etc. Their porous structure is formed upon crystallization in 
the presence of templating agents, and retained after a calci-
nation process which removes the template but does not break 
the structural connectivity. In addition to the traditional ap-
plications of microporous materials, such as adsorption, sep-
aration and gas storage, they have a practical application that 
finds its root in the hydrophobicity of their pore surface: the 
combination of small pore size and nonwetting surface can 
be leveraged to adsorb, store, or dissipate energy.3 There is 
also a growing enthusiasm for their use as thin films as low 
k materials, chemical sensors, membrane reactors, and micro-
electronic devices.4–6

While more than 200 zeolite frameworks have been ob-
served in natural or synthesized zeolitic materials, less than 
a quarter of that number (46 out of 206) can be experimentally 
obtained as pure silica compounds. The synthesis of new pure 
silica zeolites remains a considerable challenge. In order to 
evaluate the viability of the zeolite frameworks in their SiO2 
form, researchers have worked on characterizing the lattice 
energies of various pure silica zeolite structures and linking 
it to their structural features. In their seminal work in 1994, 
Gale et al.7 used force field-based energy minimizations of
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10 silica frameworks, including 6 zeolite structures, and com-
pared the energies obtained to that of the thermodynamically
stable SiO2 polymorph α-quartz. They linked the relative en-
ergies of the frameworks to their density, a correlation which
was soon confirmed on a larger number of frameworks.8 This
correlation was turned into a feasibility criterion by the obser-
vation that all known pure silica zeolites synthesized to date
fall within 30 kJ/mol (per SiO2 unit) of the dense α-quartz
phase, which was then used to assess the viability of hypo-
thetical zeolite frameworks.9 Finally, the growth of computa-
tional power available has made it possible to perform system-
atic studies of the energetics of pure silica zeolite frameworks.
An example of such is the recent systematic work by Sastre
et al.10 based on well-established force fields, which showed
that a combination of both lattice energy and density may be
adopted as empirical criteria to assess the thermodynamic fea-
sibility of the frameworks.

However, there has been no systematic exploration of the
mechanical properties of pure silica zeolites to date. The elas-
tic properties of a few specific zeolites have been explored,
either experimentally11–13 or by means of molecular simu-
lation.2,14–16 The only large-scale study of pure silica zeo-
lites’ elastic properties was performed in 2000 by Grima et
al.14, based on force field energy minimization, but it was
exclusively focused on materials with negative Poisson’s ra-
tio (also called auxetic materials). Other properties, such as
the zeolites’ Young’s and shear moduli, as well as their linear
compressibility, were not discussed. Nonetheless, mechanical
properties are of great importance for practical applications of
these microporous materials, and in particular their Young’s
and shear moduli. There is currently a dire need for better



understanding how widely they can vary in a single family
of materials (SiO2 polymorphs) and how they are linked to
characteristic features of the inorganic framework. This need
is rendered even more pressing by the recent development of
new families of metal–organic frameworks, such as the Ze-
olitic Imidazolate Frameworks,17 that present a large number
of polymorphic crystalline structures18,19 isomorphic to zeo-
lites, and for which the links between framework topology,
linker functionalization, and energetic and mechanical prop-
erties have only recently been addressed.20,21

In the present paper, we report a large-scale study of the
energetic and mechanical properties of synthesized and hypo-
thetical pure silica zeolites. We performed quantum chemistry
calculations at the density functional theory (DFT) level of
theory, determining the relative energies of 163 different pure
silica frameworks and the second-order elastic constants ten-
sors of 121 of these frameworks. State-of-the-art DFT meth-
ods was shown on a series of pure silica structures to give good
agreement with other methodologies and experimental data.22

In such a large scale study, the use of parameter-free DFT-
based calculations avoids a dependence of the results obtained
on force field calibration, which may not be able to reproduce
equally well all the different zeolite frameworks (especially
those with different secondary building units).

2 Methodology

2.1 Energy calculations

We started from the full list of 206 structures (at the current
date) of the Database of Zeolite Structures23 maintained by
the Structure Commission of the International Zeolite Associ-
ation (IZA). These structures (atom coordinates and unit cell
parameters) were optimized with DLS-7624 assuming a pure
SiO2 composition. These initial structures were then fully re-
laxed by optimizing both atomic positions and unit cell param-
eters. 163 pure silica structures reached convergence within
the limits of the computational available: this represents 79%
of all the IZA-listed frameworks. The full list of reported in
Figure 1. The same calculations were also performed on the
α-quartz structure, for the purpose of comparison. All first
principles calculations were performed in the density func-
tional theory approach with periodic unit cell, full use of the
crystals’ symmetry elements and localized basis sets as imple-
mented in the CRYSTAL09 code.25 We used the B3LYP hy-
brid exchange-correlation functional,26 with empirical correc-
tion for the dispersive interactions following the “D2” scheme
of Grimme.27 All electron basis sets were used for oxygen
and silicon.28 The full results (optimized energies and struc-
tures in CIF format) are available as part of the Supporting
Information.

2.2 Elastic tensor calculations

The tensorial Hooke’s law establishes a general relationship
between the strain ε and the stress σ in a solid in the linear
elastic regime, through the fourth-order tensor C of second-
order elastic constants:29 σi j = ∑kl Ci jklεkl . Taking advantage
of the symmetries of stress and strain matrices and using the
Voigt notation, the elasticity tensor (or stiffness tensor) Ci jkl
can be expressed as a 6× 6 symmetric matrix of 21 elastic
constants Ci j. The crystal system of the material considered
yields additional symmetry constraints, further reducing the
number of independent elastic constants: 4 for cubic crystals,
5 in the hexagonal case, 6 or 7 for the tetragonal classes, 9 for
orthorhombic crystals and 13 for monoclinic crystals.29

The calculation of second-order elastic constants of the ma-
terials studied were performed with the use of the CRYS-
TAL09 code,25 whose implementation was detailed in Ref.
30. In short, starting from the optimized geometry of the re-
laxed crystal, each deformation mode of the crystal is scanned
and the second-order elastic constants can be calculated by fi-
nite differences as second derivatives of the energy:

Ci j =
1
V

(
∂ 2E

∂εi∂ε j

)
(1)

For each deformation mode, 5 different values of strain were
sampled (including the relaxed structure), with a total ampli-
tude of ±2%. The accuracy of this methodology is now well
established for the calculation of elastic constants in dense in-
organic crystals30 as well as porous materials: carbon nan-
otubes,31 boron nitride nanotubes32 and metal–organic frame-
works.33–35

From the second-order elastic constants of each material,
a full tensorial analysis was performed35,36 (see ref. 35 for
details) and key quantities were derived that characterize the
mechanical behavior of the structure in the elastic regime:
Young’s modulus, shear modulus and linear compressibility.
In an anisotropic medium such as a crystal, these properties
are directional; for each property, we calculated the minimal
and maximal values reached.

These calculations of elastic tensor were performed on a
total of 121 pure silica zeolite structures, i.e. 59% of the
IZA database (see Figure 1). These included 13 cubic struc-
tures, 26 hexagonal structures, 21 tetragonal structures, 40 or-
thorhombic structures and 21 monoclinic structures. The full
results are available as a spreadsheet as part of the Supporting
Information.

3 Results and discussion

3.1 Energetics of pure silica zeolites

Following the methodology of earlier works7,10 for studying
the feasibility of pure silica zeolites, we show in Figure 2 a



plot of lattice energy relative to α-quartz versus specific vol-
ume, for all 163 frameworks whose structure was optimized
in this work. Overall, an inverse correlation between stability
and specific volume is found, as is expected (i.e. lattice en-
ergy increases with volume, or decreases with density). We
also see, despite this overall correlation, there is significant
spread of the energies: in addition to the RWY framework,
an outlier nearly 100 kJ/mol less stable than α-quartz, a large
number of structures are very high in energy. The list of frame-
works with ∆E > 30 kJ/mol include OSO, JST, OBW, BOZ,
NPT, SOS, BSV, CZP, WEI, PUN and AFY. Moreover, we
can see that frameworks types that have been experimentally
synthesized as pure silica zeolites (red symbols in Fig. 2) all
have relatively low lattice energy, the larger one being FAU at
∆E ≈ 22 kJ/mol. The left pane of Figure 2 shows a zoom on
this low-energy region of the graph. There, it can be seen that
all known pure silica frameworks fall in a gray band of width
±15 kJ/mol. In addition, a large number of hypothetical pure
silica materials also fall in that region of the energy–density
diagram, indicating that with the right choice of template and
synthesis conditions, their synthesis should be achievable. Of
particular interest on this diagram are the points of lowest en-
ergy at a given density, such as MEP, SFN, UFI and VFI.

In addition, we can use these results to find correlations be-
tween lattice energy and other properties of the zeolite frame-
works. We start by noting that, among the synthesized pure
silica zeolites, those with 0D and 1D pore networks are present
in abundant numbers, while those with three-dimensional
channel system are underrepresented (see Table 1). In order
to understand this effect, we plot in Figure 3 the histograms
of lattice energies for channels as a function of the dimension-
ality of their pore network. There is an overall increase of
lattice energy from 0D to 3D, which can be attributed to the
energy–density correlation: networks with a channel system
of higher dimension are typically less dense. Furthermore, we
note that all the pure silica zeolites with a lattice energy higher
than 30 kJ/mol per SiO2 have 3D channels, with the exception
of the ASV framework.

These findings are overall in good agreement with the ear-
lier study by Bushuev et al.,10 therefore confirming the con-
clusions of their work and validating our DFT-based approach.
We refer the reader to the discussion in ref. 10 for a longer
discussion of the structure/stability relationship in pure silica
zeolites, and focus in the rest of this manuscript on their me-
chanical properties.

3.2 Young’s and shear moduli

We calculated the second-order elastic constants of 121 pure
silica zeolite structures, of which 92 are hypothetical struc-
tures and 29 have been experimentally synthesized. Among
the various elastic properties we calculated from those elas-

tic tensors, we focus in this section on the Young’s and shear
moduli, which characterizes the stiffness of the material in re-
sponse to uniaxial compression and shear, respectively. Be-
cause of the anisotropic nature of the crystals, these elastic
moduli are directional, i.e. they vary in space with the direc-
tion of the applied stress. Because one of the main interest in
mechanical properties of zeolites is their usually high mechan-
ical stability, we discuss here the minimum Young’s and shear
moduli for each framework; their anisotropy and its impact
will be discussed in the next section.

Figure 4 provides a graphical representation of the 121 pure
silica zeolites’ mechanical properties in a Young’s modulus–
shear modulus space. We first note the very impressive range
of both moduli in this family of materials, despite all of them
being formed of the same strong Si–O bonds: the minimal
Young’s modulus for pure silica zeolites ranges from 11.5 GPa
(SOS) to 114.5 GPa (MTN), and the minimal shear modulus
from 3.7 GPa (OWE) to 42.2 GPa (MTN). For each modulus,
the variations span an order of magnitude, which is remark-
able. We also see, as in most materials, shear modulus is usu-
ally weaker than Young’s modulus; however, both moduli a
strongly correlated. We thus propose to follow an alternative
way to characterize the “softness” of the frameworks, by look-
ing at the smallest eigenvalue λ1 of the 6×6 matrix of elastic
constants. This lowest eigenvalue corresponds to the softest
elastic modulus, i.e. to the stiffness of the material in the soft-
est deformation mode (the associated eigenvector), whether
this deformation mode is pure compression, pure shear or sum
of the two. This approach was recently proposed and validated
in a study of the flexibility of metal–organic frameworks.35

Another point that can be seen from Figure 4 is that, while
there is a certain spread, most of the SiO2 frameworks experi-
mentally attested have medium to large stiffness. In fact, only
3 of the synthesized pure silica frameworks have a Young’s
modulus lower than 35 GPa, while it accounts for more than
a third (36%) of the hypothetical frameworks. Just like there
is a known correlation between experimental feasibility and
lattice energy, there seem to be a correlation between feasibil-
ity and stiffness. In order to understand this correlation better
and to check whether it might be an indirect correlation via a
third quantity, we plotted in Figure 5 the correlations between
density, lattice energy and stiffness (as measured by the small-
est eigenvalue, λ1, of the elastic matrix). The results show
little in the way of correlation between stiffness and density
(or specific volume; left panel of Fig. 5): in that regard, me-
chanical stiffness is quite different from energetic feasibility,
which presents a clear correlation, although with some spread.
We can provide a quantitative confirmation of this conclusion
by calculating Pearson’s correlation coefficient for both sets
of data: it is −0.21 for stiffness vs. density, compared to 0.72
for energy vs. density.

On the right panel of Fig. 5, we can check the correlation be-



tween stiffness and lattice energy. There is now a modest cor-
relation (Pearson’s r of −0.29), which becomes quite strong
if you focus on the most feasible frameworks: Pearson’s r is
−0.57 for the points with ∆E ≥ 25 kJ/mol; the correspond-
ing linear regression is plotted as dashed line in Fig. 5). This
clear correlation is somewhat unexpected, as it links the rel-
ative stability of a framework with its elasticity, which is a
local property. However, we find no correlation between the
stiffness of the pure silica zeolites and the crystal class (sym-
bol color in Fig. 5) or symmetry of their framework. These
two facts lead us to conclude that an important factor in the
variations of stiffness within the family of pure silica zeolites
is the deformation of the Si–O bond lengths and Si–O–Si an-
gles in the frameworks: when bond lengths and bond angles
are strained, the lattice energy of the framework increases and
the framework stiffness diminishes, because its is weakened
by the strain.

3.3 Anisotropy of the elastic properties

As indicated earlier, because of the anisotropic nature of crys-
tals, monocrystalline elastic moduli are directional: Young’s
modulus E(u) depends on a direction, indicated by unit vec-
tor u, and the shear modulus G(u,n) depends on the shear
direction u and shear plane normal n. We investigate here the
anisotropy in pure silica zeolites’s elastic properties by look-
ing at the ratio of their maximal and minimal values. Fig-
ure 6 reports the (Emax,Emin) and (Gmax,Gmin) plots of the 121
pure silica zeolites studied in this work. While some frame-
works have little anisotropy (i.e. correspond to a point near
the y = x line in these diagrams), most pure silica zeolites ex-
hibit a large anisotropy in both their Young’s and shear mod-
uli. Some frameworks exhibit almost an order of magnitude
difference between their stiffest deformation mode and their
softest one.

The extent of the anisotropy of the two elastic moduli is
an important quantity: very high anisotropy usually indicates
limited mechanical stability of the material, which is in turn a
limiting factor for practical applications. For this reason, we
performed a more quantitative analysis of elastic anisotropy,
we define the anisotropy η as:

η = min
(

Emax

Emin
,

Gmax

Gmin

)
(2)

We then propose to plot the experimental and hypothetical
pure silica zeolites in an energy–stability diagram (∆E,η).
It clearly appears, on that diagram (Figure 7), that indeed
mechanical stability plays some role in the experimental fea-
sibility of zeolite frameworks as pure SiO2 materials: most
of the experimentally synthesized frameworks are grouped in
bottom-left area of the plot, corresponding to both low lattice
energy and low elastic anisotropy. We thus propose to add

mechanical stability, as characterized by low anisotropy of the
elastic properties, as a new criterion to feasibility of pure sil-
ica frameworks (in addition to the established density and en-
ergy criteria). We suggest that materials satisfying the condi-
tions of ∆E ≤ 20 kJ/mol per SiO2 and η ≤ 4 may be the most
promising pure silica frameworks yet undiscovered. From our
calculations, the list of most feasible framework types would
include MEP, CAS, LOS, LIO, AFG, ATO, CAN, EPI, DAC
and BCT.

3.4 Zeolites with negative linear compressibility

Negative linear compressibility (NLC) is a counterintuitive
property of some materials which, under hydrostatic compres-
sion, see one or more of their linear dimensions decrease.
Thermodynamics imposes that the bulk compressibility of a
material, which is the inverse of its bulk modulus, be posi-
tive: isotropic compression must lead to a decrease in volume.
For most materials, this decrease in volume stems from a de-
crease in all of their linear dimensions. However, a handful
of materials show NLC, i.e. while their overall volume di-
minishes upon compression, one or more of their dimensions
actually increase in the process. NLC is a rare and highly
desirable property, and practical applications of materials ex-
hibiting NLC include artificial muscles, actuators and pressure
sensors.37 In the search for materials with the largest possi-
ble NLC, researchers have looked for structures with specific
structural motifs, and in particular the wine-rack38 and hon-
eycomb37 topologies. Recent reports have evidenced NLC in
metal–organic frameworks,39 including several cases of colos-
sal negative linear compressibility in compliant metal–organic
frameworks based on the wine-rack motif.34,35 However, to
our knowledge, NLC has never been demonstrated in a zeolite
yet.

16 of the 121 pure silica zeolites studied in this work ex-
hibit negative linear compressibility, which corresponds to
13% of the frameworks studied. We thus predict that NLC
is not a rare phenomenon in zeolites, though it has never
been demonstrated experimentally, nor hypothesized from
ab initio calculations. The extent of the NLC of pure sil-
ica zeolites, measured by the linear compressibility βmin in
the direction where it is the most negative, varies between
βmin = −0.2 TPa−1 (for the AFN framework) and βmin =
−13.7 TPa−1 (for the GIS framework). The later is a re-
markably large value, in the same range as the strongest
NLC effects discovered very recently for inorganic ma-
terials (−75 TPa−1 for Ag3[Co(CN6)];40 −42 TPa−1 for
Zn[Au(CN2)]2;37 −12 TPa−1 for KMn[Ag(CN2)]3

41). More-
over, GIS is among the “feasible” pure silica zeolites, with a
lattice energy of 17.4 kJ/mol per SiO2 relative to α-quartz, and
a specific volume of 0.63 cm3/g. It is thus a good candidate
for the synthesis of a pure silica zeolite with large negative



linear compressibility. Other candidates are ATT, ABW, APC,
MSO, MER, PHI, UEI, AHT, AWO and LAU.

Finally, looking at the frameworks that exhibit NLC (the
three frameworks with the largest NLC are depicted in Fig. 8)
immediately reveals that they share a common feature: they all
have a wine-rack topology. Thus, while NLC in zeolites has
not been reported before, its mechanism is quite similar to that
observed in dense inorganic materials, molecular frameworks
and porous metal–organic frameworks.

4 Conclusion

We have performed the first systematic study of the elas-
tic properties of pure silica zeolites. By means of density
functional theory calculations, we have calculated the second-
order elastic constants of 121 SiO2 frameworks, including
members that have already been synthesized experimentally
as well as hypothetical structures. We showed that DFT cal-
culations confirm the correlation established by earlier work
between framework density and energetic stability. In order to
shed light into the little-known mechanical behavior of pure
silica zeolites, we analyzed their Young’s and shear moduli,
as well as their linear compressibility. We found that most of
the frameworks studied have high anisotropy of their elastic
properties. However, the frameworks that have been experi-
mentally synthesized tend to be among the most mechanically
stable ones, with relative low anisotropy. Thus, we propose
to extend the “feasibility” criterion proposed in earlier liter-
ature for pure silica zeolites to include elastic anisotropy, al-
lowing to further reduce the number of possible targets for
synthesis of SiO2 frameworks. Finally, we predict that a small
number of hypothetical pure silica zeolites present large neg-
ative linear compressibility (NLC) due the wine-rack motif of
their framework. If they were synthesized, such inorganic
nanoporous materials with NLC could have applications as
nano-actuators, pressure or gas sensors.
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0D 1D 2D 3D
synthesized 7 (18%) 15 (38%) 8 (21%) 9 (23%)

total 16 (10%) 52 (32%) 34 (21%) 61 (37%)

Table 1 Distribution of the pure silica zeolites with respect to the
dimensionality of their framework.
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Fig. 3 Histogram of framework energy (relative to α-quartz) as a
function of dimensionality of the channel system.
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Fig. 4 Young’s modulus and shear modulus of pure silica zeolites:
each point represent a single framework, red points correspond to
synthesized pure silica zeolites.
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Fig. 1 List of the 206 zeolite frameworks of the IZA database. In red: pure silica zeolites that have been synthesized to date; with blue
background: energy optimization and elastic constants calculated in this work; green background: energy optimization performed in this work.
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Fig. 5 Left: correlation between stiffness (measured by smallest
eigenvalue of the elastic matrix, λ1) and specific volume. Right:
correlation between stiffness and lattice energy relative to α-quartz;
different colors correspond to the different lattice systems.
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Fig. 6 Anisotropy of the Young’s modulus (E, left) and shear
modulus (G, right) of pure silica zeolites, by plotting their minimal
value against their maximal value. The black lines are the y = x
axes, and the grayed areas indicates anisotropy lower than 20%.



1 2 3 4 5 6 7 8 9
Elastic anisotropy

0

20

40

60

∆
E

  p
e

r 
 S

iO
2
  (

k
J 

/ 
m

o
l)

Fig. 7 Plot of the elastic anisotropy of pure silica zeolites vs. lattice
energy relative to α-quartz; red points correspond to synthesized
pure silica zeolites. The gray area corresponds to the feasibility
criterion proposed in the text.



Fig. 8 Representations of the GIS, SOS and ATT zeolite frameworks (from left to right). Edges correspond to Si atoms, vertices to Si—O—Si
links.


