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Abstract—Efficient resource utilization is a major concern for
large-scale computer platforms. One method used to lower energy
consumption and operational cost is to reduce the amount of idle
resources. This can be achieved by using malleability, namely,
the possibility for resource managers to dynamically increase or
decrease the amount of resources of jobs while they are running.

Decommissioning (i.e., removing from the cluster) the idle
nodes as soon as possible allows the resource manager to quickly
reallocate those nodes to other jobs. Challenges appear when such
nodes host part of a distributed storage system. Such storage
systems may need to transfer large amounts of data before
releasing the nodes, in order to ensure data availability and a
certain level of fault tolerance.

In this paper, we model and evaluate the performance of the
decommission operation when relaxing the level of fault tolerance
(i.e., the number of replicas) during this operation. Intuitively,
this is expected to reduce the amount of data transfers needed
before nodes are released, and thus allow nodes to be returned
to the resource manager faster. We quantify theoretically how
much time and resources are saved by such a fast decommission
strategy compared with a standard decommission that does
not temporarily reduce the fault-tolerance level. We establish
lower bounds for the duration of the different phases of a fast
decommission. We use the lower bounds to estimate when fast
decommission would be useful to reduce the usage of core-hours
and when not. We implement a prototype for fast decommission
and experimentally validate the lower bounds on the duration of
the operation and confirm in practice our theoretical findings.

Index Terms—Decommission, Fault Tolerance, Malleable Dis-
tributed Storage System, Elastic Distributed Storage System

I. INTRODUCTION

Improving the resource utilization of a platform is a chal-
lenge for its administrators. It directly links to better cost
effectiveness and higher productivity. One approach used to
improve resource utilization is to reduce the number of idle
nodes. This can be achieved by multiple ways, such as careful
scheduling, precise prediction of the required resources, or job
malleability.

Job malleability is the possibility for jobs to have their
resources resized at run time by the resource manager. Thus,
unused resources can be returned to the resource manager
and either shut down or reassigned to other jobs. Applications
also benefit from malleability; unused resources are released,
thus reducing the energy consumption and costs attributed to
that application at the same time as the core-hour usage is
decreased. Moreover, the capability to dynamically adjust the
number of resources available to a job allows the job to match
the workloads in order to have constant quality of service, even
if the workload is highly volatile. Many solutions have been

proposed to add malleability to platforms and applications.
Resource managers such as KOALA-F [1] and Morpheus [2],
are able to manage malleable jobs, and various frameworks [3],
[4], [5] enable the design of malleable applications.

Previous works focused on the malleability of computing
resources, however; and no distributed storage systems have
been designed to be malleable, even though many of them
include both commission (adding nodes) and decommission
(removing nodes) operations for maintenance purposes. In-
deed, adding nodes to a distributed storage system or removing
nodes from it involves many data transfers in order to balance
the load. These data transfers are assumed to be too slow for
practical use. The implemented rescaling operations (commis-
sion and decommission) are thus rightfully designed to limit
their impact on application performance as much as possible
and are not optimized for speed.

Having a truly malleable distributed storage system with fast
rescaling operations would enable many features for applica-
tions that need to deploy a distributed storage system colocated
with computation resources. In particular, applications could
benefit from fast data accesses to a co-deployed distributed
storage system and benefit from malleability.
• Reduction of the core-hours cost: When a storage node

is not needed by the application anymore, it can be given
back to the resource manager instead of being idle.

• Ideal scalability: The distributed storage system can
expand and contract with the malleable application using
it, ensuring consistent storage system performance.

• Data isolation: The data manipulated by an application
can be located solely on the computing nodes used by the
application and does not need to be stored on a shared
storage cluster. This is consistent with the recent trends
in HPC systems, which increasingly include local storage
on computing resources.

With a fast decommission, the platform can claim resources
back from applications quickly. This action allows the
resource managers to mitigate unpredictable events, such as
the submission of high-priority jobs or a sudden increase
in the workload of some jobs, by quickly allocating new
resources to the task.

In our previous work [6], we modeled node decommission
in replication-based distributed storage systems and provided
a theoretical lower bound for the duration of this operation.
Knowing a lower bound for this operation can help in several



ways.
• The lower bound can be used to evaluate the perfor-

mance of decommission mechanisms when designing a
distributed storage system on a given physical platform:
decommission would cost at least that lower bound on
that platform.

• It can also help the resource scheduler make scheduling
decisions. With it, the resource scheduler can anticipate
some minimum duration needed to decommission nodes
and make them available when they are needed.

• With the lower bound, a user can quickly estimate
whether to use malleability on a given platform: if the
lower bound is too high it means that the performance
cost of supporting malleability may not be compensated
by its expected benefits, so malleability would not be
useful in such a case.

• The study of this operation highlights inherent bottlenecks
that need to be mitigated for efficient implementations.

In our previous work, we assumed that the level of fault
tolerance of the storage system should not be weakened
during the decommission; if the system is configured to keep
k replicas of an object at all times, the number of replicas of
that object during the decommission should never be strictly
less than k. It also means that the decommissioned nodes
can be given back to the resource manager only at the end
of the decommission operation, since all objects need to be
sufficiently replicated on the remaining nodes.

This is an opportunity for optimization. As long as no data
is lost, decommissioned nodes can be returned to the resource
manager sooner. We denote this strategy as fast decommission.
It is composed of three phases. During the data-safekeeping
phase, the system ensures that at least one replica of each
object is present on the remaining nodes, transferring objects
if needed. Then, during the node release phase, the decommis-
sioned nodes are given back to the resource manager. Missing
replicas are recreated during the system stabilization phase.

With this strategy, the decommissioned nodes are effectively
made available for other jobs faster than they are with standard
decommission. However, fast decommission comes at the cost
of weakened fault tolerance during the system stabilization
phase: not all objects have their required number of replicas
until the stabilization finishes.

The idea of trading fault tolerance for performance is not
new, and is, in fact, rather intuitive. The main contribution
of this paper is to show, mathematically and experimentally,
that this intuition is incorrect in many situations. Our goal
is to make a step forward in better understanding the actual
trade-off that exists between the duration of the decommission
and its impact on fault tolerance. To this end, we provide
theoretical lower bounds for the two main phases of fast de-
commission: the data-safekeeping and the system stabilization
phases (the node release is assumed to be instantaneous).
We also implement fast decommission in Pufferbench [7]
[8], a benchmark designed to study the commission and

decommission mechanisms of distributed storage systems in
practice.

The lower bounds highlight interesting results. As expected,
the nodes decommissioned with the fast decommission mech-
anism are released in a fraction of the time needed by
the standard decommission. For distributed storage systems,
however, the phase of system stabilization that comes after the
release of the decommissioned nodes lengthen the duration of
the whole operation. When the bottleneck of the operation
is the network, the whole operation lasts as long as the
standard decommission. In the case of a storage bottleneck,
the duration of the operation is longer than that with the
standard decommission: fewer resources are available for the
stabilization phase, and thus the operation is longer.

The experimental results obtained with Pufferbench confirm
the trends obtained from the lower bounds. In particular, the
decommission times obtained are on average within 10% of
the lower bounds when the storage is the bottleneck and are
on average within 40% of the lower bounds when the network
is the bottleneck.

We also compared the number of core-hours needed for
the fast decommission and the standard decommission mech-
anisms. In the case of a network bottleneck, using fast decom-
mission always leads to a reduction in core-hour usage. The
gain in core-hours increases with the number of decommis-
sioned nodes. In the case of a storage bottleneck, however, no
gain in the usage of core-hours is realized unless many nodes
are decommissioned at once.

Overall, fast decommission can be an interesting trade-
off for the designer of distributed storage systems when the
network is the bottleneck: the consumption of core-hours is
reduced compared with that of standard decommission while
the duration stays the same for the distributed storage system.
Moreover, depending on the network bandwidth, the stabiliza-
tion phase, during which the fault tolerance is weakened, can
be short. However, the trade-off is less relevant in the case
of a storage bottleneck: the whole operation is longer than
the duration of the standard decommission, and there is no
gain in core-hours unless many nodes are decommissioned at
once. Fast decommission may even be detrimental depending
on the bandwidth of the storage devices. If the storage is slow,
such as a hard drive, the fault tolerance will be weakened
for the duration of the long stabilization phase, increasing the
probability of losing data.

This paper is organized as follows. Related work is pre-
sented in Section II. Assumptions detailed in Section III are
used to build the lower bounds in Section IV. In Section V,
we compare the experimental run times of an implementation
of fast decommission with the lower bounds. We discuss
the results in Section VI and present our conclusions in
Section VII.

II. RELATED WORKS

Many distributed and parallel file systems, such as Ceph [9]
and HDFS [10], include a decommission mechanism. How-
ever, it is available primarily for maintenance purposes. Hence
it is understandably optimized to reduce the performance



impact of the decommission on other jobs. It is not meant
to be fast.

Some distributed storage systems enable some form of
malleability: some of the machines of the cluster on which they
are deployed can be shut down to save energy. Rabbit [11],
Sierra [12], and SpringFS [13] are examples of such a system.
They have two main limitations. First, the shutdown nodes
still store data and may be turned back on at any time; thus
they cannot be given back to the resource manager for use
by another job. Second, the nodes that can be shut down are
determined by the distributed storage system and not by the
resource manager.

Some resource managers are able to manage malleable
distributed storage systems. The SCADS Director [14], for
example, is a resource manager designed to ensure service-
level objectives. It can add or remove storage nodes and move
the data, as well as the number of replicas needed for each
file. The SCADS Director adds malleability to the SCADS file
system [15]. Its authors focus their evaluation on the ability of
the system to maintain its service-level objective, however, and
not on the performance of the rescaling operations themselves.

Lim, Babu, and Chase [16] propose a resource manager
based on HDFS. This resource manager chooses when to
add and remove nodes and the parameters of the operations.
However, it simply uses HDFS “as is” and does not focus on
efficiency. Both Trushkowsky et al. [14] and Lim et al. [16]
focus on ways to leverage malleability rather that on improving
it. Therefore their work is complementary to this paper.

In a previous work [6], we provided lower bounds for
the time of a standard decommission in replication-based
storage systems. This standard decommission required that the
requested number of replicas for each object be maintained
throughout the decommission operation. In this paper, we
relax this constraint. We accept that the number of replicas
of the stored objects drops below its normal value during
the decommission. Of course, we still require that no data
be lost and that the replication factor be brought back to its
normal value at the end of the operation. This method of
decommission trades better resource utilization for temporarily
higher vulnerability to faults. Indeed, a storage node can be
given back to the resource manager as soon as at least one
replica of each of its data objects exists on remaining nodes.
Until new replicas are created, however, a crash may lead to
data loss. While this trade-off is not new, this paper aims to
model it precisely.

III. CONTEXT AND PROBLEM STATEMENT

In this section, we start by stating what the targeted storage
systems are. We then define the fast decommission operation
and the assumptions used in order to compute the lower
bounds of its duration.

A. Targeted distributed storage systems

Many similarities exist between the fast decommission
mechanism and the crash of a node followed by the recovery

of the system. In both cases, some storage nodes become un-
available, and some data has to be recreated on the remaining
nodes.

While several methods exist to recreate the missing data,
in this paper we consider only the distributed storage systems
that use data replication. This crash recovery mechanism is
popular: it is used in HDFS [10], Rabbit [11], and Sierra [12],
among others. It has the advantages of being simple and highly
parallel: most of the remaining nodes share some replicas with
the crashed nodes and thus can quickly restore the replication
level to its initial value. Moreover, little CPU power is required
for this technique.

We do not consider full-node replication, in which sets of
nodes host exactly the replicas of the same objects, since
the recovery mechanism is fundamentally different. Erasure
coding, used in systems such as Pelican [17], is not considered
either. With erasure coding, CPU power is needed to recreate
missing data. Thus a mathematical model of the CPU would
be required in order to compute a lower bound on the duration
of such operations.

Another major recovery mechanism, lineage, also requires
CPU power. Its principles greatly differ from those of data
replication. When a node crashes, the data that is lost is recre-
ated by executing again the jobs that generated it. Modeling the
lower bounds of such an operation would require knowledge
of the jobs that generated the data, however, and we therefore
do not consider this recovery mechanism in this paper. Lineage
is used in Tachyon [18] and is tightly coupled to Spark [19]
in order to regenerate the data.

Despite the similarities between fault tolerance mechanisms
and fast decommission, the fault tolerance mechanism cannot
be used directly to decommission nodes. The fault tolerance
mechanism of a distributed storage system has an upper limit
on the number of nodes that can crash simultaneously. The fast
decommission mechanism is an intentional operation. Hence,
even if more nodes are decommissioned than the number of
replicas, this decommission mechanism will prevent the loss
of data by first making sure that at least one replica of each
object exists in the remaining nodes.

B. Problem definition
We consider a replication-based distributed storage system

deployed on a cluster of N nodes. Each node initially hosts
an amount of data D. Each of the objects stored in the
system is replicated r times. The resource manager requests
the decommission of x arbitrarily chosen nodes.

A fast decommission is done in three main steps.
1) Data-safekeeping: During the data-safekeeping phase,

the objects that are stored only on the leaving nodes
have a replica transferred to remaining nodes to ensure
that no data is lost during the operation.

2) Nodes release: The leaving nodes are given back to
the resource manager. They no longer participate in the
distributed storage.

3) System stabilization: The missing replicas are recreated
by the remaining nodes to recreate the target replication
degree.



We define the time to availability tavail as the lower bound
of the date at which the data-safekeeping terminates. The
stabilization time tstab is the lower bound on the time at which
the whole process terminates; tstab is obtained assuming that
the leaving nodes participated only in the data-safekeeping
phase and were all removed from the cluster at time tavail .

C. Assumptions on the cluster infrastructure

We make three assumptions concerning the hardware of the
cluster to provide comprehensive lower bounds.

Assumption 1: Homogeneous cluster
All nodes have the same characteristics, in particular the

same network throughput (SNet ) and storage write and read
throughputs (SWrite, SRead).

Assumption 2: Ideal network
The network is full duplex, data can be sent and received

with a throughput of SNet at any time, and there is no
contention.

Assumption 3: Ideal storage system
The writing speed is not higher than the reading speed

(SWrite ≤ SRead). The storage device must share its I/O time
between reads and writes and thus cannot sustain simultane-
ous reads and writes at maximum speed (during any span of
time t, if a time tRead ≤ t is spent reading, the storage cannot
write for more than t− tRead , and conversely).

Assumption 3 holds for most modern storage devices.
Moreover, we assume that all resources are available to the
decommission and that either the network or the storage is
the bottleneck.

The network is the bottleneck if it limits the storage in
any situation: SNet < SRead . Conversely, the storage is the
bottleneck if it cannot read or write fast enough the data
received and sent on the network: SReadSWrite

SRead+SWrite
< SNet . There

exists a situation in which both storage and network are
bottlenecks for different nodes. Although not presented in this
paper this situation can be studied by extending the presented
approach. We leave this for future work.

D. Assumptions on the initial data distribution

The initial data distribution is important for the performance
of the decommission. Thus we make some assumptions in this
respect.

Assumption 4: Even data distribution
All N nodes initially host the same amount of data D.

Assumption 5: Uniform data replication
Each object stored in the storage system is replicated on

r ≥ 2 distinct nodes. The probability of finding a given object
on a node is uniform and independent of the node.

Assumption 6: Uniform data distribution
The probability of finding a given object on all the nodes

in a set of r distinct nodes is uniform and independent of the
chosen set.

These assumptions reflect the ideals of the load-balancing
policies implemented in many state-of-the-art distributed file
systems such as HDFS [10] and RAMCloud [20]. We assume
that the data is initially in an ideal load-balanced state.

E. Formalizing the problem
At the end of the decommission operation, the data distri-

bution on the remaining nodes should satisfy the following
objectives.

Objective 1: No data loss
No data can be lost during the decommission.

Objective 2: Maintenance of an even data distribution
All nodes host the same amount of data D′.

Objective 3: Maintenance of a uniform data distribution
All sets of r distinct nodes host the same amount of

exclusive data, independently of the choice of the r nodes.
These objectives ensure that the load balancing is ideal at

the end of the decommission.
All the listed assumptions and objectives are common

with standard decommission. The difference between both
decommission strategies comes from Objective 4.

Objective 4: Maintenance of the replication factor
Each object stored on the storage system is replicated on

r distinct nodes.
The fault tolerance requirements are relaxed during the

execution of the decommission. Instead of ensuring the repli-
cation factor of the objects at any time during decommission,
the replication factor is required to be at its initial level
only at the end of the decommission. This relaxation is the
main difference between the assumptions of this work and
the ones for the lower bounds of the standard decommission
established in our previous work [6]. The purpose of this paper
is to quantify theoretically how many resources are saved by
relaxing this constraint and how fast such a decommission
process can be, compared with a standard decommission.

IV. LOWER BOUNDS

In this section, we establish the lower bounds for the
duration of the data-safekeeping and stabilization phases (the
node release phase is assumed to be instantaneous). Because of
space limitations, all proofs are provided in a separate research
report.1

A. Data to move
Because data should not be lost during a decommission

(Objective 1), a minimum amount of data has to be moved
from the leaving nodes to the remaining ones. The objects to
move are the ones that have all their replicas on the leaving
nodes and that would have been lost had these nodes all
been removed at the same time. Thus, we first compute the
probability, pi, for an object to have exactly i replicas on the
leaving nodes. From it, we deduce the minimum amount of
data to transfer to remaining nodes Davail .

1https://hal.archives-ouvertes.fr/hal-01943964



pi =

0 if i > r,
(r

i)(
N−r
x−i )

(N
x)

for i≤ r.
(Def. 1)

Davail =

{
NDpr/r if x≥ r
0 in other cases.

(Def. 2)

Dstab is the lower bound of the amount of data to move in
order to recreate all replicas from the leaving nodes onto the
remaining nodes. It is the amount of data that was initially
present on the leaving nodes and includes Davail .

Dstab = xD (Def. 3)
Both Davail and Dstab are lower bounds of their respective

metric, they are obtained assuming that objects stored on the
nodes can be divided as needed to perfectly balance the data
on each node.

B. Case 1: Bottleneck at network level

In this section we assume that the network is the bottleneck
for the data transfers required by the data-safekeeping and
stabilization phases. The network is the bottleneck if it limits
the storage in any situation (SNet < SRead).

1) Time to availability: During the data-safekeeping phase,
only the leaving nodes send data to the remaining ones.
As defined by Assumption 2, the network is ideal without
interference, and each node can send and receive data with
a bandwidth SNet at the same time. Two possible bottlenecks
may appear, however: either sending data from the leaving
nodes or receiving the data on the remaining nodes.

Thus, the time to availability tavail depends on the number
of nodes leaving the cluster x, the amount of data to move
Davail , and the bandwidth of the network SNet . We express
tavail as follows.

tavail =

{
NDpr
rxSNet

if x≤ N/2
NDpr

r(N−x)SNet
otherwise.

(Prop. 1)

2) Stabilization time: The safekeeping phase has the prior-
ity over the stabilization phase; decommissioned nodes have
to be released as fast as possible. However, depending whether
the bottleneck of the safekeeping phase is receiving or sending
data, the stabilization can happen at the same time as the
safekeeping without slowing down the later. Indeed, when the
leaving nodes sending data are the bottleneck of the data-
safekeeping phase, the remaining nodes do not have their
network bandwidth saturated by the reception of the data.
Thus, data exchanges needed to stabilize the storage can start
before the end of the safekeeping phase without slowing it.

We denote as tover the time gained on the duration of
the stabilization phase by starting it before the end of the
safekeeping phase.

tover =

{
(N−2x)NDpr
rx(N−x)SNet

if x≤ N/2

0 otherwise.
(Prop. 2)

From this, we obtain the time needed to stabilize the
distributed storage system tstab. The stabilization phase can use
all available resources only after the end of the safekeeping
phase, however, some overlap between the two phases reduces
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Fig. 1. Lower bounds for the duration of the data-safekeeping phase and fast
decommission compared with the lower bound of the standard decommission,
in case of a network bottleneck. Each node initially hosts 50 GiB of data; the
network has a throughput of 1.25 GiB/s (10 Gib/s).

the duration of the stabilization by tover. Thus, tstab is defined
by prop. 3.

tstab = tavail− tover +
Dstab−Davail

SRecv

=
xD

(N− x)SNet
.

(Prop. 3)

3) Observations: The lower bound for the whole operation
(tstab) is exactly the lower bound for the standard decom-
mission established in our previous work [6] (in which the
replication factor is maintained). Thus, one can relax the
fault tolerance to release nodes faster (the fewer the‘ core-
hours used, the better the overall platform utilization) without
any difference in the length of the operation compared with
standard decommission.

We also infer that keeping the leaving nodes after they
have transferred the data needed for the fast decommission
does not speed the duration of the operation: in all cases,
receiving data on the remaining nodes is the bottleneck. It
would, however, have an impact on the ability of the cluster
to service read requests. The network is completely saturated
by the stabilization, servicing any request would slow it.

In Figure 1, we observe the differences between a stan-
dard decommission and a fast decommission; with the fast
decommission, the nodes are released in a fraction of the
time needed to decommission nodes while maintaining the
replication factor.

C. Case 2: Bottleneck at storage level

When the storage is the bottleneck, the situation is different
because of the limitations of the storage devices (Assump-
tion 3): data cannot be read and written at the same time. The
storage is a bottleneck if it cannot read and write all the data
received and sent on the network during the same period of
time ( SReadSWrite

SRead+SWrite
< SNet ).

1) Time to availability: The limitations on the storage,
however, do not have any impact on the time to availability
since leaving nodes only have to read data, and remaining
nodes only have to write it. Thus, the time to availability



depends on the data to move during the data-safekeeping phase
Davail and the reading and writing speeds of the storage devices
SRead and SWrite.

tavail =

{
NDpr

rxSRead
if x≤ NSWrite

SRead+SWrite
NDpr

r(N−x)SWrite
otherwise.

(Prop. 4)
2) Stabilization time: Similar to the first case, when the

bottleneck of the operation is reading data from the leaving
nodes, the storage of the remaining nodes is not saturated:
these nodes can read or write more data without slowing
down the data-safekeeping process. Thus, the remaining nodes
can exchange data to start the stabilization before the data-
safekeeping finishes and without impact on the time to avail-
ability.

Each remaining node has some time tover to exchange data
with other remaining nodes in the data-safekeeping phase.

tover =

{
(N−x)SWrite−xSRead
x(N−x)SReadSWrite

if x≤ NSWrite
SRead+SWrite

0 otherwise.
(Prop. 5)

We determine Se f f , the effective writing speed on the cluster
when the remaining nodes exchange data among themselves.
Se f f is not simply the product of the number of remaining
nodes by their individual writing speed. Indeed, to exchange
data among themselves, remaining nodes also must read data.

To avoid reading multiple times data from storage devices
with low read bandwidth, many systems use buffering. The
data read is stored in memory (that has a higher bandwidth)
and then sent to has many destinations as needed. The buffer-
ing relies on the bandwidth of the memory being a few times
higher than the bandwidth of the storage device. We denote as
R the ratio of data read to data written on the storage device
during the stabilization.

R =

1 in case of in-memory storage,
∑

r−1
i=1 pi

(r−1)pr+∑
r−1
i=1 ipi

otherwise.

(Prop. 6)
With the ratio R we deduce Se f f . Storage devices have their

operation time divided between reads and writes (they cannot
read and write at the same time). The cluster must also avoid
imbalances between the data read and written. If too much
data is read compared with the data written, the amount of
memory needed to store it before writing it will increase. On
the contrary, if too little data is read, the system will slow
since storage devices will have to wait for data to write. Thus,
the ratio of data read on data written during any given duration
should be equal to R. From this we deduce Se f f .

Se f f =
(N−x)SWriteSRead

SRead+RSWrite
(Prop. 7)

From the speed at which data is effectively exchanged on
the cluster during the stabilization (Prop. 7), the amount of
data to write (Def. 2 and 3), the duration of the overlap of
data-safekeeping and stabilization (Prop. 5), and the time to
availability (Prop. 4), we deduce the stabilization time tstab.
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tstab =
D

N− x

(
R

SRead
+

1
SWrite

)(
x− N pr

r

)
+

NDpr

r(N− x)Sw

(Prop. 8)
3) Observations: In the case of a storage bottleneck, the

data-safekeeping phase and thus the effective decommission
of the leaving nodes can be completed a lot faster than with
the standard decommission. It is done, however, at the cost of
a long stabilization phase: the leaving nodes were reading data
in the case of a standard decommission, reading that must be
done by remaining nodes in the case of a fast decommission.
This situation implies that, contrary to the case of a network
bottleneck, the longer the leaving nodes stay in the cluster,
the faster the stabilization is. The stabilization cannot be
faster than the standard decommission since the standard
decommission is the extreme case in which the leaving nodes
stay until the end of the stabilization.

During a fast decommission, the storage devices are fully
saturated. Thus, servicing any request can only slow the
decommission.

In Figure 2, we show the lower bounds for the duration
of a standard decommission and of the data-safekeeping and
stabilization phases of a fast decommission. Decommissioned
nodes are available in a fraction of the time needed for a
standard decommission. However, it comes at the cost of
having the distributed storage system unable to operate for
a longer time.

D. Core-hour usage

We study the core-hours usage of the strategies as it is
linked to the financial and energetical cost of the active nodes
during the operation. Comparing the consumption of core-
hours equates to comparing the cost of the strategies.

In Figure 3 we compare the usage of core-hours for the
standard decommission and the fast decommission in the case
of a network bottleneck. Since the numbers are based on the
lower bounds for the duration of the operations, the figure
represents the lower bound for the core-hour consumption.
We observe that using the fast decommission mechanism
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always reduces the core-hours consumption when the network
is the bottleneck. Moreover, the gain increases greatly with
the number of decommissioned nodes, and more than 50% of
the core-hours consumption can be saved when many nodes
are decommissioned at once.

In Figure 4 we compare the core-hours needed for the
decommission in the case of a storage bottleneck. When few
(less than NSWrite/(SRead + SWrite), less than 8 in this case)
nodes are decommissioned at once, there are no benefits
in using the fast decommission compared with the standard
decommission. When many nodes are decommissioned si-
multaneously, however, the core-hours consumption can be
reduced by more than 50%.

V. EXPERIMENTAL VALIDATION

In this section, we use Pufferbench to study the fast decom-
mission mechanism in practice.

A. Implementing fast decommission in Pufferbench
Pufferbench [7] is a modular benchmark designed to eval-

uate how fast one can rescale a distributed storage system on

a given infrastructure. We implemented the fast decommis-
sion mechanism in Pufferbench. Pufferbench computes and
recreates on the hardware all the I/O that are requiered for a
rescaling operation. It emulates a distributed storage system
for the duration of a rescaling operation.

The leaving nodes transfer to the remaining ones only the
data that is exclusively on them with high priority. The remain-
ing nodes have to recreate the missing replicas; however, the
operation is done with a lower priority. The leaving nodes can
leave the cluster only after the data is on the storage device;
they cannot leave if the data is only buffered in memory.

We also made sure that the implementation of the fast de-
commission matches the assumptions presented in Section III
in order to be able to safely compare the lower bounds and
the practical results.

B. Experimental setup

All measurements were done on Grid’5000 [21], the French
experimental testbed. Experiments were done on the grisou
cluster in Nancy. The cluster is composed of 51 nodes:
Dell PowerEdge R630 with Intel Xeon E5-2630 v3 Haswell
2.40 GHz (2 CPUs/node, 8 cores/CPU), 128 GiB of RAM,
and two 558 GiB HDD. The nodes are all connected with a
10 Gb/s Ethernet network to a common Cisco Nexus 9508.

Pufferbench emulates a DSS that initially hosts 50 GiB
per node. Ten measurements per configuration of Pufferbench
were done. The results are represented by using box plots
showing the minimum, the first quartile, the median, the third
quartile, and the maximum duration of the phases.

In order to create a network bottleneck, the data was stored
in memory because it has a bandwidth (6 GiB/s reading,
3 GiB/s writing) significantly higher than the network’s band-
width. Similarly, in order to generate a storage bottleneck, the
data was stored on the drives of the nodes (207 MiB/s reading,
199 MiB/s writing).

For each configuration (bottleneck and number of decom-
missioned nodes), ten measures of decommission times were
done for fast decommission and for standard decommission.

In this evaluation, we use a 20-node cluster as the initial
size, to show that the lower-bounds match the behavior ob-
served in practice. For other scales of cluster, the analytical
results should be used to determine the relevance of the fast-
decommission.

C. Decommission when the network is the bottleneck

Figure 5 shows the duration of the data-safekeeping and
stabilization phases when the network is the bottleneck. The
standard decommission has been added for comparison.

Compared with the lower bounds, the time to availability
is on average 37% slower, while the stabilization time is 32%
slower. For the same configurations, the standard decommis-
sion is, on average, 22% slower than its lower bound. Note that
the lower bounds cannot be reached in practice: they assume
an absence of latency and permanent maximum throughput
from both the storage and the network.

When few nodes are decommissioned (less than 6), the
difference in duration between the two strategies is negligible.
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When many nodes are decommissioned at once, however, there
is a large difference between the standard decommission and
the time to stabilization. For example, the fast decommission
is 12% slower than the standard decommission when 14 nodes
are decommissioned. The reason for this difference is the stress
on the network induced by the fast decommission. Indeed,
during the fast decommission, the remaining nodes have to
send and receive data at the maximum bandwidth speed in
order to stabilize the system quickly. During the standard
decommission, however, the sending load is distributed not
only on the remaining nodes but also on the leaving nodes,
reducing the overall load on each node. This difference does
not appear on the lower bounds because we assume that the
network is ideal (Assumption 2).

Figure 6 shows the number of core-hours consumed by
decommission normalized by standard decommission. In most
cases, using the fast decommission reduce the usage in the
number of core-hours. The gain in core-hours increases with
the number of decommissioned nodes. When most of the
nodes are decommissioned at once, the fast decommission
uses only 50% of the core-hours required by the standard
decommission. The predictions about the core-hour usage (see
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normal decommission obtained with Pufferbench and compared with the lower
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Section IV-D) are confirmed by these results.
When the network is the bottleneck, using fast decommis-

sion is a relevant choice. Even if fault tolerance is temporarily
reduced, the overall operation is slightly slower, but there is a
substantial gain in core-hours saved. This gain increases with
the number of decommissioned nodes.

D. Decommission when the storage is the bottleneck

The time to availability and the stabilization time obtained
with Pufferbench in the case of a storage bottleneck are pre-
sented in Figure 7. The duration of the standard decommission
has been added for reference.

On average, the time to availability is within 10% of its
lower bound, while the stabilization time is within 9% of its
lower bound. In comparison, the standard decommission is
within 17% of its lower bound. From this, we deduce that the
lower bounds are sound and can almost be reached in practice.

Figure 6 shows the number of core-hours needed for the
whole operation normalized by the core-hours needed for a
standard decommission. Using a fast decommission offers no
benefit in core-hours when the number of decommissioned
nodes is low. In this case, the core-hours needed to stabilize
the system are canceling the benefits of releasing the decom-
missioned nodes earlier. When a large number of nodes are
decommissioned at once, however, the gain in core-hours can
reach 50%. These results are in line with the core-hours that
lower bounds established in Section IV-D.

Depending on the scenario, using fast decommission when
there is a storage bottleneck can be detrimental or risky. If
most of the decommission concerns just a few nodes, the fast
decommission is detrimental: the fault tolerance is affected,
the whole operation is slower than a standard decommission,
and there are no gains in core-hours usage. If many nodes are
decommissioned at once, the gains in core-hours may be worth
the longer operation and the risk taken. However, the whole
operation takes a long time, during which the fault tolerance
is not ensured; thus there is a greater risk of losing data due
to a crash.



VI. DISCUSSION

In this section, we discuss some aspects of the lower bounds.

A. Simple assumptions for general conclusions

The assumptions used in this work are voluntarily few
and simple to enable general conclusions, not specific to
a particular platform or implementation. These assumptions
were used in previous works [6] [8], where they helped closely
model the behavior of HDFS.

B. Upper bound versus lower bound

Defining an upper bound for the operation is hardly possible
since nothing prevents a node from waiting for an arbitrarily
long time before sending any data to its destination. In
contrast, a lower bound can be used in many useful ways,
as explained in Section I.

C. Using the lower bound as a model

As shown in Section V, an efficient implementation of
fast decommission exhibits a performance that varies with the
number of decommissioned nodes in a way similar to the lower
bounds. Thus, we can use the lower bound as a model for
the fast decommission to predict the duration of the different
phases. For instance, in the case of the network bottleneck,
the lower bounds can be used as models with a coefficient of
determination of 0.979 for the time to preservation and 0.995
for the time to stabilization.

Once fitted to the decommission mechanism of a distributed
storage system, the model can be useful for resource managers
to estimate the duration of a decommission and evaluate
whether it is interesting to decommission nodes, when to do
so, and which nodes to decommission.

D. Preserving k > 1 replicas

For the lower bounds presented in Section IV, the fault
tolerance is simply ignored during the decommission: only
one replica of each object is required. However, one may
want to be able to tolerate 0 < k− 1 < r faults during the
decommission. In this case, at least k > 1 replicas of each
object must be preserved on the remaining nodes before the
leaving nodes are released.

Lower bounds for this situation can be defined. In the case
of a network bottleneck (Prop. 9 and Fig. 8), the time to
stabilization is the same as the standard decommission which
is also the time to stabilization when maintaining only one
replica. For the time to availability, we notice that receiving
the data is always the bottleneck, indeed, due to the uniform
data distribution (Assumption 6), each and every node hosts
some objects that are also stored by leaving nodes, and they
can replicate them among themselves.

tavail =
k

∑
i=1

ipr−k+i
ND

r(N− x)SNet

tstab =
xD

(N− x)SNet

(Prop. 9)

In the case of a storage bottleneck (Prop. 10 and 11, and
Figure 9) the time to availability is longer than when keeping
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Fig. 8. Lower bounds for the duration of the data-safekeeping phase and fast
decommission compared with the lower bound for the standard decommission
in case of a network bottleneck for k = 1 and k = 2. Each node initially hosts
50 GiB of data, and the network bandwidth is set to 1.25 GiB/s.

only one replica. On the other hand, the time to stabilization is
shorter. Indeed, since the leaving nodes stay for a longer time,
their drives are used to read data during a longer duration,
eventually reducing the reading load on the drives of the
remaining nodes. Note, however, that reaching the lower bound
of the stabilization time when k > 1 is hardly possible in
practice since all the data transferred during the preservation
would have to be kept in a buffer to reduce the reading
overhead during the stabilization, which induces very large
memory buffers.

Let Ravail be the ratio of the amount of data to read
on the data to write during the data-safekeeping phase.

Ravail =

1 for in-memory storage
∑

k
i=1 pr−k+i

∑
k
i=1 pr−k+i

in other cases.

tavail =

{
∑

k
i=1 ipr−k+i

D
r

SRead+RavailSWrite
SWriteSRead

if x < Ravail(N−x)SWrite
SRead

∑
k
i=1 ipr−k+i

ND
r(N−x)SWrite

in other cases.

(Prop. 10)

Let Rstab be the ratio of the amount of data to read on
the amount of data to write during the stabilization phase.

Rstab =

0 in case of storage in-memory
∑

r−k
i=1 pi

∑
r
i=1 ipi−∑

k
i=1 ipr−k+i

in other cases.

tstab = tavail +

(
r

∑
i=1

ipi−
k

∑
i=1

ipr−k+i

)
ND

r
RstabSWrite +SRead

(N− x)SReadSWrite

(Prop. 11)

VII. CONCLUSION

Efficient decommission is needed to leverage malleability
in distributed storage systems. In this work, we study fast
decommission, a decommission mechanism that makes the
released nodes available to the resource manager as soon as
possible by relaxing the fault tolerance. We provide lower
bounds for the various steps required for this decommission,
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and we validate them using a prototype implemented in
Pufferbench.

We demonstrate that fast decommission allows to return the
decommissioned nodes to the resource manager in a fraction
of the time required by standard decommission. We show that
in case of a network bottleneck, the duration of the whole
operation is only slightly longer than for a standard decom-
mission, while the core-hour usage is significantly reduced. In
this situation, the choice of using fast decommission is relevant
and can be considered by distributed storage system designers,
or even decided at run time.

In the case of a storage bottleneck, however, using a fast
decommission to release few nodes is detrimental to resource
usage. The whole operation lasts longer than standard decom-
mission; and although the released nodes are returned faster to
the resource manager, there is no overall gain in core-hours.

In both cases, the more nodes are decommissioned at once,
the higher the gain in core-hours. However, this also leads to
higher risks since the fault tolerance is weakened for a longer
period of time.

Using these lower bounds in order to design a resource
manager fully aware of distributed storage system malleability
is a challenge left for future work.
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manov, J. Yaniv, R. Mavlyutov, Í. Goiri, S. Krishnan, J. Kulkarni, and
S. Roa, “Morpheus: Towards Automated SLOs for Enterprise Clusters,”
USENIX Symposium on Operating Systems Design and Implementation,
pp. 117–134, 2016.

[3] S. S. Vadhiyar and J. J. Dongarra, “SRS: A Framework for Devel-
oping Malleable and Migratable Parallel Applications For Distributed
Systems,” Parallel Processing Letters, vol. 13, no. 2, pp. 291–312, 2003.

[4] L. V. Kale, S. Kumar, and J. Desouza, “A Malleable-Job System for
Timeshared Parallel Machines,” IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2002.
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