S. Abide and S. Viazzo, A 2D compact fourth-order projection decomposition method, J. Comput. Phys, vol.206, pp.252-276, 2005.

S. D. Abrahamson, J. K. Eaton, and D. J. Koga, The flow between shrouded corotating disks, Phys. Fluids A, vol.1, issue.2, pp.241-251, 1989.

V. Barcilon and J. Pedlosky, Linear theory of rotating stratified fluid motions, J. Fluid Mech, vol.29, pp.1-17, 1967.

P. Billant and F. Gallaire, Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities, J. Fluid Mech, vol.542, pp.365-379, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00015707

. Von, P. Böckh, and T. Wetzel, Wärmeübertragung, 2014.

S. Borchert, U. Achatz, and M. D. Fruman, Gravity wave emission in an atmosphere-like configuration of the differentially heated rotating annulus experiment, J. Fluid Mech, vol.758, pp.287-311, 2014.

A. A. Castrejón-pita and P. L. Read, Baroclinic waves in an air-filled thermally driven rotating annulus, Phys. Rev. E, vol.75, p.26301, 2007.

J. M. Chomaz, S. Ortiz, F. Gallaire, and P. Billant, Stability of quasi two-dimensional vortices, Lecture Notes in Physics: Fronts, Waves and Vortices in Geophysical Flows, vol.805, pp.35-59, 2010.

M. D. Dettinger, M. Ghil, C. M. Strong, W. Weibel, and P. Yiou, Software expedites singular-spectrum analysis of noisy time series, EOS Trans. AGU, vol.76, issue.2, p.21, 1995.

J. S. Fein and R. L. Pfeffer, An experimental study of the effects of Prandtl number on thermal convection in a rotating, differentially heated cylindrical annulus of fluid, J. Fluid Mech, vol.75, pp.81-112, 1976.

J. Flór, H. Scolan, and J. Gula, Frontal instabilities and waves in a differentially rotating fluid, J. Fluid Mech, vol.685, pp.532-542, 2011.

D. C. Fritts and M. J. Alexander, Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys, vol.41, p.1003, 2003.

W. Früh, Amplitude vacillation in baroclinic flows, Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, pp.61-84, 2015.

W. Früh and P. L. Read, Wave interactions and the transition to chaos of baroclinic waves in a thermally driven rotating annulus, Phil. Trans. R. Soc. Lond. A, vol.355, pp.101-153, 1997.

D. Fultz, R. R. Long, G. V. Owens, W. Bohan, R. Kaylor et al., Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions, Meteorological Monographs, vol.4, pp.1-104, 1959.

M. Ghil, M. R. Allen, M. D. Dettinger, K. Ide, D. Kondrashov et al., Advanced spectral methods for climatic time series, Rev. Geophys, vol.40, issue.1, 2002.

D. Goldstein, R. Handler, and L. Sirovich, Modeling a no-slip flow boundary with an external force field, J. Comput. Phys, vol.105, issue.2, pp.354-366, 1993.

U. Harlander, T. H. Larcher, Y. Wang, and C. Egbers, PIV-and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Exp. Fluids, vol.51, issue.1, pp.37-49, 2011.

U. Harlander, T. H. Von-larcher, G. B. Wright, M. Hoff, K. Alexandrov et al., Orthogonal decomposition methods to analyze PIV, LDV and thermography data of a thermally driven rotating annulus laboratory experiment, Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, pp.315-336, 2015.

J. E. Hart and S. Kittelman, Instabilities of the sidewall boundary layer in a differentially driven rotating cylinder, Phys. Fluids, vol.8, pp.692-696, 1996.

R. Hide, An experimental study of thermal convection in a rotating fluid, Phil. Trans. R. Soc. Lond. A, vol.250, pp.441-478, 1958.

R. Hide and P. J. Mason, Sloping convection in a rotating fluid, Adv. Phys, vol.24, pp.47-99, 1975.

S. Hien, J. Rolland, S. Borchert, L. Schoon, C. Zülicke et al., Spontaneous inertia-gravity wave emission in the differentially heated rotating annulus experiment, J. Fluid Mech, vol.838, pp.5-41, 2018.

P. Hignett, Characteristics of amplitude vacillation in a differentially heated rotating fluid annulus, Geophys. Astrophys. Fluid Dyn, vol.31, pp.247-281, 1985.

J. C. Hunt, Vorticity and vortex dynamics in complex turbulent flows, Trans. Can. Soc. Mech. Engng, vol.11, pp.21-35, 1987.

J. C. Hunt, A. A. Wray, and P. Moin, Eddies, streams, and convergence zones in turbulent flows, Studying Turbulence Using Numerical Simulation Databases, Proceedings of the 1988 Summer Program, pp.193-208, 1988.

T. N. Jacoby, P. L. Read, P. D. Williams, and R. M. Young, Generation of inertia-gravity waves in the rotating, thermal annulus by a localised boundary layer instability, Geophys. Astrophys. Fluid Dyn, vol.105, pp.161-181, 2011.

I. N. James, P. R. Jonas, and L. Farnell, A combined laboratory and numerical study of fully developed steady baroclinic waves in a cylindrical annulus, Q. J. R. Meteorol. Soc, vol.107, pp.51-78, 1980.

T. H. Von-larcher and A. Dörnbrack, Numerical simulations of baroclinic driven flows in a thermally driven rotating annulus using the immersed boundary method, Meteorol. Z, vol.23, pp.599-610, 2015.

T. H. Von-larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Process. Geophys, vol.12, pp.1033-1041, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00302687

V. Leppiler, A. Goharzadeh, A. Prigent, and I. Mutabazi, Weak temperature gradient effect on the stability of the circular Couette flow, Eur. Phys. J. B, vol.61, pp.445-455, 2008.

J. M. Lopez and F. Marques, Sidewall boundary layer instabilities in a rapidly rotating cylinder driven by a differentially corotating lid, Phys. Fluids, vol.22, p.114109, 2010.

A. F. Lovegrove, P. L. Read, and C. J. Richards, Generation of inertia-gravity waves in a baroclinically unstable fluid, Q. J. R. Meteorol. Soc, vol.126, pp.3233-3254, 2000.

H. Lu and T. L. Miller, Characteristics of annulus baroclinic flow structure during amplitude vacillation, Dyn. Atmos. Oceans, vol.27, pp.485-503, 1997.

G. D. Mcbain, S. W. Armfield, and G. Desrayaud, Instability of the buoyancy layer on an evenly heated vertical wall, J. Fluid Mech, vol.587, pp.453-469, 2007.

O. Morita and M. Uryu, Geostrophic turbulence in a rotating annulus of fluid, J. Atmos. Sci, vol.46, pp.2349-2355, 1989.

R. Oguic, S. Viazzo, and S. Poncet, A parallelized multidomain compact solver for incompressible turbulent flows in cylindrical geometries, J. Comput. Phys, vol.300, pp.710-731, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01299082

D. R. Ohlsen and J. E. Hart, Nonlinear interference vacillation, Geophys. Astrophys. Fluid Dyn, vol.45, issue.3-4, pp.213-235, 1989.

D. O'sullivan and T. J. Dunkerton, Generation of inertia-gravity waves in a simulated life-cycle of baroclinic instability, J. Atmos. Sci, vol.52, pp.3695-3716, 1995.

J. Pedlosky, Finite-amplitude baroclinic waves, J. Atmos. Sci, vol.27, pp.15-30, 1970.

R. L. Pfeffer, S. R. Applequist, R. Kung, C. Long, and G. Buzyna, Progress in characterizing the route to geostrophic turbulence and redesigning thermally driven rotating annulus, Theor. Comput. Fluid Dyn, vol.9, pp.253-267, 1997.

R. Plougonven and C. Snyder, Gravity waves excited by jets: propagation versus generation, Geophys. Res. Lett, vol.32, p.18802, 2005.

R. Plougonven and C. Snyder, Inertia-gravity waves spontaneously excited by jets and fronts. Part I: different baroclinic life cycles, J. Atmos. Sci, vol.64, pp.2502-2520, 2007.

R. Plougonven, H. Teitelbaum, and V. Zeitlin, Inertia gravity wave generation by the tropospheric midlatitude jet as given by the fronts and Atlantic storm-track experiment radio sounding, J. Geophys. Res, vol.108, p.4686, 2003.

J. M. Prusa, P. K. Smolarkiewicz, and A. A. Wyszogrodzki, EULAG, a computational model for multiscale flows, Comput. Fluids, vol.37, pp.1193-1207, 2008.

A. Randriamampianina, Inertia gravity wave characteristics within a baroclinic cavity, C. R. Méc, vol.341, pp.547-552, 2013.

A. Randriamampianina, . Crespo-del, and E. Arco, Inertia-gravity waves in a liquid-filled, differentially heated, rotating annulus, J. Fluid Mech, vol.782, pp.144-177, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01230540

A. Randriamampianina, W. Früh, P. L. Read, and P. Maubert, Direct numerical simulations of bifurcations in an air-filled rotating baroclinic annulus, J. Fluid Mech, vol.561, pp.359-389, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00085143

. Rayleigh and . Lord, On the dynamics of revolving fluids, Proc. R. Soc. Lond. A 93 (648), pp.148-154, 1917.

P. L. Read, Applications of singular systems analysis to 'baroclinic chaos, Physica D, vol.58, pp.455-468, 1992.

P. L. Read, M. J. Bell, D. W. Johnson, and R. M. Small, Quasi-periodic and chaotic flow regimes in a thermally-driven, rotating fluid annulus, J. Fluid Mech, vol.238, pp.599-632, 1992.

P. L. Read, P. Maubert, A. Randriamampianina, and W. Früh, Direct numerical simulation of transitions towards structural vacillation in an air-filled, rotating, baroclinic annulus, Phys. Fluids, vol.20, p.44107, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00326654

P. L. Read, E. P. Perez, I. M. Moroz, and R. M. Young, General circulation of planetary atmospheres: insights from rotating annulus and related experiments, Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, pp.9-44, 2015.

P. K. Smolarkiewicz, On forward-in-time differencing for fluids, Mon. Weath. Rev, vol.119, pp.2505-2510, 1991.

P. K. Smolarkiewicz and L. G. Margolin, On forward-in-time differencing for fluids: an Eulerian/semi-Lagrangian non-hydrostatic model for stratified flows, Atmos-Ocean Special, vol.35, pp.127-157, 1997.

P. K. Smolarkiewicz and L. G. Margolin, MPDATA: a positive definite solver for geophysical flows, J. Comput. Phys, vol.140, pp.459-480, 1998.

P. K. Smolarkiewicz, R. Sharman, J. Weil, S. G. Perry, D. Heist et al., Building resolving large-eddy simulations and comparison with wind tunnel experiments, J. Comput. Phys, vol.227, issue.1, pp.633-653, 2007.

J. L. Synge, The stability of heterogeneous liquid, Trans. R. Soc. Can, vol.27, pp.1-18, 1933.

W. Tollmien, Ein allgemeines Kriterium der Instabilität laminarer Geschwindigkeitsverteilungen, Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse NF, vol.1, pp.79-114, 1935.

J. Vanneste, Balance and spontaneous wave generation in geophysical flows, Annu. Rev. Fluid. Mech, vol.45, pp.147-172, 2013.
DOI : 10.1146/annurev-fluid-011212-140730

URL : http://www.maths.ed.ac.uk/~vanneste/papers/swg.pdf

R. Vautard, P. Yiou, and M. Ghil, Singular-spectrum analysis: a toolkit for short, noisy chaotic signals, Physica D, vol.58, pp.95-126, 1992.
DOI : 10.1016/0167-2789(92)90103-t

S. Viazzo and S. Poncet, Numerical simulation of the flow stability in a high aspect ratio Taylor-Couette system submitted to a radial temperature gradient, Comput. Fluids, vol.101, pp.15-26, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083054

M. Vincze, S. Borchert, U. Achatz, T. H. Von-larcher, M. Baumann et al., Benchmarking in a rotating annulus: a comparative experimental and numerical study of baroclinic wave dynamics, Meteorol. Z, vol.23, pp.611-635, 2015.

M. Vincze, I. Borcia, U. Harlander, and P. Le-gal, Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res, vol.48, p.61414, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01784794

A. Viùdez and D. G. Dritschel, Spontaneous generation of inertia-gravity wave packets by balanced geophysical flows, J. Fluid Mech, vol.553, pp.107-117, 2006.

P. D. Williams, T. W. Haine, and P. L. Read, Inertia-gravity waves emitted from balanced flow: observations, properties, and consequences, J. Atmos. Sci, vol.65, pp.3543-3556, 2008.
DOI : 10.1175/2008jas2480.1

URL : http://www.met.rdg.ac.uk/~williams/publications/i1520-0469-65-11-3543.pdf

F. Zhang, Generation of mesoscale gravity waves in upper-tropospheric jet-front systems, J. Atmos. Sci, vol.61, pp.440-457, 2004.