Skip to Main content Skip to Navigation
Journal articles

Instabilities and small-scale waves within the Stewartson layers of a thermally driven rotating annulus

Abstract : We report on small-scale instabilities in a thermally driven rotating annulus filled with a liquid with moderate Prandtl number. The study is based on direct numerical simulations and an accompanying laboratory experiment. The computations are performed independently with two different flow solvers, that is, first, the non-oscillatory forward-in-time differencing flow solver EULAG and, second, a higher-order finite-difference compact scheme (HOC). Both branches consistently show the occurrence of small-scale patterns at both vertical sidewalls in the Stewartson layers of the annulus. Small-scale flow structures are known to exist at the inner sidewall. In contrast, short-period waves at the outer sidewall have not yet been reported. The physical mechanisms that possibly trigger these patterns are discussed. We also debate whether these small-scale structures are a gravity wave signal.
Complete list of metadatas

Cited literature [67 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02116196
Contributor : Olivier Boutin <>
Submitted on : Tuesday, April 30, 2019 - 5:33:24 PM
Last modification on : Monday, July 27, 2020 - 1:00:05 PM

File

vonlarcher2018.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Thomas von Larcher, Stéphane Viazzo, Uwe Harlander, Miklos Vincze, Anthony Randriamampianina. Instabilities and small-scale waves within the Stewartson layers of a thermally driven rotating annulus. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2018, 841, pp.380 - 407. ⟨10.1017/jfm.2018.10⟩. ⟨hal-02116196⟩

Share

Metrics

Record views

113

Files downloads

247