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OPTIMAL RELEASE OF MOSQUITOES TO CONTROL DENGUE

TRANSMISSION

LUIS ALMEIDA1, ANTOINE HADDON2,3, CLAIRE KERMORVANT4, ALEXIS LÉCULIER5

YANNICK PRIVAT6, MARTIN STRUGAREK1, NICOLAS VAUCHELET7,

JORGE P. ZUBELLI8

Abstract. In order to prevent the propagation of human diseases transmitted

by mosquitoes (as dengue or zika), a solution is to release mosquitoes infected

by Wolbachia. In this study, we model the release and the propagation over
time and space of such infected mosquitoes in a population of uninfected ones.

The aim of this study is to investigate the best location in space of the release

to ensure invasion by the infected mosquitoes.

RÉSUMÉ. Afin de prévenir la propagation de maladies transmises à l’homme

par les moustiques (comme la dengue ou le zika), une solution consiste à
relâcher des moustiques infectés par la bactérie Wolbachia. Dans cette étude,

nous modélisons le relâcher et la propagation dans le temps et l’espace de ces

moustiques infectés dans une population de moustiques hôtes non infectés. Le
but de cette étude est d’étudier le meilleur emplacement dans l’espace des

relâchers afin d’assurer l’invasion par les moustiques infectés.

Introduction

Aedes aegypti is the main vector transmitting dengue viruses. This mosquito
can also transmit chikungunya, yellow fever and Zika infection. According to the
World Health Organization, 390 million people are infected by dengue every year
and 3.9 billion people, in 128 countries, are at risk of infection by dengue viruses.
As there is no treatment for dengue fever, the current method of preventing dengue
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virus transmission and epidemics is to target the vector, i.e. the mosquito. Be-
yond preventing mosquitoes from accessing egg-laying habitats by environmental
management and modification, one of the most promising control techniques is to
transform mosquito population with a virus-suppressing Wolbachia bacteria. The
idea of using Wolbachia for disease control was first proposed in the 1960s [8] but
applying it to Aedes aegypti population is very recent. Wolbachia bacterium strains
were isolated from Drosophila melanogaster in laboratory just before 2000 [7, 10]
but were introduced into Aedes aegypti embryos only on 2009 [11]. The capability
of this bacteria to suppress dengue virus and other pathogens transmission by Aedes
aegypti was shown in laboratory around 2010 [12, 2, 21]. It was also shown that
this bacteria shortens life span [22] and most of the infected adults do not reach the
infectious stage. But the most important modification induced by the bacteria is
cytoplasmic incompatibility (CI) [11]. Cytoplasmic incompatibility is used by the
bacteria to spread rapidly into natural population [18] by producing non-viable eggs
when uninfected females mate with infected males. Reproduction between infected
males and females lead to infected eggs. As this bacteria is vertically transmitted
(from mother to off-springs), uninfected males mating with infected females give
rise only to infected eggs.

Formally, a proportion 1 − sh of uninfected female’s eggs fertilized by infected
males actually hatch. Cytoplasmic incompatibility is complete when sh = 1. We de-
note by b1, respectively b2, the net fecundity rate of uninfected females, respectively
infected females. Death rate for uninfected mosquitoes is denoted d1. As Wolbachia
decreases lifespan, death rate of infected mosquitoes d2 verifies d2 > d1. Is is also
observed that Wolbachia infected mosquitoes tend to have reduced fertility, then
b2 ≤ b1. Finally, we denote κ the carrying capacity. Cytoplasmic incompatibility
and vertical transmission drive the spatial spread of the infected population pro-
ducing a bistable dynamic of Wolbachia [19]. If the infected population is installed
above a sufficient threshold frequency Θ compared to the uninfected population, it
will spread and tend to increase to 1, otherwise it will tend to decline to zero.

We are interested on optimizing the release of Wolbachia-infected mosquitoes
into a wild host population of mosquitoes. We denote u the release function.

For fixed maximal time T > 0 and domain Ω, the system of equation that we
consider is the following:

(1)



∂tn1 −D∆n1 = b1n1(1− sh
n2

n1 + n2
)(1− n1 + n2

κ
)− d1n1 in Ω,

∂tn2 −D∆n2 = b2n2(1− n1 + n2

κ
)− d2n2 + u in Ω,

∂νn1 = ∂νn2 = 0 on ∂Ω,

n1(0, x) = n0
1(x), n2(0, x) = n0

2(x) in Ω.

The system of equations (1) models the propagation across time and space of the
infected-mosquito population n2 into an already existing uninfected mosquito popu-
lation n1. The two coupled equation driving the dynamics of n1 and n2 are classical
bi-stable reaction-diffusion equations. Note that in the reaction term of the first
equation the term − n2

n1+n2
stands for the vertical transition of the disease whereas

the coefficient sh models that this vertical transmission may or not be perfect be-
cause of the cytoplasmic incompatibility. The diffusion coefficient is denoted D; it
is assumed to be the same for both population since both populations belongs to
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the same genus of mosquitoes. The last term of the second equation +u stands
here to model the releases of infected mosquitoes developed in laboratory: it is on
this control that we will act upon. More precisely, a question we want to address
in this work is to know what should be the shape of the release function u to be as
close as possible to the total invasion of the infected population into the domain.

The outline of this paper is the following. In the next section, we introduce the
optimal control problem and prove the existence of an optimum for this problem.
In Section 2, we consider a toy problem, which is a very simplified version of the
full problem, for which we can solve explicitly the optimal problem and find the
optimum. In Section 3, we investigate numerically the optimization of the spatial
releases of mosquitoes. Finally, we end this paper with a conclusion and perspective
for future works. An appendix is devoted to recalling the reduction of system (1).

1. Optimal Control Problem

We are going to simplify the problem. Instead of studying the coupled equations

(1), we are going to follow the proportion of mosquitoes p(t, x) = n2(t,x)
n1(t,x)+n2(t,x) as

in [15]. This reduction is clearly justified in the limit of large population in [15] (see
also [1, Section 2.3]). The formal computation is explained in the Appendix. In
order to simplify the reading, we perform the scaling x = x̃√

D
not to keep the dif-

fusion coefficient along the computations. Obviously, for the numerical simulations
performed in Section 3, we have to keep in mind this scaling.

Denoting by p the proportion of infected mosquitoes, and u the release function,
the dynamics is governed by the reaction-diffusion equation

(2)


∂p

∂t
−∆p = f(p) + ug(p), t ∈ (0, T ), x ∈ Ω,

∂νp(t, x) = 0, x ∈ ∂Ω,

p(0, x) = 0, x ∈ Ω,

where
(3)

f(p) = p(1−p) d1b2 − d2b1(1− shp)
b1(1− p)(1− shp) + b2p

and g(p) =
1

κ
· b1(1− p)(1− shp)
b1(1− p)(1− shp) + b2p

.

The general optimal control problem we want to investigate involves the least-
squares functional J defined by

(4) Ĵ(u) =
1

2

∫
Ω

(1− p(T, x))2 dx,

which models that one aims at steering the system as close as possible to the target
state. In some sense, it stands for the research of a control strategy ensuring the
persistence of infected mosquitoes at the time horizon T .

Of course, it is relevant from the biological point of view to impose several
constraints on the control function u. Indeed, the production of Wolbachia-infected
mosquitoes is limited, which imposes that the total number of mosquitoes released
is bounded. Hence, the control function u is assumed to belong to the set
(5)

UT,C,M =

{
u ∈ L∞([0, T ]× Ω), 0 ≤ u ≤M a.e. ,

∫ T

0

∫
Ω

u(t, x) dxdt ≤ C

}
.
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modeling an upper limit on the instantaneous number of Wolbachia-infected indi-
viduals released at time t, as well as on the total number of released mosquitoes.

We then deal with the following optimal control problem:

(Pfull) inf
u∈UT,C,M

Ĵ(u).

Since this problem involves the minimization over function depending on time and
space variables, it is difficult to study. Then, we will reduce it to a simpler one by
assuming that the time distribution of the control function is given.

1.1. Modeling of the optimal control problem. In order to weaken the diffi-
culty of Problem (Pfull), we introduce a simpler, although still relevant, problem
by assuming that:

• releases are done periodically in time (for instance every week) and are
impulses in time1;
• at each release, the largest allowed amount of mosquitoes is released, corre-

sponding to the maximal production capacity per week (which is relevant,
according to the comparison principle).

As a consequence, we will be interested in determining the optimal way of releasing
spatially the infected mosquitoes. Let us denote by t0 = 0 < t1 < . . . < tN =
T , ti = i∆T , the release times. Rewriting the L1 constraint on the control as
〈u, 1〉D′,D((0,T )×Ω) ≤ C, the control function reads

u(t, x) =

N−1∑
i=0

ui(x)δ{t=ti}, with

N−1∑
i=0

∫
Ω

ui(x) dx ≤ C,

where the pointwise constraint is modified into 0 ≤ ui(·) ≤M .
The new optimal design problem reads

(P ′full) inf
u∈VT,C,M

J̃(u), where u = (ui)0≤i≤N−1, J̃(u) = J

(
N−1∑
i=0

ui(·)δ{t=ti}

)
and

VT,C,M =

{
u = (ui(·))0≤i≤N−1,

0 ≤ ui ≤M a.e. in Ω, i ∈ {0, . . . , N − 1} ,
N−1∑
i=0

∫
Ω

ui(x) dx ≤ C

}
.

It is possible to recast System (2) without source measure terms, coming from the
specific form of the control functions. For the sake of simplicity, we provide here
a naive formal analysis, but claim that this can be proven rigorously by using a
standard variational analysis.

Let us approximate the Dirac measure at t = ti by the function 1
ε1[ti,ti+ε].

Making the change of variable t = ti + τε, and introducing p̃ given by p̃(τ, x) =
p(t, x), one gets from system (2) that p̃ solves

∂p̃

∂τ
− ε∆p̃ = εf(p̃) + uig(p̃). τ ∈ [0, 1], x ∈ Ω.

1We consider Dirac measures since at the time-level of the study (namely, some generations),
the release can be considered as instantaneous.
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Letting formally ε go to 0 and denoting, with a slight abuse of notation, still by p̃
the formal limit of the system above yields

(6)
∂p̃

∂τ
(τ, x) = ui(x)g(p̃(τ, x)), τ ∈ [0, 1], x ∈ Ω.

Let us denote G the anti-derivative of 1
g vanishing at 0, namely

G(p) =

∫ p

0

dq

g(q)
.

Then, by a direct integration of (6) on [0, 1], we obtain

G(p̃(1, x)) = G(p̃(0, x)) + ui(x), x ∈ Ω.

Coming back on the function p yields

p(t+i , x) = G−1(G(p(t−i , x)) + ui(x)), x ∈ Ω.

Hence we arrive at the system
(7)

∂p

∂t
−∆p = f(p), t ∈ (0, T ) \ {ti}i∈{1,...,N−1}, x ∈ Ω,

∂νp(t, x) = 0, x ∈ ∂Ω,

p(0+, ·) = G−1(u0(·)),
p(t+i , ·) = G−1

(
G(p(t−i , ·)) + ui(·)

)
, i ∈ {1, . . . , N − 1}

and the optimization problem reads

(Preduced) inf
u∈VT,C,M

J(u) with J(u) =
1

2

∫
Ω

(1− p(T, x))2 dx ,

where p is the solution of (7). In the next Section, we investigate the existence of
solutions for this problem.

1.2. Existence of minimizers.

Theorem 1. Problem (Preduced) has a solution.

Proof. For the sake of readability, we only provide the proof in the case N = 2.
Indeed, there is no additional difficulty to deal with the general case whose proof
follows exactly the same lines. The proof is divided into several steps.

Let un = {uni }i∈{1,...,N} ∈ (VT,C,M )N be a minimizing sequence for Problem

(Preduced).
Notice that, since u belongs to VT,C,M and G−1 takes its value in [0, 1[, we infer

from the maximum principle that 0 ≤ p(t, ·) < 1 for a.e. t ∈ [0, T ] so that one has
for all u ∈ VT,C,M

0 ≤ J(u) ≤ |Ω|
2
.

It follows that infu∈VT,C,M
J(u) belongs to (0, |Ω|2 ) and, in particular, is finite.

Step 1: Convergence of the minimizing sequence.
Let pn be the solution to (7) associated to the control function un and let us
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introduce

vn0 (.) = un0 (.)

vn1 (.) = G−1(G(pn(t−1 , .)) + un1 (.)).

By induction, one easily shows that vn is uniformly bounded in L∞. Since the
class VT,C,M is closed for the L∞ weak-star topology, there exists v∞ ∈ VT,C,M such
that, up to a subsequence, vn converges weakly-star to v∞ in L∞. Here and in the
sequel, we will denote similarly with a slight abuse of notation a given sequence
and any subsequence.

Multiplying the main equation of (7) by pn and integrating by parts, we infer
from the above estimates the existence of a positive constant C such that

1

2

∫ T

0

∫
Ω

∂t(p
n(t, x)2)dxdt+

∫ T

0

∫
Ω

|∇pn(t, x)|2dxdt ≤ C

for every n ∈ N, which also reads

1

2

∫
Ω

([
(pn(t, x))2)

]t=t1
t=0

+
[
(pn(t, x))2)

]t=T
t=t1

)
dx+

∫ T

0

∫
Ω

|∇pn(t, x)|2 dxdt ≤ C

for every n ∈ N.
By using the pointwise bounds on pn, it follows that pn is uniformly bounded

in L2([0, T ], H1(Ω)). Furthermore, by using (7), one gets that the sequence ∂tp
n is

uniformly bounded in L2([0, T ],W−1,1(Ω)). According to the Aubin-Lions theorem
(see [14]) we infer that pn converges (up to a subsequence) to p∞ ∈ L2([0, T ], H1(Ω)),
strongly in L2([0, T ], L2(Ω)) and weakly in L2([0, T ], H1(Ω)). Passing to the limit
in (7) yields that p∞ is a weak solution to

(8)

{
∂tp
∞ −∆p∞ = f(p∞), t ∈ (0, T ), x ∈ Ω,

∂νp
∞(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω,

It is standard that any solution to this bistable reaction-diffusion equation is
continuous in time.

Introducing u∞0 := G(p∞(0+, .)) and u∞1 := G(v∞1 ) − G(p∞(t−1 , .)), one shows
that p∞(t−1 , .) = v∞1 (.) by passing to the limit as n → +∞ in the variational
formulation on pn, using adapted test-functions belonging to

V1 =
{
q ∈ C∞([0, T [, C∞(Ω) ∩ C0(Ω̄)) whose support is contained in [ti, ti+1[

}
.

This is a consequence of the weak convergence of pn in H1(Ω) to p∞. Notice, in par-
ticular, that G(vn1 ) converges weakly star in L∞ to G(v∞1 ), which is a consequence
of the continuity and convexity2 of G for p ∈ [0, 1).

Step 2: Conclusion.
Let us first show that u∞ belongs to VT,C,M . Since the derivative of G is 1/g which
is positive, G is increasing and therefore, one has 0 ≤ u∞ ≤ m a.e. in Ω.
For the integral condition (namely,

∫
Ω
u ≤ C), let us distinguish between two cases:

Case 1: if m|Ω| ≤ C, the conclusion follows immediately.

2Indeed, one has G′′(p) = κb2
(1− shp2)

((p− 1)(shp− 1))2
. which is positive whenever p belongs to

[0, 1].
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Case 2: if m|Ω| > C, let us use that G is, as aforementioned, lower semi-
continuous for the weak-star topology of L∞. Thus, we deduce that∫

Ω

u∞ =

∫
Ω

G(v∞) ≤ lim inf
n→+∞

∫
Ω

G(vn) = lim inf
n→+∞

∫
Ω

un ≤ C.

It follows that u∞ belongs to VT,C,M and one concludes by using the Fatou Lemma:

J(u∞) =
1

2

∫
Ω

(1− p∞(T, x))2dx =
1

2

∫
Ω

lim inf
n→+∞

(1− pn(T, x))2dx

≤ lim inf
n→+∞

1

2

∫
Ω

(1− pn(T, x))2dx = lim inf
n→+∞

J(un) = inf
u∈VT,C,M

J(u).

We finally infer that u∞ solves Problem (Preduced). �

Remark 1. The uniqueness issue remains open, even for simple domain. It is
likely that symmetries of the release domain play an important role.

It is interesting to notice that, in a very particular case, we have an explicit
expression of the minimizer for this problem.

Proposition 1. Let N ∈ N∗ and M ≤ C
|Ω| . Then u = M is the unique solution of

Problem (Preduced).

Proof. It is a direct application of the comparison principle. Let u∗ be a solution
of Problem (Preduced). By contradiction, let us assume that u∗ is not identically
equal to M a.e. in Ω. Then, let ti be a release time for which the associated control
function u∗i is not identically equal to M in Ω. Recall that u∗i ≤M . Let us denote
by p∗ the solution of the problem (2) associated to the control function u∗. Let uM

be the control function defined by

uMi = M and uMj = u∗j for all j ∈ {0, . . . , N − 1}\{i}.

Let pM be the solution of (2) associated to uM identically. Since G−1 is an increas-
ing function by the comparison principle we have for all time t ∈ [0, T ] and a.e.
x ∈ Ω,

0 < p∗(t, x) ≤ pM (t, x) < 1.

Evaluating this expression at time t = T , the expected conclusion follows by noting
that the constant function equal to M on (0, T )× Ω belongs to UT,C,M . �

1.3. Computation of derivatives. As a preliminary remark, we claim that for
any element u of the set VT,C,M and any admissible perturbation h, the mapping
VT,C,M 3 u 7→ p ∈ L2(0, T,H1(Ω)), where p denotes the unique weak solution of
(7), is differentiable in the sense of Gâteaux at u in the direction h. Indeed, proving
such a property is standard in calculus of variations and rests upon an application
of the implicit function theorem. In the sequel, and with no confusion possible, we
will denote by ṗ the Gâteaux-differential of p at u in direction h and by 〈dJ(u),h〉
the Gâteaux-differential of J at u in direction h, namely

〈dJ(u),h〉 = lim
ε↘0

J(u + εh)− J(u)

ε
.

Let us make the cone of admissible perturbations precise. We call “admissible
perturbation” any element of the tangent cone Tu,VT,C,M

to the set VT,C,M at u.
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Definition 1. The cone Tu,VT,C,M
is the set of N -tuples h = (h0, . . . , hN−1) ∈

(L∞(Ω))N such that, for any i ∈ {0, . . . N − 1} and for any sequence of positive
real numbers εn decreasing to 0, there exists a sequence of functions hni ∈ L∞(0, T )
converging to hi as n → +∞, and ui + εnh

n
i ∈ VT,C,M for every n ∈ N (see e.g.

[5]).

Proposition 2. Assume that N = 1. Let u = (u0) ∈ VT,C,M and h = (h0) ∈
Tu,VT,C,M

. One has

〈dJ(u),h〉 =

∫
Ω

h(x)(G−1)′(u0(x))q(0, x) dx,

where q is the unique solution of the backward problem
−∂tq(t, x)−∆q(t, x)− f ′(p(t, x))q(t, x) = 0, (t, x) ∈ (0, T )× Ω,

∂nq(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

q(T, x) = p(T, x)− 1, x ∈ Ω.

Proof. By using the preliminary discussion, one has

(9) 〈dJ(u),h〉 =

∫
Ω

ṗ(T, x)(p(T, x)− 1) dx,

where ṗ denotes the unique solution of the system

(10)


∂ṗ

∂t
−∆ṗ = f ′(p)ṗ, t ∈ (0, T ), x ∈ Ω,

∂ν ṗ(t, x) = 0, x ∈ ∂Ω,

ṗ(0+, ·) = (G−1)′(u0(·))h.

Let us multiply the main equation of this system by q and then integrate by parts
with respect to the variables t and x. By using in particular the Green formula, we
get successively that∫ T

0

∫
Ω

q
∂ṗ

∂t
dxdt = −

∫ T

0

∫
Ω

ṗ
∂q

∂t
dxdt+

∫
Ω

q(T, x)ṗ(T, x) dx−
∫

Ω

q(0, x)ṗ(0+, x) dx,

−
∫ T

0

∫
Ω

q∆ṗ dxdt = −
∫ T

0

∫
Ω

ṗ∆q dxdt,

and therefore,

〈dJ(u),h〉 =

∫
Ω

q(T, x)ṗ(T, x) dx =

∫
Ω

q(0, x)ṗ(0+, x) dx,

yielding the desired conclusion. �

Remark 2. For practical purposes, it may be useful to notice that

q(t, x) = q̃(T − t, x), t ∈ [0, T ], x ∈ Ω,

where q̃ denotes the solution of the initial boundary value problem
∂tq̃(t, x)−∆q̃(t, x)− f ′(p(T − t, x))q̃(t, x) = 0, (t, x) ∈ (0, T )× Ω,

∂nq̃(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

q̃(0, x) = p(T, x)− 1, x ∈ Ω.
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2. A toy Problem

This section is devoted to investigating a simpler version of (Pfull) corresponding
to the case N = 1 with f = 0. More precisely, let p be the solution of

(11)


∂p

∂t
−∆p = 0, t ∈ (0, T ), x ∈ Ω,

∂νp(t, x) = 0, x ∈ ∂Ω,
p(0+, ·) = u0(·).

Then, the optimization toy problem reads

(Ptoy) inf
u0∈VT,C,M

Ĵ(u0) with Ĵ(u0) =
1

2

∫
Ω

(1− p(T, x))2 dx ,

where p ∈ C0([0, T ], L2(Ω)) is the unique solution of Equation (11). Note that the
equation (11) has to be understood in a weak sense, since u0 ∈ L∞(Ω) ⊂ L2(Ω)
(see for example [17, Section 10.7]).

For this simple problem, we are able to solve explicitely the optimization prob-
lem :

Theorem 2. Problem (11) has a unique solution u0, which is constant and equal
to min

(
1,M, C|Ω|

)
.

Proof. First, note that Problem (Ptoy) has a solution. Indeed, it is standard that

the mapping L2(Ω) 3 u0 7→ p ∈ C0([0, T ], L2(Ω)) is continuous. Therefore, so is Ĵ
by composition of continuous mappings. The conclusion follows by observing that
VT,C,M is a compact subset of L2(Ω).

The proof relies on a well-adapted rewriting of the criterion Ĵ . For that purpose,
let us introduce the Neumann operator −∆N on Ω defined on

D(−∆N ) = {y ∈ H2(Ω) | ∂y
∂n |∂Ω

= 0 and

∫
Ω

y(x) dx = 0}.

According to the spectral theorem, there exists an orthonormal family (φj)j≥1 con-
sisting of (real-valued) eigenfunctions of −∆N , associated with the non-decreasing
sequence positive eigenvalues (λj)j≥1. Moreover, by setting λ0 = 0 and φ0 = 1√

|Ω|
,

the sequence (φj)j≥0 is a Hilbert basis of L2(Ω) and any solution p of (11) can be
expanded in a unique way in L2(Ω) as

(12) p(t, x) =

+∞∑
j=0

〈p(0, ·), φj〉L2(Ω)e
−λjtφj(x) =

+∞∑
j=0

u0je
−λjtφj(x),

with u0j = 〈u0, φj〉L2(Ω). By expanding the square in the definition of Ĵ , we then
infer that

Ĵ(u0) =
|Ω|
2
−
∫

Ω

p(T, x) dx+
1

2

∫
Ω

p(T, x)2 dx

=
|Ω|
2
−
√
|Ω|u00 +

1

2

+∞∑
j=0

e−2λjTu2
0j

=
|Ω|
2
−
∫

Ω

u0(x) dx+
1

2

+∞∑
j=0

e−2λjT

(∫
Ω

u0(x)φj(x) dx

)2

.
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Let u be a solution of Problem (11) and h ∈ Tu0,VT,C,M
. Then, one has

〈dĴ(u0), h〉 = −
∫

Ω

h(x) dx+

+∞∑
j=0

e−2λjT

(∫
Ω

u0(x)φj(x) dx

)(∫
Ω

h(x)φj(x) dx

)
=

∫
Ω

h(x)ψ(x) dx,

where ψ(x) = −1 +
∑+∞
j=0 e

−2λjTu0jφj(x).
The first order optimality conditions reads

(13) 〈dĴ(u0), h〉 ≥ 0, ∀h ∈ Tu0,VT,C,M
.

The analysis of such optimality condition is standard in optimal control theory (see
for example [9]) and yields the existence of a Lagrange multiplier ξ ≤ 0 such that

• on {u0 = M}, ψ(x) ≤ ξ,
• on {u0 = 0}, ψ(x) ≥ ξ,
• on {0 < u0 < M}, ψ(x) = ξ,
• ξ

(∫
Ω
u0(x) dx− C

)
= 0 (complementarity condition).

Let us investigate the optimality of constant functions. To this aim, notice that
the functional Ĵ is strictly convex3. It follows that the optimality conditions (13)
are at the same time necessary and sufficient and that Problem (11) has a unique
solution.

Let u0 be an admissible constant function for Problem (Ptoy). Then, u0 ∈ [0,M ]
whenever M ≤ C/|Ω| and u0 ∈ [0, C/|Ω|] elsewhere.

Furthermore, if u0 is constant, then,

ψ(x) = −1 + u0.

Let us now investigate each case separately. If u0 = 0, then, from the complemen-
tarity condition, ξ = 0 and ψ(x) = −1 which is in contradiction with the optimality
conditions above. Let us assume that u0 6= 0.

• If u0 = C
|Ω| , then this is admissible only if C ≤ M |Ω|. In this case we

find ψ(x) = −|Ω|+C
|Ω| , and thus the optimality conditions are satisfied if and

only if |Ω| ≥ C. All in all, u0 = C
|Ω| is indeed a solution if, and only if,

min(1,M)|Ω| ≥ C.
• If u0 6= C

|Ω| : then ξ = 0. Either u0 = M , in which case the optimality

conditions are satisfied only if M ≤ 1, and this solution is admissible only
if M |Ω| ≤ C; or 0 < u0 < M , in which case the optimality conditions hold
only if u0 = 1 (since ψ ≡ ξ = 0 in this case), which is admissible only if
M ≥ 1 and |Ω| ≤ C. All in all, u0 = min(1,M) is a solution if and only if
min(1,M)|Ω| ≤ C.

The conclusion follows.
�

3The convexity results from the convexity of the square function combined with the linearity
of u0 7→ p(T, ·). Furthermore,

〈d2Ĵ(u0), h, h〉 =

+∞∑
j=0

e−2λjT

(∫
Ω
h(x)φj(x) dx

)2

≥ 0

and vanishes if, and only if,
∫
Ω h(x)φj(x) dx = 0 for all j, meaning that h = 0 since (φj)j≥1 is a

Hilbert basis of L2(Ω). The strict convexity of Ĵ follows.
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3. Gaussian Releases

From a practical point of view, not all controls u ∈ VT,C,M correspond to a
release that could actually be conducted, as for example the constant solution of
the toy problem of the previous section. To guarantee a solution that could be
implemented, we restrict here the admissible controls to more accurately model the
way mosquitoes are released in practice.

We thus consider that there are K ∈ N simultaneous releases and that each one
results in a Gaussian distribution of mosquitoes centered around the position of the
release xk ∈ Ω for k = 1, ...,K. Then, the feasible controls are of the form

(14) uK(x, x1, ..., xK) =

K∑
k=1

m exp

(
−‖x− xk‖

2

σ2

)
,

where the constants m and σ are chosen such that uK(·, x1, ..., xK) ∈ VT,C,M . In
particular, we choose to saturate the constraint on the total number of mosquitoes
released, i.e. we take

∫
Ω
uK(x)dx = C.

The goal is then to find the best position of the releases and the optimization
problem becomes
(PK)

inf
(x1,...,xK)∈ΩK

JK(x1, ..., xK) with JK(x1, ..., xK) =
1

2

∫
Ω

(1− p(T, x))2 dx ,

where p ∈ C0([0, T ], L2(Ω)) is the unique solution of (7) with control uK(·, x1, ..., xK).

Remark 3. Since Ω is a bounded domain in R2, the question of the existence of a
minimizer is trivial. But, the uniqueness is still a challenging problem.

Proposition 3. Let (x1, ..., xK) ∈ ΩK . For k ∈ {1, ...,K}, one has

∂JK
∂xk

(x1, ..., xK) =

∫
Ω

(G−1)′(uK(x))q(0, x)
∂uK
∂xk

(x, x1, ..., xK) dx,

where q is the unique solution of the backward problem −∂tq(t, x)−∆q(t, x)− f ′(p(t, x))q(t, x) = 0, (t, x) ∈ (0, T )× Ω,
∂nq(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,
q(T, x) = p(T, x)− 1, x ∈ Ω.

Proof. It is an easy application of the chain rule. First, we notice that

JK(x1, ..., xK) = J(uK(x, x1, ..., xK)).

Next, using Proposition 2, we find thanks to the chain rule that for all k ∈ {1, ...,K}
∇JK(x1, ..., xK) =< dJ(u(x, x1, ..., xK)),∇u(x, x1, ...xK) >

=

∫
Ω

(G−1)′(uK(x, x1, ..., xK)q(0, x)∇uK(x, x, x1, ..., xK)dx.

We deduce the result from the last equality. �

3.1. Numerical Resolution. We now present the computation of the numeri-
cal solution of (PK). For this we use a direct method which consists in carrying
out a discretization of Equation (7) and of the control in order to obtain a finite
dimensional optimization problem with constraints. We can then compute an ap-
proximation of a local minimizer of (PK) with a numerical optimization solver.
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Our results were obtained with the finite element toolbox FreeFem++ [6] which
contains an implementation of the optimization routine Ipopt [20].

We therefore consider a finite element basis of functions (ϕi)i that allows us
to discretize the control as uh(x, x1, ..., xK) =

∑
i uiϕi(x) and the proportion of

infected mosquitoes as ph(t, x) =
∑
i pi(t)ϕi(x), the finite element approximation

of the solution of the PDE (7) with initial conditionG−1(uh(x, x1, ..., xK)). The cost
function can be computed with numerical integration as Jh(x1, ..., xK) =

∫
Ω

(1 −
ph(T, x))2 dx. In addition, Ipopt requires the gradient of the cost function and
thanks to Proposition 3 we have

∂Jh
∂xk

=

∫
Ω

(G−1)′(uh(x))qh(0, x)
∂uh
∂xk

(x, x1, ..., xK) dx

where qh(0, x) is the finite element approximation of the solution of the backwards
PDE.

Remark 4. Because of Proposition 1, we were interested in the case M > C
|Ω| . In

addition, we have fixed C such that the constant solution u = C
|Ω| leads to extinction

(as T tends to +∞) but there exists R ∈]0,
√

C
πM [ such that the function u(x) =

M × 1B(0,R)(x) belongs to VT,C,M and leads to invasion (as T tends to +∞).

We now present numerical simulations for the parameters given in Table 1. The
birth and death rates are given per day, whereas the unit of the carrying capacity
is per m2 and the diffusion coefficient is given per m2 per day. The numerical
values are taken from [1] and references therein. We consider a square domain
of 1 hectare, a final time of 200 days and we set the total amount of mosquitoes
released such that C < G(θ)|Ω|. In Figure 1 we show the control uK(·, x1, ..., xK)
for K = 3, 4, 5, 6 releases and for each case the same total amount of mosquitoes is
released. For the case of 6 releases we display in Figure 2 the time dynamics of the
proportion of infected mosquitoes p(t, ·). As expected, it leads to the total invasion
of the domain.

Parameter b1 b2 d1 d2 κ D
Value 1.12 1.12 0.27 0.36 6 · 10−2 2.5

Table 1. Model parameters

4. Conclusion

We investigate in this work the optimization of the release of Wolbachia-infected
mosquitoes into a host population in the aim to replace the wild population by a
Wolbachia-infected population unable to transmit several diseases to human. To
conduct this study, we first reduce the optimal problem under investigation by as-
suming that the time distribution is given. Then we obtain existence of a minimum
for this latter problem. Finally, reducing again the control problem by considering
that the releases are modelled by Gaussian distributions, some numerical compu-
tations are performed.

Optimisation strategies for release protocols of mosquitoes have been investigated
by several authors [16, 4, 3]. However, in these papers, only the time optimization
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Figure 1. uK(·, x1, ..., xK) for K = 3, 4, 5, 6 releases and C = 0.017.

Figure 2. p(t, ·) for K = 6 releases, t = 0, 50, 100, 150 days and
C = 0.017.

of the releases is investigated. Up to our knowledge, this work is the first attempt
in optimizing spatially the releases, which is of great interest for experiments in
the field. The preliminary results obtained in this paper should be continued. In
particular, the optimality conditions for the system (PK) should be studied in a
future work in the aim to find properties of the optimal solution. The numerical
simulations should also be continued to have a better representation of what is
observed in the field.
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Appendix – Reduction of system (1)

For the sake of completness and for reader facility, we explain briefly in this
appendix how to reduce system (1) to system (2). We will not provide all the
details of this reduction but only the main steps. We refer to [15] and [1, Section
2.3] for the interested reader. The starting point is to introduce a small parameter
0 < ε � 1 modelling the ratio of the fertility on the death rate. Indeed for
mosquitoes population, the fertility is large compared to death rates. System (1)
reads then

∂tn
ε
1 −D∆nε1 =

b1
ε
nε1(1− sh

nε2
nε1 + nε2

)(1− nε1 + nε2
κ

)− d1n
ε
1,

∂tn
ε
2 −D∆nε2 =

b2
ε
nε2(1− nε1 + nε2

κ
)− d2n

ε
2 + u.

As ε → 0, we expect from this system that nε1 + nε2 → κ. Hence we introduce

the quantity nε = 1
ε (1− nε

1+nε
2

κ ) and denote pε =
nε
2

nε
1+nε

2
the proportion of infected

mosquitoes. From straightforward computations, we deduce the system satisfied
by (nε, pε) :

∂tn
ε −D∆nε =

1

ε

(
(1− εnε)a(pε)(Z(pε)− nε)− u

κ

)
,

∂tp
ε −D∆pε +

2ε

1− εnε
∇pε · ∇nε = pε(1− pε) (nε(b2 − b1(1− shpε)) + d1 − d2)

+
u(1− pε)
κ(1− εnε)

,

where we use the notations a(p) = b1(1 − p)(1 − shp) + b2p > 0 and Z(p) =
d1(1−p)+d2p

a(p) > 0. Assuming that the sequences (nε)ε and (pε)ε admit limits denoted

n and p respectively, we deduce from the first equation that, formally,

(15) n = Z(p)− u

κ
a(p).

Passing into the limit into the equation satisfied by p, we get

∂tp−D∆p = p(1− p)(n(b2 − b1(1− shp)) + d1 − d2) +
u

κ
(1− p),

Injecting the expression of n (15) into this latter equation, we recover the equation

∂tp−D∆p = f(p) + ug(p),

with f and g defined in (3)
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