U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-brings et al., Some recent trends in research and technology of advanced thermal barrier coatings, Aerosp. Sci. Technol, vol.7, pp.3-5, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01740659

M. Peters, C. Leyens, U. Schulz, and W. A. Kaysser, EB-PVD thermal barrier coatings for aeroengines and gas turbines, Adv. Eng. Mater, vol.3, issue.4, pp.193-204, 2001.

D. J. De-wet, R. Taylor, and F. H. Stott, Corrosion mechanisms of ZrO 2 -Y 2 O 3 thermal barrier coatings in the presence of molten middle-east sand, J. Phys. IV, vol.3, issue.C9, pp.9-655, 1993.
URL : https://hal.archives-ouvertes.fr/jpa-00252410

F. H. Stott, D. J. De-wet, and R. Taylor, Degradation of thermal-barrier coatings at very high temperatures, MRS Bull, vol.19, issue.10, pp.46-49, 1994.

M. P. Borom, C. A. Johnson, and L. A. Peluso, Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings, Surf. Coat. Technol, vol.86, pp.2994-2999, 1996.

A. Aygun, A. L. Vasiliev, N. P. Padture, and X. Ma, Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits, Acta Mater, vol.55, issue.20, pp.6734-6745, 2007.

W. Braue, Environmental stability of the YSZ layer and the YSZ/TGO interface of an in-service EB-PVD coated high-pressure turbine blade, J. Mater. Sci, vol.44, issue.7, pp.1664-1675, 2009.

M. H. Vidal-sétif, C. Rio, D. Boivin, and O. Lavigne, Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS, Surf. Coat. Technol, vol.239, pp.41-48, 2014.

M. H. Vidal-setif, N. Chellah, C. Rio, C. Sanchez, and O. Lavigne, Calcium-magnesiumalumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high pressure blade TBCs, Surf. Coat. Technol, vol.208, pp.39-45, 2012.

S. Krämer, J. Yang, C. G. Levi, and C. A. Johnson, Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al 2 O 3 -SiO 2 (CMAS) deposits, J. Am. Ceram. Soc, vol.89, issue.10, pp.3167-3175, 2006.

S. Krämer, Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration, Mater. Sci. Eng. A, vol.490, issue.1-2, pp.26-35, 2008.

C. Mercer, S. Faulhaber, A. G. Evans, and R. Darolia, A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration, Acta Mater, vol.53, issue.4, pp.1029-1039, 2005.

U. Schulz and W. Braue, Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO-MgO-Al2O3-SiO2) and volcanic ash deposits

S. R. Gislason, Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment, Proc. Natl. Acad. Sci, vol.108, pp.7307-7312, 2011.

P. Rossini, Atmos. Environ, vol.48, pp.122-128, 2010.

B. Langmann, A. Folch, M. Hensch, and V. Matthias, Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, Atmos. Environ, vol.48, pp.1-8, 2010.

N. Chellah, Contribution à la compréhension de la dégradation chimique de barrière thermique en zircone yttriée par les CMAS en vue de proposer une nouvelle composition céramique résistante dans le système ZrO 2 -Nd 2 O 3, 2013.

G. Pujol, F. Ansart, J. Bonino, A. Malié, and S. Hamadi, Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications, Surf. Coat. Technol, vol.237, pp.71-78, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01169841

F. Perrudin, C. Rio, M. H. Vidal-sétif, C. Petitjean, P. J. Panteix et al., Gadolinium oxide solubility in molten silicate: dissolution mechanism and stability of Ca 2 Gd 8 (SiO 4 ) 6 O 2 and Ca 3 Gd 2 (Si 3 O 9 ) 2 silicate phases, J. Eur. Ceram. Soc, vol.37, issue.7, pp.2657-2665, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01559200

R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc, vol.83, issue.8, pp.2023-2028, 2000.

A. R. Krause, 2ZrO 2 Y 2 O 3 thermal barrier coatings resistant to degradation by molten CMAS: part I, optical basicity considerations and processing, J. Am. Ceram. Soc. 97, issue.12, pp.3943-3949, 2014.

J. Wu, Low-thermal-conductivity rare-earth zirconates for potential thermalbarrier-coating applications, J. Am. Ceram. Soc, vol.85, issue.12, pp.3031-3035, 2002.

M. Kumar, I. A. Raj, and R. Pattabiraman, 2ZrO 2 ?Y 2 O 3 (ss). (YZ)-pyrochlore based oxide as an electrolyte material for intermediate temperature solid oxide fuel cells (ITSOFCs)-Influence of Mn addition on YZ, Mater. Chem. Phys, vol.108, issue.1, pp.102-108, 2008.

F. Fu-k'ang, A. K. Kuznetsov, and É. Keler, Phase relationships in the Y 2 O 3 -ZrO 2 system, Russ. Chem. Bull, vol.11, issue.7, pp.1071-1075, 1962.

D. R. Clarke and S. R. Phillpot, Thermal barrier coating materials, Mater. Today, vol.8, issue.6, pp.22-29, 2005.

D. L. Poerschke, T. L. Barth, and C. G. Levi, Equilibrium relationships between thermal barrier oxides and silicate melts, Acta Mater, vol.120, pp.302-314, 2016.

A. R. Krause, H. F. Garces, B. S. Senturk, and N. P. Padture, 2ZrO 2 Y 2 O 3 thermal barrier coatings resistant to degradation by molten CMAS: part II, interactions with sand and fly ash, J. Am. Ceram. Soc. 97, issue.12, pp.3950-3957, 2014.

K. M. Grant, S. Kramer, G. G. Seward, and C. G. Levi, Calcium-magnesium alumino-silicate interaction with yttrium monosilicate environmental barrier coatings: YMS interaction with YMS EBCs, J. Am. Ceram. Soc, vol.93, issue.10, pp.3504-3511, 2010.

N. K. Eils, P. Mechnich, and W. Braue, Effect of CMAS deposits on MOCVD coatings in the system Y 2 O 3 -ZrO 2 : phase relationships, J. Am. Ceram. Soc, vol.96, issue.10, pp.3333-3340, 2013.

W. Li, H. Zhao, X. Zhong, L. Wang, and S. Tao, Air plasma-sprayed yttria and yttriastabilized zirconia thermal barrier coatings subjected to calcium-magnesium-alumino-silicate (CMAS), J. Therm. Spray Technol, vol.23, issue.6, pp.975-983, 2014.

D. L. Poerschke, T. L. Barth, O. Fabrichnaya, and C. G. Levi, Phase equilibria and crystal chemistry in the calcia-silica-yttria system, J. Eur. Ceram. Soc, vol.36, issue.7, pp.1743-1754, 2016.

H. Wang, Reaction Mechanism of CaO-MgO-Al2O3-SiO2 (CMAS) on Lanthanide Zirconia Thermal Barrier Coatings, p.151, 2016.

H. Wang, A. Bakal, X. Zhang, E. Tarwater, Z. Sheng et al., CaO-MgO-Al 2 O 3 -SiO 2 (CMAS) corrosion of Gd 2 Zr 2 O 7 and Sm 2 Zr 2 O 7, J. Electrochem. Soc, vol.163, issue.10, pp.643-648, 2016.

D. L. Poerschke and C. G. Levi, Phase equilibria in the calcia-gadolinia-silica system, J. Alloys Compd, vol.695, pp.1397-1404, 2017.

S. Krämer, J. Yang, and C. G. Levi, Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts, J. Am. Ceram. Soc, vol.91, issue.2, pp.576-583, 2008.

J. M. Drexler, Thermal Barrier Coatings Resistant to Glassy Deposits, 2011.

J. M. Drexler, A. L. Ortiz, and N. P. Padture, Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass, Acta Mater, vol.60, issue.15, pp.5437-5447, 2012.

K. M. Doleker and A. C. Karaoglanli, Comparison of oxidation behavior of YSZ and Gd 2 Zr 2 O 7 thermal barrier coatings (TBCs), Surf. Coat. Technol, vol.318, pp.198-207, 2017.

E. M. Zaleski, C. A. Ensslen, and C. G. Levi, Mechanism and Mitigation of, CMAS attack on References Coat. Technol, vol.235, pp.165-173, 2013.

M. H. Habibi, L. Wang, and S. M. Guo, Evolution of hot corrosion resistance of YSZ, Gd 2 Zr 2 O 7 , and Gd 2 Zr 2 O 7 +YSZ composite thermal barrier coatings in Na2SO4+V2O5 at 1050°C, J. Eur. Ceram. Soc, vol.32, issue.8, pp.1635-1642, 2012.

W. Deng and J. W. Fergus, Effect of CMAS composition on hot corrosion behavior of gadolinium zirconate thermal barrier coating materials, J. Electrochem. Soc, vol.164, issue.9, pp.526-531, 2017.

G. Moskal, Characterization of microstructure and thermal properties of Gd2Zr2O7-type thermal barrier coating, J. Eur. Ceram. Soc, vol.32, issue.9, pp.2025-2034, 2012.

A. Quintas, D. Caurant, O. Majérus, J. L. Dussossoy, and T. Charpentier, Effect of changing the rare earth cation type on the structure and crystallization behavior of an aluminoborosilicate glass, Phys. Chem. Glasses -Eur. J. Glass Sci. Technol. Part B, vol.49, issue.4, pp.192-197, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00584082

E. M. Zaleski, C. Ensslen, and C. G. Levi, Melting and crystallization of silicate systems relevant to thermal barrier coating damage, J. Am. Ceram. Soc, vol.98, issue.5, pp.1642-1649, 2015.

A. R. Krause, X. Li, and N. P. Padture, Interaction between ceramic powder and molten calcia-magnesia-alumino-silicate (CMAS) glass, and its implication on CMAS-resistant thermal barrier coatings, Scr. Mater, vol.112, pp.118-122, 2016.

R. Wellman, G. Whitman, and J. R. Nicholls, CMAS corrosion of EB PVD TBCs: identifying the minimum level to initiate damage, Int. J. Refract. Met. Hard Mater, vol.28, issue.1, pp.124-132, 2010.

P. Mohan, Environmental Degradation of Oxidation Resistant and Thermal Barrier Coatings for Fuel-Flexible Gas Turbine Applications, 2010.

G. , Elaboration par voie sol-gel de nouvelles barrières thermiques architecturées présentant des propriétés contre l'infiltration des oxydes CMAS (Ca, Mg, Al, Si) -Etude de la réparabilité de systèmes endommagés, 2014.

J. L. Pouchou and F. Pichoir, Recherche Aerospatiale, vol.3, pp.167-192, 1984.

B. E. Scheetz and W. B. White, Characterization of anion disorder in zirconate A 2 B 2 O 7 compounds by Raman spectroscopy, J. Am. Ceram. Soc, vol.62, issue.9, pp.468-470, 1979.

P. E. Blanchard, Does local disorder occur in the pyrochlore zirconates?, Inorg. Chem, vol.51, issue.24, pp.13237-13244, 2012.

B. P. Mandal, P. S. Krishna, and A. K. Tyagi, Order-disorder transition in the Nd 2-y Y y Zr 2 O 7 system: probed by X-ray diffraction and Raman spectroscopy, J. Solid State Chem, vol.183, issue.1, pp.41-45, 2010.

B. P. Mandal, A. Banerji, V. Sathe, S. K. Deb, and A. K. Tyagi, Order-disorder transition in Nd 2-y Gd y Zr 2 O 7 pyrochlore solid solution: an X-ray diffraction and Raman spectroscopic study, J. Solid State Chem, vol.180, issue.10, pp.2643-2648, 2007.

Y. H. Lee, H. S. Sheu, J. P. Deng, and H. I. Kao, Preparation and fluorite-pyrochlore phase transformation in Gd2Zr2O7, J. Alloys Compd, vol.487, issue.1-2, pp.595-598, 2009.

H. Y. Xiao, F. Gao, and W. J. Weber, Ab initio investigation of phase stability of Y 2 Ti 2 O 7 and Y 2 Zr 2 O 7 under high pressure, Phys. Rev. B, vol.80, issue.21, 2009.

P. Mechnich and W. Braue, Volcanic ash-induced decomposition of EB-PVD Gd 2 Zr 2 O 7 thermal barrier coatings to Gd-oxyapatite, zircon, and Gd, Fe-zirconolite, J. Am. Ceram. Soc, vol.96, 1958.

D. L. Poerschke and C. G. Levi, Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS, J. Eur. Ceram. Soc, vol.35, issue.2, pp.681-691, 2015.

D. L. Poerschke, D. D. Hass, S. Eustis, G. G. Seward, J. S. Van-sluytman et al., Stability and CMAS resistance of ytterbium-silicate/hafnate EBCs/TBC for SiC composites, J. Am. Ceram. Soc, vol.98, issue.1, pp.278-286, 2015.

C. G. Levi, J. W. Hutchinson, M. Vidal-sétif, and C. A. Johnson, Environmental degradation of thermal-barrier coatings by molten deposits, MRS Bull, vol.37, issue.10, pp.932-941, 2012.