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1 Wolbachia prevalence, diversity, and ability to induce 
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4 To protect humans and domestic animals from mosquito borne 

5 diseases, alternative methods to chemical insecticides have to 

6 be found. Pilot studies using the vertically transmitted bacterial 

7 endosymbiont Wolbachia were already launched in different 

8 parts of the world. Wolbachia can be used either in 

9 Incompatible Insect Technique (IIT), to decrease mosquito 

10 population, or to decrease the ability of mosquitoes to transmit 

11 pathogens. Not all mosquito species are naturally infected with 

12 Wolbachia: while in Culex pipiens and Aedes albopictus almost 

13 all individuals harbor Wolbachia, putative infections have to be 

14 further investigated in Anopheles species and in Aedes 

15 aegypti. All Wolbachia-based control methods rely on the ability 

16 of Wolbachia to induce cytoplasmic incompatibility (CI) 

17 resulting in embryonic death in incompatible crossings. 

18 Knowledge on CI diversity in mosquito is required to find the 

19 better Wolbachia-mosquito associations to optimize the 

20 success of both ‘sterile insect’ and ‘pathogen blocking’ 

21 Wolbachia-based methods. 
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29 Introduction 
30 Mosquitoes are vectors for major pathogens such as 
31 arboviruses, nematodes and protozoans. To  protect 
32 humans  and domestic animals from  these pathogens, 
33 strategies targeting the vectors aim at decreasing vector 
34 population density and/or at diminishing their ability to 
35 transmit pathogens [1

●●
]. Presently, the most common 

36 vector control actions are intended to decrease the lon- 
37 gevity and the density in vector populations, mainly by 
38 using chemical insecticides, which have reached their 
39 limits  because  of  genetic  resistance  and negative 

consequence on non-targeted invertebrate species [2]. 40 

In this context, new vector control strategies, hopefully 41 

more environmental friendly, have to be proposed. Bio- 42 

control strategies of vectors based on the knowledge of 43 

their microbiota are promising [3], and particularly those 44 

based on a-proteobacteria of the genus Wolbachia which 45 

manipulate many aspects of their mosquito host biology 46 

[4–6]. Because these symbionts can influence both mos- 47 

quito reproduction and their pathogen loads, Wolbachia- 48 

based control methods can be deployed to reduce vector 
populations and/or to diminish their capacity to transmit 50 

pathogens. 51 

The Wolbachia, which are maternally transmitted endosym- 52 

bionts, have long been studied because of their ability to 53 

manipulate their host reproduction to increase their preva- 54 

lence within host populations [4]. Cytoplasmic incompati- 55 

bility (CI) is the most frequent manipulation used by Wol- 56 

bachia to spread within insect populations [4]. During the 

invasion process, CI occurs when males infected with a given 57 

Wolbachia breed with uninfected females which, then, pro- 

duce non-viable embryos (Figure 1). As crossings between 58 

individuals infected with compatible Wolbachia give normal 59 

viable embryos, the consequence of CI is that the prevalence 60 

of Wolbachia increases within the host population so that 61 

prevalence can reach 100%. 62 

The ability of Wolbachia to induce CI is the cornerstone of 63 

the two major Wolbachia-based control methods developed 64 

to date (Box 1). The first method, called ‘Incompatible 65 

Insect Techniques’ (IIT), is related to the classical sterile 66 

insect technics (SIT) [1
●●

], andaims atdecreasing mosquito 67 

population size by releasing Wolbachia infected males that 68 

are incompatible with local females. In this strategy, the 69 

local females produce non-viable embryos resulting locally 70 

and temporally in the vector  population crash-down 71 

[7,8,9
●●

,10]. The second method uses CI induction by 72 

Wolbachia, not to reduce the density of a focal vector 

population, but to sustainably replace its uninfected indi- 73 

viduals by Wolbachia infected ones. Indeed it has been 74 

shown that Wolbachia can interfere negatively with the 75 

transmission of disease pathogens including the major 76 

arboviruses Chikungunya, Dengue, Rift Valley, West-Nile, 77 

Zika, and so on [11
●
,12

●●
,13

●●
,14–18,19

●
]. In this strategy, 78 

CIallows theprogressive invasionoflocalvector population 79 

with individuals harboring Wolbachia which mediate block- 80 

ing of arboviruses transmission [20–22]. 81 

Wolbachia being a promising weapon against mosquitoes, 

we synthetize  in this  review the current knowledge 82 
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Unidirectional CI between Wolbachia infected males and uninfected females 
 

 
(a) 

Unidirectional CI between Wolbachia infected males and females Bidirectional CI between Wolbachia infected males and females 

(b) (c) 
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Figure 1 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 

 

The different types of CI in mosquitoes. 

(a) The simplest type of CI occurring between Wolbachia infected males and uninfected females allows Wolbachia to invade uninfected 

populations. In Culex pipiens and Aedes albopictus, Wolbachia has reached fixation in nature; this type of CI is, thus, only observed in laboratory 

conditions when females are artificially cured of their Wolbachia with an antibiotic treatment. This type of CI was also observed when Ae. aegypti 

and An. stephensi males were transinfected with a Wolbachia strain from other species and crossed with naturally uninfected females. (b–c) Other 

types of CI can occur between males and females both infected with different Wolbachia strains. In such crosses CI can be unidirectional (i.e. only 

one of the reciprocal crosses is compatible, the other is incompatible) (b) or bidirectional (both reciprocal crosses are incompatible) (c). 

Unidirectional CI can be observed in Ae. albopictus when bi-infected males (infected with both wAlbA and wAlbB) are crossed with laboratory 

females infected only with wAlbA. In Culex pipiens, really complex CI crossing types are observed, including unidirectional and bidirectional CI 

depending on the wPip strains present in crossed individuals. 

 

 

 

83 accumulated on Wolbachia prevalence, diversity, and abil- 
84 ity to induce CI in the major vector mosquito species of 

Aedes, Anopheles, and Culex genera. 
 

85 Prevalence and diversity of Wolbachia in 
86 mosquitoes 
87 The diversity hidden behind the term ‘Wolbachia 

pipientis’ in arthropod and nematode hosts is presently 
88 organized in 17 phylogenetic clades called supergroups 
89 (A to Q) [23–27]. Within each supergroup, the unit of 
90 diversity is called a ‘strain’. Most of the Wolbachia strains 
91 were named according to their host species (e.g. wPip in 

Culex pipiens  and wAlb in Aedes albopictus). If genetic 
92 differences are identified within an already 

investigate more and more accurately Wolbachia diver- 

sity, between and within host species, may lead to 
important changes in the definition of new ‘strains’ in 
the near future [28]. 

 

Anopheles mosquitoes, the major vectors of Plasmodium, 
were considered to be exempt of Wolbachia because 

classic PCR diagnostic tests were always found negative 
[29–31]. However, very deep sequencing of Wolbachia- 

specific 16S rRNA recently suggested putative natural 
infections of Anopheles coluzzii and Anopheles gambiae in 
Burkina Faso [32

●
,33]. The Wolbachia 16S sequences 

obtained were attributed to a new strain named ‘wAnga’. 

Positive mothers did not produce only positive offspring 
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93 defined ‘strain’, new information including sampling ruling out both an insertion in host genome and a perfect 108 

94 location or phylogenetic position can be added to name vertical transmission of Wolbachia [32
●
]. Such a genetic 109 

95 the new strains. The increase in genomic analyses to detection of Wolbachia has now been extended to 110 
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for certain species [38
●●

]. To our knowledge, no electronic 
microscopy observations that would provide a direct proof 
of infections, have been yet conducted. Only one study 
reported fluorescent in situ hybridization (FISH) labelling 
to monitor the presence of Wolbachia, found at low density 
in the ovaries of some An. coluzzii [33]. 
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Anopheles funestus from Senegal [34], Anopheles arabiensis in 
111 Tanzania [35], 16 Anopheles species among a total of 25 in 
112 Gabon [36], and in 5 species among 17 from Ghana, 
113 Democratic Republic of the Congo (DRC), Guinea, 
114 Uganda and Madagascar [37]. Wolbachia 16S sequences 
115 exhibited much larger diversity than usually expected 
116 within one strain suggesting multiple infections. Indeed, 
117 these sequences can be clustered with those from Wol- 

bachia strains belonging to the supergroups A, B and even, 
118 more  surprisingly,  to supergroup C [36,38

●●
].   The 

119 reported proportions of positive individuals vary among 

120 species and localities but remain low for most of the 
Anopheles species. Besides the interesting case of Anopheles 

moucheti in Gabon and DRC, for which the prevalence of 
Wolbachia  seems very high, calls for further studies 

121 [36,37]. The low detection of Wolbachia in most Anopheles 

122 species could be due to a low prevalence of the symbiont 
123 that required more individuals and screened  populations 
124 to be detected. However, if Wolbachia are really present in 
125 these Anopheles species their density must be very low as 
126 several screening technics revealed discordant results, 
127 even requiring nested PCR or quantitative PCR with a 
128 very high number of amplification cycles for detection 
129 [34]. The main problem is that the putative presence of 

Wolbachia in all these Anopheles species is mostly based on 
130 its genetic detection which is not an actual proof of real 
131 infection and could result from contaminations, at least 

Aedes aegypti and Ae. albopictus, the major arboviruses 

vectors, although belonging to the same genus exhibit 
strongly different patterns in terms of Wolbachia infection. 
As for Anopheles, classic PCR tests were always negative 
on Ae. aegypti placing this species among uninfected ones. 
However, deep sequencing of Wolbachia-specific 16S 

rRNA from both larvae and adults in USA and Thailand 
were recently found positive, indicating the putative 
presence of Wolbachia in some individuals [39,40]. Nev- 
ertheless, as it is the case with the Anopheles, if Wolbachia 

cells are present in this vector it must be at low prevalence 
and at a ‘cryptic’ load [41]. Further investigations includ- 
ing symbiont visualization must be conducted in the 
future to confirm the presence of Wolbachia at low preva- 
lence and titer in Ae. aegypti. 

  
 

In contrast, Ae. albopictus is found infected with Wolba- 

chia everywhere in the world [42,43]. All individuals are 
usually infected with two Wolbachia strains namely 
wAlbA and wAlbB belonging to the supergroups A and 

B, respectively [44]. However, a polymorphism of the 
infection status exists: (i) wAlbB mono-infected males 

(but  not  females)  have  been  reported  in  La  Réunion 
Island and Madagascar field populations [45], and (ii) 
wAlbA mono-infected laboratory lines were obtained 

from individuals initially sampled in Thailand and 
Mauritius [46,47]. The genetic variation within both 
wAlbA and wAlbB strains is yet considered to be low 

as no variation was detected within each strain based on 
16S rRNA, wsp and ftsZ gene sequences [42,46–48] 
suggesting that Wolbachia could have recently, invaded 

and spread throughout populations of this mosquito 
species to finally reach fixation [42]. 

 

In C. pipiens (s.l.), all individuals are infected with wPip 
Wolbachia that were also found non-polymorphic using 

MLST genes [23,24]. However, MLSTs including a 
larger number of highly polymorphic genes (MutL, 
ank2, pk1, pk2, GP12, GP15, and RepA) allowed to 
uncover a previously hidden diversity [49]. All wPip 

strains are monophyletic and closely related, and they 
form five groups from wPip-I to wPip-V. As the thousands 
C. pipiens individuals tested around the world [50–53] 
harbored a wPip strain belonging to one of the five groups, 

the infection is considered to have reached fixation in this 
species. However, few individuals in South Africa, 
France, Scotland and Tunisia were found negative to 
Wolbachia genetic tests [54,55]. A phylogenetic analysis 

based on mitochondrial markers demonstrated that all 
these uninfected mosquitoes form a new species named ‘ 
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Box 1 Wolbachia anti-vectorial methods: either decrease the 

density or modify the physiology of mosquitoes 

 

 

a In the Incompatible Insect Technique (IIT) large numbers of Wol- 

bachia-infected males are released. The Wolbachia harboring by 

these males has to be carefully chosen to ensure that these males 

will be able to kill, due to CI, embryos of females from the focal 

population. This requires that females either do not harbor the 

same Wolbachia strain (for instance in Ae. albopictus and C. 

pipiens cases) or that are putatively not infected with Wolbachia 

(for instance in Ae. aegypti and An. gambiae). After repeated 

releases of incompatible males, the vector population will 

decrease. To be successful, the Wolbachia strain in the released 

males should be involved in bidirectional CI with the Wolbachia 

strain from the targeted population (Figures 1 and 2). This way, the 

released Wolbachia has almost no chance to settle in the intro- 

duced environment because even if females are concomitantly 

released with infected males, they would not be able to produce 

offspring with the local males. The release of the same line of 

Wolbachia infected males can stay efficient through years. For 

even more efficiency, ITT may be combined with sterile insect 

technique (SIT) by irradiating Wolbachia-infected mosquitoes. 

b Wolbachia can also be used to modify the physiology of mos- 

quito. In this method, both Wolbachia infected male and female 

mosquitoes are released. CI allows the progressive invasion of 

local vector population with individuals harboring Wolbachia 

which mediates blocking of arboviruses transmission. To be suc- 

cessful, the Wolbachia of the released individuals have (i) to block 

viruses and (ii) to exhibit a unidirectional CI relationship with the 

targeted populations that allows the spread and sustainability of 

protective Wolbachia (Figure 2). 



 

 

 

 

 
 

 

Culex juppi nov. sp.’ independent from all the infected C. 

pipiens [55]. 

 
 

178 CI induction in natural Wolbachia-mosquito 
179 associations 
180 In Anopheles no cytoplasmic incompatibility has been 
181 shown in laboratory crosses between males putatively 
182 infected with Wolbachia and uninfected females [33]. 
183 Such laboratory observations are in accordance with 
184 the low detection of the symbionts in Anopheles natural 

185 populations. However, an acceleration of egg laying in 
Wolbachia positive females has been reported [33]. In 
Ae. albopictus, both wAlbA and wAlbB were reported to 

186 increase host fecundity [8]. CI does not occur between 
187 individuals from lines originating from distant parts of 
188 the world since most individuals are bi-infected with 

wAlbA and wAlbB showing no or low polymorphism 
189 [43] (Figure 1). Consequently, there is only one domi- 
190 nant crossing type in Ae. albopictus natural populations 
191 all over the world, resulting in compatibility between 
192 all lines. Nevertheless, females mono-infected with 
193 only wAlbA strain produce unviable embryos when 
194 crossed with normally bi-infected males resulting in 
195 unidirectional CI [46,47] (Figure 1). This clearly dem- 
196 onstrated that wAlbB strain is able to induce CI but 
197 that this CI phenotype rarely occurs in nature because 
198 of the high frequency of bi-infections with wAlbA and 

wAlbB. 
 

199 In contrast to the absence of CI recorded in Anopheles and 
200 the poor crossing type diversity observed in Ae. albopictus, 
201 the hundreds of crosses performed between C. pipiens 

202 lines sampled worldwide have revealed an unrivaled 
203 diversity of crossing types [56,57

●
,58] (Figure 1). Genetic 

204 diversity within the wPip clade is responsible for this 
205 unique CI polymorphism since (i) no other manipulative 
206 endosymbiont was detected in this host species, (ii) the 
207 host genetic background did not influence the crossing 
208 types, and more importantly (iii) C. pipiens lines harboring 

wPip belonging to the same phylogenetic group (wPip-I– 
209 V) are generally compatible, whereas ‘inter-group crosses’ 
210 are more likely to be incompatible [57

●
]. Infected males 

211 harboring a wPip strain (from any wPip group) induce 
212 total CI (i.e. no embryo will develop) when crossed with 
213 uninfected females while the reciprocal crossing is fertile 
214 [59–61,62

●
]. Such unidirectional CI pattern between 

215 uninfected and infected individuals has certainly pre- 
216 vailed during the spread of the wPip infection in C. pipiens 

217 populations, but is no longer observed in the wild since 
218 infection reached fixation. To date, crosses can only occur 
219 between (i) individuals infected with the same wPip 
220 group (usually resulting in normal reproduction) or (ii) 
221 individuals harboring wPip from two different  groups. 
222 Such ‘inter-group crossings’ can have three outcomes 
223 (Figure 1): (i) production of living offspring; (ii) unidirec- 

224 tional CI (one cross direction is compatible while the 

reciprocal one is incompatible) or (iii) bidirectional CI 
(both cross directions are incompatible). 

 

CI induction in artificial Wolbachia-mosquito 
associations 
When Wolbachia have been experimentally introduced 

by transinfection in two ‘non-infected mosquito 
species’ namely Ae. aegypti and Anopheles stephensi, CI 
has been observed showing that Wolbachia molecular 

targets responsible for CI are present in these species. 
Indeed, Ae. aegypti has been successfully transinfected 
independently with eight Wolbachia strains (wMel, 
wMelPop-CLA, wMelCS, wRi, wAu, wAlbA, wAlbB, 
and wPip [14,19

●
,63–65]) (Figure 2); and all induced 

unidirectional CI with natural uninfected Ae. aegypti 

except wAu which is a Wolbachia strain from D. simulans 
that also does not induce CI in its natural host [19

●
]. An. 

stephensi has also been successfully transinfected with 
wAlbB from Ae. albopictus which induced CI enabling 
Wolbachia to invade uninfected laboratory populations 
[66]. Transinfections have also been conducted in Ae. 

albopictus, which is naturally infected, in order to create 
new crossing types. Both wPip and wMel strains have 
been introduced in Wolbachia-cured lines resulting in 

bidirectional incompatibility between transinfected 
lines and naturally infected ones [67–69]. Moreover, 
a triple-infected (wAlbA, wAlbB, and wPip) Ae. albo- 

pictus line has been established; it expresses unidirec- 

tional CI when crossed with naturally double-infected 
mosquitoes. 
  

 

C. pipiens has not yet been transinfected with other 
Wolbachia since the natural crossing type diversity dem- 

onstrated in this species can provide with unidirectional 
and bidirectional crossing types required in Wolbachia- 

based control methods (e.g. [53]). 
 

Cellular mechanism of CI in mosquitoes 
The cellular mechanism of CI has only been yet 
studied in details in C. pipiens [62

●
]. To do so, the 

early embryogenesis was monitored using fluorescence 
confocal microscopy in (i) fertile intra-group crosses, 
(ii) incompatible crosses between infected males and 
infected females (i.e. inter-group crosses), and (iii) 
incompatible crosses between infected males and 
uninfected females. Despite the diversity of the 
crosses involving various wPip strains, common embry- 

onic defects resulting in the death of the embryos were 
detected. These defects consisted in paternal chroma- 
tin condensation and segregation impairments during 
the first embryonic division as for Drosophila and 
Nasonia [62

●
,70–74] (Figure 3). 

 

Wolbachia genes involved in CI in mosquitoes 
Cytological observations in C. pipiens suggest that a 

toxin, deposited in maturing sperm, would prevent 
the development of embryos by impairing paternal 
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Figure 2 

 
 

 
 
 
 
 
 
 
 
 

 

  
 

 

 
 

  
 

 

 

 
 

 

  

 

 
 

 

A synthetic view of Wolbachia knowledge in mosquitoes. 

Arrows represent Wolbachia transinfection from one mosquito donor species to a recipient mosquito species or from Drosophila to a mosquito 

recipient species. The Anopheles transinfected species was An. stephensi [66]. Solid arrows represent strains that were able to induce CI when 

transferred to a recipient host while the dashed arrow represent the strain wAu that does not induce CI. 

 

 

 

269 chromatin normal segregation unless they are rescued [77
●●

,78
●●

]. CidA is most probably the antidote against 282 

270 by an antidote [75]. A combination of approaches on the toxic activity of CidB since its expression during 283 

271 different insects demonstrated that the Wolbachia cidA early oogenesis restored the viability of uninfected eggs 284 

272 and cidB genes, first identified by the presence of CidA fertilized by Drosophila infected males [79]. Both cidA 285 

273 protein in C. pipiens sperm [76], were the determinant in and cidB genes are monomorphic in wAlbB. No geno- 286 

274 the induction and rescue of CI in insects [77
●●

,78
●●

]. mic data are yet available on wAlbA and on the putative 287 

275 Biochemical analyses revealed that CidB protein could strain wAnga from Anopheles. However, in C. pipiens, 288 

276 act as toxin since it encodes a putatively toxic deubi- these genes are amplified and diversified within each 289 

277 quitylase (DUB). Convincingly, when cidA and cidB 

278 were transgenically expressed in uninfected Drosophila 

wPip genome constituting the fuel for the diversity of 
crossing types described in this species [80

●
]. This cidA/ 

 

 

290 

279 males, these males were incompatible with uninfected cidB gene amplifications and diversifications in wPip  

280 females: embryos were unviable, and the first embry- may also account for the impressive CI penetrance 291 

281 onic mitosis displayed the same characteristics as in CI observed in C. pipiens [62
●
]. 292 
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Figure 3 
 

 

CI cellular phenotype as observed after the first embryonic division in Culex pipiens. 

Paternal chromatin and maternal chromatin were labelled using propidium iodide and were observed under confocal microscopy. In the picture, 

we can see that paternal chromatin (<) failed to segregate during the first mitotic embryonic division while maternal chromatin (,) did segregate. 

Because of this defect in the first division, the embryos will not be able to develop normally into larvae. Scale bar is 10 mm. 

 

 

293 Conclusion 
294 Prevalence and diversity of Wolbachia are quite contrasted 
295 between mosquito species. Ae. albopictus and C. pipiens 

296 individuals all harbor diverse Wolbachia that can induce 
297 CI and influence their life history traits at each genera- 
298 tion. In contrast, the major arboviruses vector Ae. aegypti 

299 and the major malaria vectors, Anopheles spp., are only 
300 suspected to be infected. Further studies are required to 
301 investigate infection status of these last species. Recent 
302 studies on C. pipiens along with those conduced on Dro- 

sophila brought new elements on CI mechanisms, both at 
303Q2 cellular and molecular levels that constitute the corner- 
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