
HAL Id: hal-02113902
https://hal.science/hal-02113902

Submitted on 6 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Skeleton Based Cage Generation Guided by Harmonic
Fields

Sara Casti, Marco Livesu, Nicolas Mellado, Nadine Abu Rumman, Riccardo
Scateni, Loic Barthe, Enrico Puppo

To cite this version:
Sara Casti, Marco Livesu, Nicolas Mellado, Nadine Abu Rumman, Riccardo Scateni, et al.. Skeleton
Based Cage Generation Guided by Harmonic Fields. Computers and Graphics, 2019, 81, pp.140-151.
�10.1016/j.cag.2019.04.004�. �hal-02113902�

https://hal.science/hal-02113902
https://hal.archives-ouvertes.fr


Computers & Graphics (2019)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Skeleton Based Cage Generation Guided by Harmonic Fields

Sara Castia, Marco Livesub, Nicolas Melladoc, Nadine Abu Rummane, Riccardo Scatenia, Loı̈c Barthec, Enrico Puppod

aDepartment of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy
bIMATI - CNR, Genoa, Italy
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A B S T R A C T

We propose a novel user-assisted cage generation tool. We start from a digital char-
acter and its skeleton, and create a coarse control cage for its animation. Our method
requires minimal interaction to select bending points on the skeleton, and computes the
corresponding cage automatically. The key contribution is a volumetric field defined
in the interior of the character and embedding the skeleton. The integral lines of such
field are used to propagate cutting surfaces from the interior of the character to its skin,
and allow us to robustly trace non-planar cross sections that adapt to the local shape of
the character. Our method overcomes previous approaches that rely on the popular (but
tedious and limiting) cutting planes. We validated our software on a variety of digital
characters. Our final cages are coarse yet entirely compliant with the structure induced
by the underlying skeleton, enriched with the semantics provided by the bending points
selected by the user. Automatic placement of bending nodes for a fully automatic caging
pipeline is also supported.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

Skeletons and control cages are possibly the two most widely2

used techniques to pose a digital character, enabling its defor-3

mation and animation [1]. While skeleton-based animation is4

perfectly suited to control primary motions – such as posing the5

limbs of a character – cage-based animation provides a more6

flexible tool, which is, overall, better suited for secondary ef-7

fects driven by the movement itself – such as the swish of a8

cloak or the jiggle of a body part. In cage-based animation, the9

artist manipulates a coarse control mesh containing the charac-10

ter: the space enclosed by the cage, hence the character itself,11

are deformed by moving the cage vertices.12

Cages are intrinsically more complex to create than skele-13

tons. Well established properties have to be fulfilled [2, 3]: (i)14

the cage must tightly envelop the original model without ei-15

ther intersecting it, or self-intersecting; (ii) the cage must be16

animation-aware, i.e. its control nodes should be close to the17

parts of the model one would like to deform or bend; (iii) 18

the cage must be coarse enough to be easily manipulated, yet 19

fine enough to capture the necessary details, thus it might need 20

variable resolution; (iv) the cage must endow the symmetries 21

present in the model. 22

Most often, cages are hand-made and their creation may re- 23

quire hours of extensive work by skilled artists. It is thus impor- 24

tant to provide automatic or semi-automatic methods to gener- 25

ate an initial coarse cage satisfying the construction properties, 26

letting the animators’ efforts concentrate only on the refinement 27

stage. 28

Automatic approaches are purely geometric: they rely on the 29

character in a given pose, and generate a cage to fit it, thus ig- 30

noring any possible semantics associated to its movement. For 31

instance, when a human-like character is in the canonical T- 32

pose, limbs are straight and purely geometric approaches may 33

misplace or completely miss important bending points, such as 34
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knees and elbows, not to mention finer details like fingers, jaws,1

or eyelids (Figure 1). Likewise, for invertebrates such as the2

Octopus in Figure 17, limbs must be allowed fully flexible mo-3

tion: in this case, the complexity of the cage depends on the4

poses the character will assume during the animation, and this5

is something that cannot be inferred by geometric analysis of a6

static pose.7

Fig. 1. Left: a purely geometric segmentation obtained with a state-of-the-
art method [4] does not capture bending junctions between disjoint seman-
tic parts (neck, elbows, knees, wrists, joints of fingers and toes). Right: in
our interactive system the user manually selects bending points, inducing
an animation-aware semantic decomposition of the character.

Semi-automatic approaches let the user specify some con-8

straints, enabling artistic touch and customization of the pro-9

cess. The effectiveness of a method in this class is thus assessed10

by the trade-off between the amount of necessary user effort and11

the level of control allowed during cage construction. Ideally,12

one should aim at maximum control with minimal effort. No-13

tice that having the user in the loop is not a way to reduce the14

algorithmic complexity, but rather an additional value that can-15

not be achieved otherwise.16

In this perspective, we propose a skeleton-driven method17

that lets the user address shape-awareness by controlling the18

topology of the coarse cage in an extremely simple way, while19

automatically fulfilling the requirements outlined above. The20

skeleton can be either an animation skeleton (i.e., a hierarchy21

of rigid bodies representing joints and bones), or a geometric22

one, which can be either automatically extracted with a state of23

the art method [5, 6, 7, 8] or manually crafted [9]. The user is24

just required to select a few bending nodes on the skeleton of25

the character, while a corresponding segmentation of the shape26

and a coarse cage coherent with it are automatically generated.27

We address all the requirements outlined before. In order28

to fulfill requirement (i) our method relies on a harmonic field29

defined inside the shape volume. We use it to propagate cutting30

surfaces from the interior of the character to its skin, enabling a31

robust tracing of non-planar cross sections that adapt to the local32

shape of the character (Figure 4). This approach overcomes the33

burden and the limitations of previous user-assisted methods,34

based on cutting planes [3], while providing a robust placement35

of vertices of a tight cage, which is finally inflated just enough36

to eliminate intersections. The structure of the input skeleton, as37

well as the distribution of the bending nodes, totally determine38

the coarse topological structure of the final cage, thus fulfilling39

requirements (ii) and (iii). Finally, we address requirement (iv) 40

by exploiting the work of Panozzo et al. [10] to evaluate model 41

symmetry. We rely on such information to find a consensus 42

between symmetric cuts and build a symmetric cage. 43

The pipeline of our method is summarized in Figure 2: start- 44

ing at the initial mesh with an underlying skeleton (a), the 45

user selects bending nodes (b); cutting surfaces across bend- 46

ing nodes are computed, and cross polygons are extracted from 47

them, which conform to the desired cross section of the cage, as 48

well as to the symmetry of the object (c); an initial tight cage is 49

obtained by connecting vertices of the cross polygons (d); the 50

cage is finally inflated and adjusted to avoid intersections (e). 51

Our main contributions are in steps (c) and (d) of the pipeline, 52

which both rely on the harmonic field mentioned above; we also 53

contribute for a pre-inflation in step (e), which is necessary to 54

enable the Nested cages by Sacht et al. [2] to perform final infla- 55

tion. Besides, we provide a complete working tool that requires 56

a level of interaction as simple as the one in step (b). Thanks to 57

the flexibility of our non-planar cuts, user interaction is greatly 58

simplified if compared to previous approaches [3], and impre- 59

cise inputs from the user are robustly handled, without affecting 60

the quality of the final cage (Figure 3). In Section 4, we also 61

show that a fully automatic initial placement of bending nodes 62

is possible, thus providing a fully automatic initial cage, which 63

can be edited and completed by the user at will. 64

Our method enables the generation of high-quality coarse 65

cages with controlled topology, also for characters which are 66

not given in the standard T-pose (Figure 17). Our bounding 67

cages preserve all model features captured by the underlying 68

skeleton, as well as all user selected cross sections; at the same 69

time, they are robust against details that are not represented by 70

the skeleton and nicely envelope them too (Figure 13 and 12); 71

thus providing a desired/effective shape abstraction for anima- 72

tion purposes. 73

2. Related works 74

Early methods for cage generation based on the subdivision 75

of bounding boxes date back to late 80’s [11]. Despite the ro- 76

bustness, approaches of this kind lack the proper flexibility, and 77

are not suitable to generate cages that fulfill the requirements 78

animation imposes. In a recent survey, Nieto and Susı́n [12] list 79

such requirements, also offering an overview of modern tech- 80

niques for automatic cage generation. The survey is still an 81

excellent resource for practitioners, but a few important tech- 82

niques have been released after its publication, both automatic 83

and user-assisted. 84

Several automatic methods define cages as a simplified ver- 85

sion of the character they contain [2, 13, 14, 15, 16, 17, 18], 86

and obtain them either by applying a decimation strategy (e.g. 87

[19]) or a remeshing technique at a coarser scale (e.g. [20]), of- 88

ten followed by vertex relocation to resolve intersections. Be- 89

ing purely geometric, these methods fail to be animation-aware, 90

meaning that cage handles may be distant from the parts the an- 91

imator wants to deform or bend. Furthermore, these methods 92

may disrupt the symmetry of the cage. For all these reasons, 93

this class of algorithms is usually not desirable for animation – 94
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Fig. 2. Our pipeline starts from a digital character and its curve skeleton (a). The user manually selects nodes where bending occurs (b, red dots).
Symmetric cross sections at bending nodes are obtained from a harmonic field in the volume (c). An initial cage is created by connecting the cross sections
(d). The cage is finally inflated to accommodate the character without intersections (e).

or, at least, it requires substantial post-processing. Recently,1

Calderon and Boubekeur [21] presented a shape approximation2

algorithm which takes as input an arbitrary mesh and generates3

a bounding proxy that tightly encloses it. Their method is de-4

signed to support collision detection, thus it does not account5

for semantically important structures. If automatically com-6

puted, bounding proxies tend to be either too refined to be used7

as coarse control cages, or they may affect the global topology8

of the object, closing handles and filling holes. In order to over-9

come such limitations, the local scale can be corrected with an10

interactive brush. Our method automatically determines the lo-11

cal scale of the cage that is necessary to accommodate all the12

semantically relevant features of the character.13

Similarly to us, template-based techniques [22, 23] use a14

guiding skeleton to infer the logical components of the char-15

acter, and cage it by using predefined templates chosen accord-16

ing to type of joints of the underlying skeleton. Although these17

methods can automatically construct cages for animation, they18

are usually limited in the number of joints they can handle, and19

do not scale on complex shapes with arbitrary topology. In con-20

trast, our approach is able to handle any line skeleton, regardless21

of its topology or the valence of its junction nodes. Chen and22

Feng [24] substituted templates with planar cross-sections lo-23

cally orthogonal to the skeleton. Depending on the complexity24

of both the character and the pose, their approach may lead to25

self-intersections.26

The work of Le and Deng [3] is, to date, the most advanced27

tool for interactive cage generation. The user constructs a28

cage by sketching planar cross-sections on a 3D canvas. As29

for [24], achieving a proper shape segmentation with planar30

cross-sections may require substantial manual effort, and de-31

signing a good cage around deep concavities remains challeng-32

ing. The authors of [3] already acknowledge these limitations33

in their article, and suggest the introduction of non-planar cross34

sections to ameliorate their tool. Despite geometric limits, cut-35

ting planes are also difficult to handle in the user interface. Cre-36

ating a plane by sketching a segment on a 2D GUI requires a37

deep 3D insight, and is extremely sensitive to the precision of 38

the user. Our non-planar cuts nicely complement the user inter- 39

face, making it easy to use and more robust against imprecise 40

inputs from the user (Figure 3). 41

Various works addressed the problem of producing a se- 42

quence of cage motions to compactly encode an animation 43

sequence [25, 24, 26, 27] or video-based animation [28]. This 44

latter problem is orthogonal to the one we address in this work, 45

with almost no algorithmic overlap. 46

47

Skeletons and semantics. Besides its application in cage gen- 48

eration and animation, curve-skeletons have been extensively 49

used as a mean to encode the structure of a 3D shape, and 50

have been exploited in a number of applications, ranging from 51

shape recognition [29, 30], consistent mesh partitioning [4, 31], 52

and re-meshing [32, 33, 34]. Our tool is inspired from these 53

latter works; however, the generation of animation cages 54

poses different constraints and goals, making none of these 55

approaches directly applicable to our needs. 56

57

Barycentric coordinates. Typically, the cage deformers are aug- 58

mented with coordinates, which impact the quality of the final 59

deformation. A plethora of different types of barycentric coor- 60

dinates have been proposed, including Mean Value Coordinates 61

[35, 36], Green Coordinates [37, 38], Harmonic Coordinates 62

[39, 40], Biharmonic Coordinates [1], and complex barycentric 63

coordinates and their variants [41, 42, 43]. The main differences 64

between the different types of coordinates regard their locality 65

and smoothness. The cages generated with our method support 66

any type of barycentric coordinates, which can be conveniently 67

chosen according to the animator’s needs. An interesting dis- 68

cussion of cage-based deformation techniques can be found in 69

Jacobson et al. [44]. 70
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3. Method1

The pipeline of our method is described in Figure 2 and has2

been summarized in the Introduction. In this section, we will3

go through the details of each step.4

Our input consists of a triangle meshM representing the dig-5

ital character, together with its line skeleton S. We just require6

the skeleton to be fully contained in the volume bounded by the7

mesh. Nodes of S that have more than two incident branches,8

or just one incident branch, will be called branching nodes, and9

leaf nodes, respectively. Additional nodes selected by the user10

along the branches of the curve skeleton will be called bending11

nodes.12

Roughly speaking, the cage will be made of tubular struc-13

tures, one for each branch of the skeleton, connected at poly-14

hedral joints surrounding the branching nodes of S. Each tubu-15

lar structure will have a polygonal cross section, and it will be16

subdivided transversely at bending nodes. For simplicity, we17

always adopt quadrilateral sections, as in [3], but the method18

can support generic polygonal sections, possibly different for19

each branch. Note that, although the boundaries of sections20

may usually be nearly planar, their corresponding cutting sur-21

faces are always forced to pass through the central node of the22

skeleton and may result strongly non-planar (see e.g. the head23

section in Figure 2). This feature is widely exploited by our24

user interface, making it robust against imprecise inputs from25

the user (Figure 3). Non-planarity will usually be emphasized26

about leaf nodes and where relatively thin limbs are attached to27

a larger body (e.g., armpit, groin).28

3.1. Pre-processing: guiding field29

Given the surface mesh M and the skeleton S, we define a30

volumetric field that emanates radially from the skeleton to the31

outer surface. Such a field is inspired by the radius component32

of the cylindrical parameterization described in [32], and will33

be used later on to partition our cage.34

In order to compute this field, we first generate a tetrahedral35

mesh that conforms to the outer surface of the character and36

embeds the skeleton as chains of internal edges. We then com-37

pute a harmonic function f defined over the volume spanned by38

the tetrahedral mesh, by resolving the Laplace problem ∆ f = 0,39

subject to Dirichlet boundary conditions40

f (p) = 0 ∀p ∈ S
f (p) = 1 ∀p ∈ M.

The integral lines of f give us a robust way to project points41

from the inner volume to the surface. Given any regular (i.e.,42

non branching) point p on the skeleton, the integral lines of f43

starting at p span a surface that cuts the volume transversely44

with respect to S (Figure 4). We call this surface the cutting45

surface at p. The cutting surface may bend according to the46

local shape ofM in the proximity of p, and it will intersectM47

at a ring made of points that are “closer” to p than to any other48

point of S.49

Our guiding field has a consistent behaviour on meshes of50

various density (Section 5), and therefore the tracing system51

does not depend on a specific tetrahedralization. In our imple-52

mentation we only take care of a few corner cases that may53

flatten the field inside the volume and block the tracing of the 54

integral lines. Specifically, we split each inner edge having its 55

two endpoints exposed on the surface (or on the skeleton), and 56

also split each inner triangular face having all its vertices on the 57

surface (or on the skeleton). This guarantees that extending the 58

function by linear interpolation within each element, f will be 59

flat only at S andM. Note that the pre-processing is computed 60

off-line once, before any interaction occurs, and is used without 61

modification in later stages of our method. 62

3.2. User interaction 63

Similarly to [34, 33, 32] the input skeleton provides infor- 64

mation on the high level structure. Namely, how many limbs, 65

and how they connect to each other. The user may refine this 66

structure by prescribing additional degrees of freedom wherever 67

necessary. Interaction is intuitive and happens in real-time. 68

The user is just asked to click on skeleton curves where bend- 69

ing may occur (e.g., adding knees, elbows, wrists). This selec- 70

tion induces a partition of the skeleton that will then be trans- 71

lated into the cage. 72

User selected bending nodes will originate cutting surfaces, 73

which constitute a better alternative to the cutting planes used 74

in [3]. In fact, while cutting planes require accurate and te- 75

dious placement in 3D, our non-planar cutting surfaces are de- 76

termined solely from the bending nodes and make our method 77

quite tolerant against inaccurate user selection (Figure 3). 78

Fig. 3. Example of cuts induced by different selections of bending nodes.
The cyan pyramids approximate the cuts induced by the harmonic field,
while the dashed black lines represent the corresponding cuts induced by a
plane orthogonal to the skeleton and through the selected node. While our
cuts are all valid, the corresponding planes may induce inconsistent cuts.

Notice that, if an animation skeleton is provided as input, 79

the cage partition will not necessarily reflect the same structure. 80

The user may freely decide whether the cage should be compli- 81

ant with it or not. 82

3.3. Cage generation 83

This is the core of our method. We start from the skeleton 84

S and the bending nodes added by the user, and we generate 85

a coarse cage that fits the input mesh M. Intersections be- 86

tween cage and mesh will be removed in a subsequent step of 87

the pipeline (Section 3.5). 88

Let B be the set of bending nodes selected by the user, and 89

L be the set of leaf nodes of S (i.e., terminal nodes of its 90
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Fig. 4. We exploit the harmonic field f (left) to define the non planar cross
sections of our cages. For each control point p we sample a ring locally
orthogonal to the skeleton, and project it on the surface along the integral
lines of f (bottom right). We project the resulting polygon Gp on the plane
defined by its PCA, and find the quadrilateral Qp that better approximates
it (top right).

branches). We jointly refer to B ∪ L as control nodes. For each1

control node p, we create a cross polygon which is roughly or-2

thogonal to S and has its vertices onM. The cross polygon is3

(a simplified version of) the boundary of a cutting surface and4

will give a transversal section of the cage.5

We first generate a sampling of the cutting surface at p by6

tracing a number of integral curves of the harmonic field f .7

Notice that f is encoded at the vertices ofM and linearly inter-8

polated inside each tetrahedron, thus its gradient field is piece-9

wise constant. This fact may result in poor integral lines that10

do not radially propagate in a uniform way, especially if they11

are traced from the immediate proximity of S [45]. To avoid12

this issue, we sample seeds on a circle centered at p and locally13

orthogonal to S, and we trace the integral lines starting at such14

seeds (see Figure 4, bottom right). The radius of the circle is a15

fraction of the radius of the maximal ball centered at p and en-16

closed inM (we use 20% in all our experiments); the number17

of sampled points is a non-critical parameter of the method (we18

sampled 20 points in all our experiments).19

The integral lines we trace meet the surfaceM at a finite set20

of points Gp, which provide a discrete approximation of the in-21

tersection between the cutting surface at p andM itself. Note22

that, as long as the skeleton is a deformation retract ofM and23

p is away from a branching node, such intersection should be a24

ring; however, our method is tolerant to more complicated sit-25

uations, like having saddles in the harmonic field or even inter-26

secting the surface at multiple rings, as long as the main shape27

is captured from a polygon spanning the points of Gp. Rings28

here are just meant to initialize the cross sections, which will29

be inflated as described in Section 3.5 to fully incorporate the30

object.31

We further approximate this ring with a polygon having its
vertices at some of the points of Gp. We describe here a tech-

nique to generate a quadrilateral section Qp(q0, q1, q2, q3); it is
straightforward to extend it to a generic n-gon for any given n.
Refer to Figure 4 for a graphical explanation of this procedure.
We first compute the PCA of Gp and we take the first two prin-
cipal directions to define a XY planar frame. We then project
Gp to such plane and select the four projected points that define
the quad Qp that better aligns with the planar projection of Gp.
Let λ1, λ2 be the two positive eigenvalues associated with the X
and Y axes given by the PCA: we define q0, q1, q2, q3 as the four
points that maximize the signed sums of per vertex coordinates,
weighted by λ1, λ2:

maxp∈Gp +λ1 px + λ2 py

maxp∈Gp −λ1 px + λ2 py

maxp∈Gp −λ1 px − λ2 py

maxp∈Gp +λ1 px − λ2 py.

In our figures, the cutting surface at p is approximated with 32

the pyramid obtained by connecting p to the vertices of Qp (Fig- 33

ures 2 and 3). 34

We complete the tubular portions of the cage by connecting 35

quad sections pairwise and computing their convex hull. No- 36

tice that the triangles generated between adjacent pairs of quad 37

sections are independent from the others, thus avoiding the ac- 38

cumulation of torsion along the limbs of the character. 39

We finalize the topology of the cage by welding together the 40

tubular structures we have built so far about the branching nodes 41

of S. We follow a technique similar to [3], considering one 42

branching node at a time and projecting its incident quad sec- 43

tions to a sphere centered at the center of mass of their vertices. 44

The convex hull of the so projected point set defines the con- 45

nectivity of the cage around each branching node (Figure 5). 46

Fig. 5. The tubular structures, corresponding to portions between consec-
utive bending nodes along a branch of skeleton (blue) are joined with poly-
hedra (green) centered about branching nodes of the skeleton to form the
tight cage (before inflation).

Even if not reported in [3], we observe that in some patholog- 47

ical cases the convex hull algorithm may fail to define an edge 48

for each of the sides of the quadrilateral cross-sections, result- 49

ing in an invalid cage connectivity. If this is the case, we add a 50

Steiner vertex at the midpoint of each missed edge, and iterate 51

this operation until all the edges of the involved quad sections 52

are included in the convex hull. Additional vertices can be eas- 53

ily removed in post-processing by iteratively applying the edge 54

collapse operator to the modified quad-sections, removing all 55
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Fig. 6. Symmetrizing a quad across the symmetry plane Π. Top: two ver-
tices of the quad lie to the left of Π, and the other two lie to the right of Π

– we impose symmetry of edges connecting vertices on the same side of Π.
Bottom: two vertices lie on Π and the other two lie on opposite sides of Π –
we impose symmetry between the vertices not lying on Π.

the edges that contain at least one Steiner vertex. The need for1

insertion of Steiner points is very rare and we did not need it in2

any of the cages we show.3

3.4. Symmetry4

In the digital modeling pipeline, most of the times only half5

of a character is explicitly modelled, while the second half is6

obtained by reflecting the so generated mesh along a symmetry7

plane. In order to generate consistent animations for both sides8

of a symmetric character, it is therefore important to replicate9

such symmetries at cage level. We automatically detect extrin-10

sic symmetry planes with the method described in [10], and use11

them to adjust the position of cage sections and handles.12

Let us consider a symmetry plane Π. Our strategy to sym-13

metrize a cage works as follows. We consider each quad sec-14

tion Qi and reflect it through Π, generating a target section QΠ
i .15

We then find the quad section Q j that is closest to QΠ
i . Distance16

between quad sections is computed point-wise; since the ver-17

tices of each quad section are ordered, we test the four possible18

vertex pairings and consider the one that minimizes the sum of19

pair-wise distances. If the two sections are not equivalent (i.e.20

if i , j) we impose a symmetry between them, by computing21

the average between Q j and QΠ
i , and using it and its reflected22

counterpart to substitute Q j and Qi, respectively. If i = j, the23

quad section is traversed by the symmetry plane. There are two24

possible cases, summarized in Figure 6: (i) Qi has two out of25

four vertices on Π, in which case we symmetrize the pair of26

vertices which are not on Π; (ii) none of the vertices of Qi is27

on Π, in which case we symmetrize the two edges of the quad28

section, which do not cross Π. Figure 7 shows a visual example29

of cages obtained with and without symmetry enforcement.30

This approach can be easily extended to deal with symmetric31

characters given in general pose (which does not exhibit ex-32

trinsic symmetry), by using the method for intrinsic symmetry33

detection described in [10].34

3.5. Cage inflation35

The tight cage we have built so far has its vertices on the skin36

M. In the final step of our method, we pull the vertices of the37

cage further out, ensuring that none of its faces intersectsM.38

Fig. 7. A visual comparison between a cage without (left) and with (right)
symmetry enforcement on the Boy dataset.

We inflate the cage using the Nested Cages expansion mecha- 39

nism [2]. This is all but straightforward, though. Such a method 40

is efficient and guarantees the absence of collisions. However, 41

as already acknowledged by the authors, it may fail if the tight 42

cage and the skin are not sufficiently close to each other (see 43

Figure 8). We address this issue by pre-inflating the tight cage 44

before the final inflation with Nested cages. 45

Fig. 8. Nested Cages [2] may fail without our pre-inflation mechanism.
Even though all vertices of the tight cage are on the surface, on the ab-
domen of the ant its faces are too far from the skin to support skin contrac-
tion, which is at the basis of the Nested Cages algorithm. Antcat dataset.

We pull cage faces towards the outer surface of M with a 46

simple technique summarized in Figure 9. We sample the faces 47

of the cage and we project each sample ontoM by following the 48

integral lines of the harmonic field f (Section 3.1). Samples that 49

are already outside the skin are ignored. For each face fi of the 50

cage, we take the sample s that lies farthest from its projection 51

sp, and define a face displacement vector ~fi = sp − s. Then, 52

for each vertex v j of the cage, we build a vertex displacement 53

vector ~v j as follows: 54

• the direction of ~v j is the (normalized) average of the per 55

face displacements vectors incident at v j (Figure 9, left); 56

• the magnitude of~v j is the length of the largest projection of 57

the same face displacement vectors on this direction (Fig- 58

ure 9, right). 59

Since every vertex of the cage is moving out from the surface 60

of the model, the cage could self-intersect during pre-inflation. 61

This may happen in the proximity of tiny features or small spac- 62

ing between different parts of the model. This is easily fixed as 63

follows: we check if a face of the cage intersects any other face 64
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Fig. 9. Pre-inflation of the cage. Left: each face is assigned a displacement
vector that brings it closer to the skin. Right: such displacements are aver-
aged at cage vertices to pull them outwards.

after pulling them outwards; then, for each pair of intersecting1

faces, we move all their vertices a small step towards their pre-2

vious positions, and we repeat until no intersection occurs: the3

offset at each step is set as a small fraction of the displacement4

vector ~v j defined above.5

In all our experiments, this procedure was sufficient to pro-6

vide a clean input to Nested cages. In case final inflation still7

fails, in most of the cases the number of bending nodes selected8

by the user was not sufficient to provide a fine enough articu-9

lation of the cage. This is easily fixed with one more cycle of10

interaction.11

Note that although a symmetric energy is presented in [2],12

the available implementation of Nested Cages does not sup-13

port symmetry. We therefore interleave cage inflation and sym-14

metrization (Section 3.4) of the cage to obtain the desired result.15

4. Automatic placement of bending nodes16

Although the method we are proposing is designed to be user-17

assisted, we may also suggest an initial guess of bending nodes.18

The rationale consists in placing bending nodes in correspon-19

dence of abrupt changes in the local thickness of the shape (e.g20

where arms and torso meet). This is a classical criterion for21

mesh segmentation [46], and it is sometimes sufficient to ob-22

tain a fully automatic construction of the cage. In most cases,23

though, it just provides some hint to the user, as bending points24

may not match geometrically relevant features of the mesh.25

We propose here a simple heuristic which exploits the curve-26

skeleton. Alternative strategies to segment a shape based on its27

local thickness exist in literature and may accommodate better28

results. We define a function over the curve skeleton S29

r(p) = Rad(p) ∀p ∈ S,

where Rad(p) is the radius of the maximal sphere centered at30

p, which is fully inscribed inside the model. Function r is pro-31

vided as a byproduct of skeleton computation by several meth-32

ods [6, 7]. In case it is not available from the input, it can be33

easily computed by finding the point on the character that is34

closest to p. We place bending nodes at points of the skeleton35

where there is a large variation of function r. We compute the36

first derivative r′ and we find its critical points. To alleviate sen-37

sitivity to the noise, we smooth function r′ before using it. From38

Fig. 10. A collection of cages obtained by running our pipeline in fully auto-
matic mode. Boy, Scape, Horse, Homer and Animal datasets. Some bend-
ing points may be either missing (e.g., ankles and knees for Homer), or
redundant (ankles for Scape, elbows for Animal, head for Homer).

a practical point of view, this method allows us to further speed 39

up the cage construction. Starting at the initial guess, inter- 40

action is limited to adding/removing/displacing bending nodes. 41

Despite its simplicity, this strategy already allowed us to pro- 42

duce some quality cages without any user interaction. See Fig- 43

ure 10. 44

Fig. 11. Cage of the Dance dataset. Even if the skirt is not properly cap-
tured by the skeleton, our algorithm is able to produce a quality cage that
tightly encloses it (see closeup).

5. Results and discussion 45

We implemented our cage generation tool as a single 46

threaded C++ application and run our experiments on a Mac- 47

Book Pro equipped with a 2,7 GHz Intel Core i5 and 8GB of 48
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Fig. 12. Models Warrok (top) and Ganfaul (bottom) contain spiky elements
or protrusions that are not captured by the skeleton. The close-up (right)
of the spiky elements in these models is shown. Our method is tolerant to
these features and builds a cage that correctly contains them.

Fig. 13. The Asian dragon model with two different skeletons: on the left,
a coarser cage is generated embedding all the spikes which are not repre-
sented by the skeleton; on the right, a high-resolution cage captures the
finer protrusions (fingers, tail, horns) of the input model.

RAM. In the context of the pipeline, we have used a few well es-1

tablished techniques implemented in a variety of publicly avail-2

able libraries, specifically: Tetgen [47] for volumetric mesh3

generation; CGAL [48] to compute convex hulls; Eigen [49] to4

solve linear systems; and anonymized [50] for mesh and scalar5

field processing. A reference implementation of our tool can be6

found on GitHub at the following address: anonymized.7

We have applied our caging tool to a variety of 3D models8

listed in Table 1, producing cages that fulfill all the require-9

ments listed in [3, 12] and reflect the extrinsic symmetries of10

models. Skeletons were computed using the implementation11

of [8] available in CGAL, as well as other automatic [6, 7]12

and interactive [9] techniques. Galleries of cages obtained with13

our method are shown in Figures 16 and 17, for models with14

and without extrinsic bilateral symmetry, respectively. Notice15

that we effectively deal with rather complex objects and poses,16

like the Joker, the Octopus and the two dragons. In addition to17

that, we observed that despite its natural ability to cage tubular18

shapes, also digital characters with features that are not well de-19

scribed by a skeleton, such as the skirt in Figure 11, are robustly20

Fig. 14. Comparison between cages obtained with: aggressive mesh deci-
mation followed by inflation via Nested Cages [2] (left column); interactive
cutting planes [3] (middle column); our method (right column). Scape,
Tyra and Fertility datasets.

handled. 21

Despite the ability of the user to control the caging process 22

by prescribing bending nodes, an additional source of control 23

is granted by the skeleton itself, which sets the overall struc- 24

ture of the cage. Coarse skeletons that do not catch all the tiny 25

protuberances of a shape induce a simplified cage (Figure 12), 26

while finer skeletons are able to catch all the tiny details of the 27

character and enable an explicit control of such structures for 28

animation (Figure 13). 29

We also validated our cages by posing digital characters us- 30

ing the CageLab tool [51]; some of the key poses we generated 31

are depicted in Figure 19. See also the accompanying video. 32

Comparisons. In Figure 14 we compare our results with two 33

state-of-the-art methods for caging, one automatic and one in- 34

teractive. For automatic caging, we combined aggressive mesh 35

decimation [19] with inflation with Nested Cages [2]. For in- 36

teractive caging, we considered the recent method of Le and 37

Deng [3]. Since we started from the cage meshes provided 38

by [3], we generated our results and the results of the auto- 39

matic approach so as to produce cages with similar complexity 40

(i.e. same amount of vertices). To the best of our knowledge, 41

there exists no benchmark to compare two alternative cages of 42

the same character, or to evaluate a given character for specific 43

animation tasks. Here we therefore compare the cages based on 44

the principles devised by previous literature, and listed in Sec- 45

tion 1. As expected, being based on purely geometric criteria, 46
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Fig. 15. Top: The caging method of [3] fails to generate a valid cage (see
the self-intersection in the close-up). As discussed in their paper (Section
4), this problem stems from the use of unbounded planar cuts. Bottom:
Our method produces a valid cage that contains the character and is free
from self-intersections.

fully automatic caging fails to preserve symmetry, it misses im-1

portant bending points, and it produces a highly irregular cage.2

On the other hand, both interactive methods produced similar3

cages, with no perceivable defects.4

Interaction-wise, we observe that our cutting system is able to5

robustly and reliably split the cage around a bending area, even6

if the user is not very precise in selecting the bending node (Fig-7

ure 3). Conversely, the method of Le and Deng [3] is based8

on sketching a cutting plane by drawing a segment on a 2D9

GUI. Such an operation that is much more complex, requires a10

deeper 3D insight, and is extremely sensitive to the precision of11

the user. This type of interaction operation takes minutes, let12

alone further adjustments that may be necessary to solve intri-13

cate configurations. We argue that our interaction is faster: We14

only require the user to click on the skeleton to locate bending15

points, which can be done in a few seconds (Table 1, Tui). Fi-16

nally, as acknowledged in [3], the use of unbounded planar cuts17

may produce invalid cages containing self-intersections that are18

not easy to remove. We also observe that their heuristic for cage19

inflation is purely based on a distance function with respect to20

the character skin, and does not guarantee (and does not even21

promote) the absence of self-intersections in the cage. There-22

fore, these pathological configurations cannot be recovered. In23

Figure 15, we show a self-intersecting cage produced with [3],24

together with our (valid) result.25

Figure 20 shows a comparison with respect to the bound-26

ing shapes produced by the recent automatic method presented27

in [21]. Although such method is not meant to produce cages28

for animation, we notice that they nicely enclose the charac-29

ters in rather tight cages. However, as for the other automatic30

method we compare with, the distribution of vertices in such31

cages totally misses the semantics needed for animation. In32

[21], coarser cages are also shown, which were not released to33

the public domain for comparison. So we argue that they may 34

possibly produce cages as coarse as ours, but without consider- 35

ing a proper placement of control points. Moreover, aggressive 36

simplification of the envelope may change the global topology 37

of the cage, e.g., by joining two feet/legs if they rest close to 38

each other, as shown in several examples in [21]. This is indeed 39

a benefit for application in collision detection, while it makes 40

the cage no longer suitable for animation. Finally, in order to 41

obtain variable resolution, e.g., to build a cage that may con- 42

trol every single finger of a hand, they need interaction with a 43

virtual brush, which is probably heavier than the placement of 44

bending nodes in our method. 45

Resolution. Our method exposes a good independence from 46

mesh resolution, both at a surface and volumetric level. 47

Surface-wise, a good caging algorithm should focus on the high 48

level appearance of a digital character, and not on low-level tes- 49

sellation details. Ideally, the influence of the latter should be 50

negligible. We demonstrate this property in Figure 21, where 51

we consider two very different triangulations of the Tyra, ob- 52

taining two cages which are similar to one another. Volume- 53

wise, we studied how much the volumetric discretization of the 54

character influences the final result. As it can be noticed in 55

Figure 22, the behaviour of the level sets and integral lines of 56

the field remains consistent at different resolutions, making the 57

algorithm substantially independent from the volumetric dis- 58

cretization. This is very important, because it means that the 59

generation of the tetrahedral mesh is not a hidden parameter 60

difficult to deal with, and that the algorithm can be reproduced 61

by other developers. 62

Timing. Processing times for the various models used in our 63

experiments are reported in Table 1. Pre-processing is per- 64

formed once as the model is loaded and times depend on the 65

complexity of the input models, varying between less than one 66

second to about one minute in our experiments. Roughly speak- 67

ing, user interaction requires about one second per bending 68

node selected on the skeleton, making this phase about one or- 69

der of magnitude faster than user-assisted techniques based on 70

cutting planes. The construction of the base complex and its 71

pre-inflation phases together report times from less than one 72

second to about three seconds for all models, except the Tyra 73

at high resolution, which requires almost 20 seconds. Over- 74

all, these phases are compatible with an interactive usage: the 75

topology of the cage is immediately visible on the base com- 76

plex, and the user is allowed to cycle on them to edit the bend- 77

ing nodes and correct the cage after running the final inflation. 78

The final inflation with Nested Cages is computation inten- 79

sive and requires between 45 seconds for the simplest model to 80

about 15 minutes for the hi-res Tyra. Although this last phase is 81

typically one-shot, long processing times may be not compati- 82

ble with practical usage. In order to bring processing times to 83

reasonable bound, even with high resolution characters – such 84

as the ones created with 3D sculpting tools like ZBrush [52] – 85

a relevant speedup can be achieved by substituting the original 86

character with a proxy shape obtained via aggressive mesh dec- 87

imation [19]. A cage built upon a low-res proxy containing just 88

a few thousands faces may be inflated in less than a minute, yet 89
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Fig. 16. A collection of cages for models with extrinsic symmetry: Antcat, Jocker, Skater, Warrior, Dinopet, Elk, BigBunny, ManTpose and Homer.

Fig. 17. A collection of models, which are not extrinsically symmetric: Gecko, Hand, Cat, Dragon, Lion



Preprint Submitted for review / Computers & Graphics (2019) 11

Fig. 18. Left: Our method fails to produce a valid cage if the number of se-
lected bending nodes is not sufficient to accommodate the geometry of the
character. Inflating such an unrefined cage to contain the whole octopus is
in fact impossible, as cage self-intersections will arise. Right: The user can
easily recover from such pathological cases by prescribing additional bend-
ing nodes, which in turn produce a more refined cage that tightly encloses
the whole octopus.

Fig. 19. Different poses of the Horse dataset obtained by editing a cage
produced with our technique. For cage editing we used CageLab [51].

giving a result quite close to the final one. The full resolution1

character is eventually re-introduced for a further step of infla-2

tion with Nested Cages, which takes in input the cage inflated3

about the proxy. Thanks to this warm start in the final inflation,4

the total time required with this techniques is much less than5

that the time spent by the method running directly on the hi-res6

model.7

In Table 1 we report two examples of this approach. To give8

concrete numbers, building a cage directly for the high reso-9

lution version of the Gecko (∼75K tris) required 870 seconds,10

while the whole pipeline required just 40 seconds on the low11

resolution proxy (1000 tris); with an additional 130 seconds for12

the final inflation, the cage was adapted to the hi-res model,13

yielding a 80% speedup. With the more complex Tyra (200K14

tris),and a relatively larger proxy (25K tris), we still get a 50%15

speedup.16

6. Limitations17

Even though our method can produce quality cages for a va-18

riety of characters of any topology, we are limited to the class19

of shapes that admit a skeletal representation. Although in the20

world of digital characters this is by far the dominant class of21

shapes, more complex shapes, such as those containing large22

Fig. 20. Visual comparison between the state of the art caging method for
collision detection [21] (left), and our method (right). General purpose
cages are not suitable for animation, as they introduce unnecessary ver-
tices, and do not align with the semantic features of the character.

and thin surfaces, may also occur. Such shapes may be ad- 23

dressed with the use of mixed line-sheet skeletons [53, 8]. Our 24

approach can be extended to deal with such skeletons by just 25

allowing the user to select bending lines on sheets, beside bend- 26

ing points on the line skeleton; the method for extracting cross 27

sections based on the harmonic field nicely extends to this case, 28

too. We plan to tackle these issues in our future work. 29

A second limitation is that, in some pathological cases, our 30

method may fail to produce a valid cage if the user selects an 31

insufficient number of bending points (Figure 18). This relates 32

with the fact that keeping the topology of the cage fixed, i.e., 33

totally determined by the skeleton and its bending points, the 34

only mechanism to resolve intersections is inflation. For mod- 35

els having insufficient bending points and narrow tubular fea- 36

tures with high curvature this may therefore result in excessive 37

inflation, possibly resulting in collisions with distant parts of 38

the character, and intersections that cannot be removed with- 39

out refining the topology of the cage further. In all these cases, 40

Nested Cages [2] fails. The user can easily address this issue 41

by just adding one or more bending points in the pathological 42

areas and running the automatic part of the method again. A 43

minor technical issue regards the generation of the guiding har- 44
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Fig. 21. Our method is substantially independent from the resolution of the
input mesh. Here we show two cages, obtained by processing two alterna-
tive discretizations of the same character. Despite that the input meshes are
very different in size (24K triangles vs 200K triangles), the output cages are
quite similar.

monic field, which requires a volumetric discretization of the1

interior of the character. While this may seem to suggest that2

surface meshes containing topological defects or open bound-3

aries cannot be processed with our method, we point out that4

scientific literature offers a variety of methods for mesh repair-5

ing (e.g., MeshFix [54]) and robust tetmesh extraction (e.g.,6

TetWild [55]). Therefore, having a watertight 2-manifold is not7

a strict requirement.8

7. Conclusion and future work9

We have presented a novel user-assisted method for building10

animation cages. As demonstrated by a variety of results, our11

algorithm scales well to complex shapes, which can be either12

provided in the canonical T-pose, or in arbitrary pose.13

Compared to similar approaches [3], we offer a faster, more14

intuitive, and more robust user interaction, requiring just the15

selection of bending points on the skeleton. Placement of cage16

nodes is based on a flexible and reliable criterion, which allows17

for curved cross-sections extracted from a harmonic field in the18

volume, thus overcoming the popular (but tedious and limiting)19

cutting planes.20

In a very recent paper [56], evidence is presented that mixed21

tri-quad cages can provide better control to animation and de-22

formation. The extension of our method to support such cages23

is straightforward, as all cage elements along limbs and across24

the symmetry plane are naturally defined as quads.25
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Model Figure Mv M f BN Cv C f Tpp Tui Tbc Tin f Tnc Ttot Tnc∗

Animal 10 19552 39040 16 84 164 6.74 15 1.02 0.29 813.26 836
Antcat 8;16 1550 3096 29 156 308 0.66 17.75 0.16 0.26 45.37 64

Armadillo 1 10002 20000 17 100 196 2.92 13.2 0.75 0.33 135.21 152
Asian Dragon 13 10000 19996 17 96 188 3.11 15.89 0.61 2.46 108.54 131
Asian Dragon 13 10000 19996 51 348 692 3.45 50.32 1.43 1.17 169.21 226

Beast 20 15122 30264 15 76 148 5.26 10 0.6 0.22 887.38 903
BigBunny 16 21763 43522 14 108 212 10.2 12.22 2.43 1.1 541.5 567

Boy 7;10;20 7502 15000 16 84 164 2.34 12.53 0.5 0.32 67.88 84
Cat 17 27246 54488 19 108 212 11.73 13.11 1.55 0.5 297.76 325

Dance 4;11 9971 19938 13 72 140 3.52 11.99 0.33 0.14 102.28 118
Dinopet 16 4500 8996 27 156 308 1 20.1 0.33 0.34 70.6 92
Dragon 17 5000 10000 22 124 284 1.47 14.58 0.35 0.2 109.7 126

Elk 16 23114 46228 15 88 176 7.14 11.2 1.29 0.14 170.12 190
Fertility 14 9994 20000 23 92 196 33.01 16.59 0.26 0.34 147 197
Ganfaul 12 14590 29192 15 76 148 4.12 12.54 0.58 0.29 491.32 509

Gecko (high) 17 37352 74700 24 120 236 12.55 14.54 1.96 0.68 840 870
Gecko (low) 17 500 1000 24 120 236 0.15 16.45 0.06 0.16 23.37 40 130

Hand 17 14347 28690 15 84 164 5.2 13.5 0.7 0.2 197.27 217
Homer 10 12997 25990 16 84 164 4.79 13.7 0.62 0.32 80.45 100
Horse 10;19 19850 39696 15 76 148 8.67 9.55 0.8 0.29 175.49 195
Joker 17 13328 26652 22 132 260 4.26 13.25 1.52 0.39 191.89 211
Lion 17 27899 55794 17 92 180 10.18 15.2 1.22 0.4 152.06 179

ManTpose 16 13356 26708 14 76 148 4.02 10.2 0.51 0.11 86.05 101
Octopus 17 10002 20000 47 224 444 3.09 30.13 0.76 0.51 62.61 97
Scape 5;10;14 6318 12632 15 80 156 1.19 12.6 0.2 0.11 62.94 77
Skater 16 13332 26660 14 76 148 4.59 10.26 0.68 0.18 112.23 128

Tyra (high) 14 100002 200000 33 184 364 54.99 22.1 17.51 1.65 886 982
Tyra (low) 14 12501 24998 33 184 364 4.56 22.45 1.41 0.67 386.48 416 90

Warrior 16 9474 18944 17 88 172 3.02 14.21 0.33 0.15 72.12 90
Warrok 12 23528 11746 19 96 188 3.11 18.25 0.43 0.26 666.74 689

Table 1. Size of meshes and timing for the whole pipeline (user-assisted cages only): Mv and M f are the vertices and faces of the input model; BN are the
bending nodes selected in the interactive stage; Cv and C f are the vertices and faces of the cage; Tpp is the pre-processing time; Tui is the user interaction
time; Tbc is the time required to build the base complex; Tinf is the time required to inflate the base complex; Tnc is the time for the execution of the Nested
Cages algorithm; Ttot is the sum of the times in the previous columns rounded to integer. Tnc∗ is the time for the final Nested Cages when the model is used
as a proxy for the hi-res model in the previous row. All times are in seconds.
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