Numerical analysis of characteristics of biogas and syngas combustion

T. Boushaki, K Shway, H. Zaidaoui, P Gillon, B. Sarh

To cite this version:

HAL Id: hal-02113607

https://hal.archives-ouvertes.fr/hal-02113607

Submitted on 29 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Numerical analysis of characteristics of biogas and syngas combustion

T. Boushaki*, K. Shway, H. Zaidaoui, P. Gillon, B. Sarh
ICARE – CNRS, Universty of Orleans, 1C av. de la Recherche Scientifique, 45071 Orléans, France
*toufik.boushaki@cnrs-orleans.fr

RenewValue Project

- European project: ERANETMED2-72-169
 RQ2: Energy and Environment
 Collaborative Innovation Project - Mobility
- Subject: Local sustainable renewable energy supply for vulnerable communities in arid and semi-arid Mediterranean zones (MENA)
- Partners: ICARE CNRS (France), Universität Rostock, DBFZ (Germany), Ibn Tofail University (Morocco), INSAT and ENIT (Tunisia), Politecnico di Torino (Italy)
- Duration: 3 years (2018-2021)

ICARE tasks and objective of the study

- Development of modular adapted energy concept
 ⇒ Gasifier - multi-fuel burner - boiler
- Characterization of syngas and biogas flames
 Experimentally: stability, pollutant emissions, temperature
 Numerically: Calculations of laminar burning velocity, flame temperature, pollutants (NOx, CO)...
- This poster: some results of calculations

Combustion characteristics - calculations

- Laminar flame velocities (S_f)
- Flame temperatures (T_f)
- Chemical species distributions
- Pollutant emissions (NO, CO, ...)
- Pathways of chemical reactions

Case of CH₄-air flame

Laminar burning velocity with equivalence ratio: CH₄-air, at 298 K, 1 bar

- Results are validated, with 4 mechanisms of chemical reactions
- S_f with T_f: ⇒ Heating of gas intake induces a better combustion
- S_f with P_f

Biogas flame calculations

Flame velocity with equivalence ratio: CH₄-CO₂ (90/10 and 80/20%)

- Results validated by experiments from the literature
- Laminar burning velocity (S_f) decreases with CO₂ addition

Syngas flame calculations

Laminar burning velocity of CO-H₂-air flames: 90/10% and 50/50 % CO-H₂

- Results are compared and validated with experimental results
- With $+\text{H}_2$: S_f max at $\Phi = 2.5$ (CH₄-air; at $\Phi = 1.05$)
- $+\text{H}_2$ ⇒ S_f; S_{max}: 190 at 50% of H₂; 90 at 50%H₂ against 38 cm.s⁻¹ CH₄-air
- $+\text{H}_2$: higher reactivity, higher flammability limits, higher velocity, higher T

Temperature, NOx and CO emissions of CH₄-CO₂-air flames with CO₂

- Flame temperature decreases with CO₂ addition
- NOx \ with CO₂
- CO \ with CO₂
 ⇒ It is necessary to find a good balance to meet the standards

Acknowledgements: This work is supported by the ANR (Agence Nationale de la Recherche), the CNRS and the University of Orleans: Eranet-Med II (RenewValue), LABEX CAPRYSSÉ (ANR-11-LABX-0006-01).