Numerical analysis of characteristics of biogas and syngas combustion
T. Boushaki, K Shway, H. Zaidaoui, P Gillon, B. Sarh

To cite this version:
T. Boushaki, K Shway, H. Zaidaoui, P Gillon, B. Sarh. Numerical analysis of characteristics of biogas and syngas combustion. 9th European Combustion Meeting, Apr 2019, Lisboa, Portugal. hal-02113607
Numerical analysis of characteristics of biogas and syngas combustion

T. Boushaki*, K. Shway, H. Zaidaoui, P. Gillon, B. Sarh
ICARE – CNRS, University of Orleans, 1C av. de la Recherche Scientifique, 45071 Orleans, France
* toufik.boushaki@cnrs-orleans.fr

RenewValue Project
- European project: ERANETMED2-72-169
- **RQ2: Energy and Environment Collaborative Innovation Project - Mobility**
- **Subject:** Local sustainable renewable energy supply for vulnerable communities in arid and semi-arid Mediterranean zones (MENA)
- **Partners:** ICARE CNRS (France), Universität Rostock, DBFZ (Germany), Ibn Tolui University (Morocco), INSAT and ENIT (Tunisia), Politecnico di Torino (Italy)
- **Duration:** 3 years (2018-2021)

ICARE tasks and objective of the study
- Development of modular adapted energy concept
 - **Gasifier** - multi-fuel burner - boiler
- **Characterization of syngas and biogas flames**
 - Experimentally: stability, pollutant emissions, temperature
 - Numerically: Calculations of laminar burning velocity, flame temperature, pollutants (NOx, CO...)
- **This poster:** some results of calculations

Combustion characteristics _ calculations
- Laminar flame velocities (S_l)
- Flame temperatures (T_f)
- Chemical species distributions
- Pollutant emissions (NO, CO...)
- Pathways of chemical reactions

For different parameters: T, P, X_i, ϕ
- With different mechanisms of reactions

Biogas flame calculations
- Flame velocity with equivalence ratio: CH₄, CO₂ (90/10 and 80/20%)
- Flame velocity with CO₂

- Results validated by experiments from the literature
- Laminar burning velocity (S_l) decreases with CO₂ addition

Temperature, NOx and CO emissions of CH₄-CO₂-air flames with CO₂
- Flame temperature decreases with CO₂ addition
- NOx \downarrow with CO₂
- CO \uparrow with CO₂
- It is necessary to find a good balance to meet the standards

Syngas flame calculations
- Laminar burning velocity of CO-H₂-air flames: 90/10% and 50/50 % CO-H₂

- Results are compared and validated with experimental results
- With $+H_2$; S_l max at $\Phi = 2.5$ (CH₄-air; at $\Phi = 1.05$)
- $+H_2 \Leftrightarrow S_l \Leftrightarrow$; S_{max}: 190 at 50% of H_2, 90 at 50%H_2 against 38 cm3 s$^{-1}$ CH₄-air
- $+H_2$: higher reactivity, higher flammability limits, higher velocity, higher T

Acknowledgements: This work is supported by the ANR (Agence Nationale de la Recherche), the CNRS and the University of Orleans: Eranet-Med II [Renew/Value], LABEX CAPRYSSE (ANR-11-LABX-0006-01).