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STRUCTURE-PROPERTY RELATIONSHIPS OF COMMON ALUMINUM WELD 

ALLOYS UTILIZED AS FEEDSTOCK FOR GMAW-BASED 3-D METAL PRINTING 

Amberlee S. Haselhuhn, Michael W. Buhr, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce 

Abstract 

The relationship between microstructure and properties is not widely assessed in parts 

produced by additive manufacturing, particularly for aluminum. These relationships can be used 

by engineers to develop new materials, additive processes, and additively manufactured parts for 

a variety of applications. Thus, the tensile, compressive, and microstructural properties of 

common aluminum weld filler alloys (ER1100, ER4043, ER4943, ER4047, and ER5356) were 

evaluated following gas metal arc weld (GMAW)-based metal 3-D printing to identify optimal 

alloy systems for this type of additive manufacturing. The porosities in all test specimens were 

found to be less than 2%, with interdendritic shrinkage in 4000 series alloys vs. intergranular 

shrinkage in 5356. The 4000 series alloys performed better than 1100 and 5356 with respect to 

printed bead width, porosity, strength, and defect sensitivity. In comparison to standard wrought 

and weld alloys, the 3-D printed specimens exhibited similar or superior mechanical properties 

with only minor exceptions.  Long print times allow for stress relieving and annealing that 

improved the print properties of the 4000 series and 5356 alloys. Overall the GMAW-based 3-D 

parts printed from aluminum alloys exhibited similar mechanical properties to those fabricated 

using more conventional processing techniques. 

 

Introduction 
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3-D printing, a type of additive manufacturing, has technically matured, creating rapid 

growth in applications such as design and prototyping, small-batch production, and distributed 

manufacturing1,2,3. 3-D printing can be used to fabricate functional components digitally from a 

computer model that is then sliced into discrete layers and converted into tool paths for the print 

head. Parts with varying size and complexity can be printed via 3-D printing for a variety of uses 

such as open source appropriate technologies (OSAT) for sustainable development4,5, patterns 

for cast metal parts6, fuel nozzles for airplane jet engines6, consumer products3, scientific 

equipment7,8, and prototypes for tools and machine inserts6,7,8.  

 3-D printing is commonly used with polymers due to lower capital costs of the 

equipment, especially with the arrival of open-source self-replicating rapid prototyper (RepRap) 

3-D printer designs9,10,11. Metal 3-D printing methods are used industrially and include laser 

sintering and melting12,13,14,15 and electron beam melting16,17,18. These industrial-grade additive 

manufacturing machines can be prohibitively expensive; they generally cost more than 

US$500,000 and some metal laser sintering machines can cost upwards of US$1.5 million, 

beyond the reach of consumers and small and medium sized enterprises (SMEs)19.  

Ribeiro (1998) proposed that metal 3-D printing might be accomplished with industrial 

robots and welding machines, but very little development in this area took place until recently20. 

By augmenting a RepRap 3-D printer design meant for plastic parts, a low-cost metal 3-D printer 

utilizing gas metal arc welding (GMAW) technology was developed by Anzalone, et al.21, and 

further developed by Haselhuhn, et al.22, which enables SMEs and even individuals to print 3-D 

objects in metal. This system employs a common GMAW welder and is capable of printing steel 

and aluminum. Initial work to characterize the porosity, hardness, and ultrasonic moduli of parts 

produced found mechanical properties similar to the bulk wrought material22,23. Previously, a 
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complete evaluation of mechanical properties has not been reported in the literature for this 

method of printing. It is important to understand how materials behave when they are 3-D 

printed as this can guide designs utilizing conventional alloys with GMAW-based metal 3-D 

printing. This baseline knowledge will also help identify opportunities for improved alloys and 

processing regimes.  

Much of the traditional welding literature can be directly applied to GMAW-based metal 

3-D printing to understand fundamental concepts and behaviors of printed metal parts. 3-D 

printing via GMAW most closely resembles single-layer, multi-pass welding, also known as 

multi-run welding24,25,26,27. This type of welding process reheats previously welded material, 

thus altering the grain structure, which can improve weld mechanical properties such ductility 

while reducing residual stress24,25. Although GMAW-based metal 3-D printing is analogous to 

single-layer multi-pass welding technology, 3-D printing with this technology requires special 

considerations since the weld material comprises the entire part, rather than a small portion26. 

This results in a unique distribution of thermal stresses, microstructures, and mechanical 

properties as a function of process parameters and part geometry.    

Aluminum alloys that are commonly used as weld filler material include ER1100, 

ER4043, ER4047, and ER5356 (Table 1).  

Table 1. Common Aluminum Weld Alloys28,29 

Alloy Main Alloying Element Commonly Used to Join: 
ER1100 None; ≥ 99% Al 1xxx series alloys, 3003/3004 Al alloys 
ER4043 4.5-6% Si 1xxx series alloys, 2xxx series alloys, 3003/3004 Al 

alloys, 6xxx series alloys 
ER4943 5-6% Si + 0.3-0.5% Mg 1xxx, 3xxx, 5xxx with less than 3.0% Mg, and 6xxx 

series alloys. 
ER4047 11-13% Si 6xxx series alloys 
ER5356 4.5-5.5% Mg 5xxx series alloys, 6xxx series alloys, 7xxx series alloys 
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ER4943 is a newly developed aluminum welding alloy based from the ER4043 alloy system29. 

Dilution of weld filler materials in the weld is typically anticipated to prevent weld cracking and 

to produce desired mechanical and electrochemical properties with the exception of ER4943 

which was designed to negate the requirement of dilution30. However, in GMAW-based metal 3-

D printing, there is only one material and alloy dilution does not occur. It is important to 

characterize how common aluminum weld alloys behave in the GMAW-based 3-D printing 

environment in order to adjust 3-D printing processes on a per-alloy basis, and to guide future 

alloy development. By printing all materials at the same settings it is straightforward to 

determine which alloys would benefit from more heat input, faster print speeds, etc. 

 Heard, et al., analyzed microstructure and fatigue life properties of ER4047 specimens 

produced via GMAW-based 3-D printing31. They observed dendrite arm spacing of 3.5µm in the 

first layer which coarsened to 6.6 µm in the fourth layer as heat accumulated in the print 

substrate. Heart, et al., also observed flexural strengths of 3-D printed samples comparable to 

their cast counterparts. This paper compares to the work of Heard, et al., and extends it to 

additional aluminum alloys, ER1100, ER4043, ER4943, and ER5356, and evaluates the 

structure-properties relationships associated with GMAW-based metal 3-D printing of 

aluminum. In order to understand and design for thermodynamic environment and resulting 

material properties that arise in the unique welding environment associated with GMAW-based 

metal 3-D printing, this study evaluates specimen mechanical properties in both compression and 

tension and also with respect to different print orientations. Microstructural analysis, such as 

dendrite arm spacing analysis, was also performed on the printed specimens and the fracture 

surfaces were evaluated. Additional testing, including print resolution, porosity, and ultrasonic 
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modulus were included in this study to develop more baseline data for 3-D printed aluminum 

properties.  

 

Materials and Methods 

Description of the 3D Metal Printer 

The open-source GMAW-based metal 3-D printer and software tool chain utilized in this 

study have been described previously32. A Millermatic 190 GMAW welder with a Miller 

Spoolmate 100 weld gun were used to supply the weld power and the weld material. G-Code to 

control the 3-D printer was written manually and uploaded to a custom web server that directly 

interfaced with the printer22,33. Standard weld-grade argon cover gas (99.995% purity) was used 

during printing. Voltage and current were monitored during printing using custom equipment34; 

the weld power monitor measured voltage and current synchronously, providing signals that 

were processed and recorded by the robot’s firmware.  

Printing of Test Specimens 

Standard ER1100 and ER4047 wire (AlcoTec) in addition to ER4043, ER4943, and 

ER5356 wire (Hobart), 0.035 inches (0.889 mm) in diameter were used as feedstock material to 

3-D print rectangular blocks (105.6 x 26.4 x 25.4 mm) onto cleaned and degreased ASTM A36 

steel substrates (127 x 127 x 6.35 mm) (Table 2). Wire compositions were obtained directly from 

their respective suppliers35,36,37,38,39. Aluminum was printed onto low carbon steel as this was 

previously found to allow easy sample removal22,23.  
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Table 2. Compositions of Aluminum Weld Wire (wt%; Single values are maximum values 

unless otherwise noted) 

          Others 
Alloy Si Fe Cu Mn Mg Cr Zn Ti Be Each Total 

ER110035 0.95 0.05-
0.20 

0.05 - - 0.10 - - 0.05 0.15 

ER404336 4.5-
6.0 

0.8 0.30 0.05 0.05 - 0.10 0.20 <0.0003 0.05 0.15 

ER494337 5.0-
6.0 

0.40 0.10 0.05 0.30-
0.50 

- 0.10 0.15 <0.0003 0.05 0.15 

ER404738 11.0-
13.0 

0.8 0.30 0.15 0.10 - 0.20 - 0.0003 0.05 0.15 

ER535639 0.25 0.40 0.10 0.05-
0.20 

4.5-
5.5 

0.05-
0.20 

0.10 0.06-
0.20 

<0.0003 0.05 0.15 

 

The welder and 3-D printer settings are described in Table 3 whereas the print path for 

each sample is described in Figure 1. Print settings were constant for all print alloys in order to 

evaluate the behavior of each alloy under identical processing conditions. All specimens were 

water quenched immediately after printing. Five (5) identical blocks were printed for each alloy. 

Table 3. 3-D Printing Parameters 

Parameter Value 
Welder Power Setting (unitless) 1 

Wire Feed Rate (mm/sec) 124.6 
Print Speed (mm/sec) 10 
Wire Stick-Out (mm) 10 

Shield Gas Flow Rate (L/sec) 0.24 
G-Code Layer Height (mm) 2.5 

G-Code Lateral Bead Spacing (mm) 3.3 
Pause After Each Layer (sec) 60 

Number of Print Layers 15 
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Figure 1. Alternating print paths for all specimens viewed in the direction of the z-axis 

Specimen Machining and Analysis 

Prior to machining, dimensions of test specimens and bulk porosities were measured. The 

average center bead width in the top print layer was measured in each alloy using Mitutoyo 

digital calipers with a 0.01 mm measurement resolution. This measurement was chosen as it was 

the most consistent and reliable bead in the top layer of the printed parts, although it did 

represent a worst-case scenario as the bead widths in the topmost layer would be the largest. Due 

to topological differences in the print specimens, ten measurements were taken along the entire 

length of the specimen and averaged. The center bead width provides engineers a metric for print 

resolution, allowing them to more accurately design 3-D printed components. Internal (closed) 

porosity in all mechanical test specimens was measured in water according to the Archimedes’ 

principle as described in a previous study23. 

Using a lathe, four blocks of each alloy were machined into standard round tensile bars 

(6.35 mm gauge diameter by 25 mm gauge length) according to ASTM B55740. Each block was 

machined into 4 tensile bars. One block of each alloy was machined into compression samples 

and a specimen for microstructural analysis using a 2½ axis CNC mill (Figure 2). 
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Figure 2. Orientation of compression and microstructural specimen machining 

Two compression rectangular solids were oriented parallel and three compression rectangular 

solids were oriented perpendicular to the print layer to evaluate any anisotropy. The 12.5 x 12.5 x 

19 mm compression specimens had a height to width ratio of 1.5:1. The top and bottom surfaces 

of the specimens were polished to 0.05 µm using silica to reduce friction with the compression 

platens. Microstructural specimens were polished to 0.05 µm silica prior to being etched in 

Keller’s solution for 30 seconds for examination in an optical microscope  

Tensile specimens were pulled to failure in an Instron load frame with an MTS control 

package using a 22 kN load cell at a strain rate of 10-3 sec-1 according to ASTM B55740. An 

Epsilon clip-on axial extensometer with a 25 mm gauge length was used to measure the 

elongation of the specimen during tensile loading. Only specimens that broken within the gauge 

section were used for quantitative and qualitative analysis. Tensile fracture surfaces were 

analyzed in a JEOL 6400 scanning electron microscope (SEM).  

Prior to compression, the ultrasonic modulus of the machined compression specimens 

was measured using an Olympus 38DL Plus ultrasonic thickness gage. The longitudinal wave 

velocities were measured using an Olympus M112 transducer (10 MHz frequency, 6 mm 

transducer diameter) with a glycerin couplant. The shear wave velocities were measured using an 
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Olympus V157 transducer (5 MHz frequency, 3 mm transducer diameter) with a shear gel 

couplant. Longitudinal and shear velocities were measured in two specimen orientations: 

Vertically from the top of the print to the bottom across many layers and horizontally across few 

layers. Using the longitudinal and shear velocities, in addition to the density measured via the 

Archimedes’ principle, Poisson’s ratio, elastic moduli, and shear moduli were calculated for each 

alloy as described in previous study23. Using Poisson’s ratio (𝜈𝜈) and elastic modulus (E), the bulk 

modulus (K) of each alloy was calculated (Equation 1)41.  

𝐾𝐾 = 𝐸𝐸
3(1−2𝜈𝜈)                         (1) 

Following ultrasonic modulus testing, compression specimens were lubricated with 

graphite powder, preloaded to 44.5 N to ensure sample positioning, and loaded in an Instron load 

frame with a 150kN load cell at a strain rate of 10-3 sec-1. Specimens were compressed to a 

maximum of 10% strain. The compression specimens were not loaded to failure as the load cell 

capacity was reached.  

Low silicon solubility in 4043, 4943, and 4047 enabled cooling rate analysis via 

measurement of secondary dendrite arm spacing (SDAS) from images obtained using a standard 

optical microscope. SDAS was measured along the center of the 4043, 4943, and 4047 

microstructural specimens using ImageJ software42. The SDAS was measured across the length 

of three or more secondary dendrite arms in an edge-to-edge fashion (Figure 3).  
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Figure 3. A dendrite in 4047 aluminum, with a schematic line  

The SDAS was calculated based upon the total number of secondary dendrite arm spaces 

(Equation 2) and a characteristic cooling rate was subsequently calculated (Equation 3). L is the 

length in µm and N is the number of dendrite arm spaces. The variable B is a fitting factor for a 

specific alloy and n is a constant. For 4043 aluminum, B = 50 µm (Ks-1)n and n = 0.33, a unitless 

number43,44. Heard, et al. found agreement between calculated and experimental data when these 

4043 aluminum constants were applied to 4047 aluminum31. The same computational approach 

was applied to this study and extended to 4943 aluminum. 

                                                              𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿
𝑁𝑁

      (2) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐵𝐵
�
−1 𝑛𝑛�

                (3) 

 The microstructural specimens were also analyzed in a Philips XL 40 environmental 

scanning electron microscope. Characterization of an iron gradient within the first two print 

layers was performed using energy dispersive spectroscopy for an alloy with a large 

solidification range (4043) and an alloy with a small solidification range (4047). All 
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mathematical data in this study was analyzed using Minitab statistical analysis software. Data 

was verified to follow a normal distribution.   

Results 

As-Printed Dimensions & Porosity  

 The top layer center bead width ranged from approximately 5 to 6.5 mm (Figure 4). The 

bead width of 1100 was the smallest followed by the 4047 and 4043. The two alloys with 

magnesium additions, 4943 and 5356, exhibited the largest bead widths and were statistically 

equivalent.  

 

Figure 4. Average center bead width in the top print layer for each aluminum alloy. Error 

bars represent ± 2 standard error.  
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Average porosity was generally low and ranged from 0.65 to 1.85% (Figure 5). The 1100 

and 4043 as-printed parts were significantly less porous than the other three aluminum alloys. 

The high magnesium 5356 alloy exhibited the greatest porosity.  

 

Figure 5. Average porosity of the as-printed specimens. Error bars represent ± 2 standard error.  

Influence of Specimen Location and Orientation on Mechanical Properties 

The shear modulus and elastic modulus (Figure 6), the tensile behavior (Figure 7), and 

the compressive behavior (Figure 8) of each aluminum alloy were evaluated based upon 

specimen orientation in the printed block. Horizontal elastic modulus, shear modulus, and 

compression specimens had their long axis in the x-y plane; vertical specimens had their long 

axis in the z-direction across many layers. In the tensile specimens bottom specimens were closer 

to the steel print substrate and had more heat flow through them than top specimens. Very minor 
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differences in moduli, tensile behavior, or compressive behavior were observed based upon 

specimen orientation. The 1100 alloy vertical specimens exhibited higher moduli than the 

horizontal specimens. The only differences in ultimate tensile strength based upon sample 

location occurred in 1100 and 4047 in which the strengths of the bottom specimens were less 

than those of the top specimens. In elongation, the bottom specimens of 1100, 4943, and 4047 

were all less than the top specimens. 

 

Figure 6. Influence of specimen orientation on the shear modulus (left) and elastic modulus 

(right) of each aluminum alloy. Error bars represent ±2 standard error. 
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Figure 7. Influence of specimen location in printed block on tensile yield strength (left), ultimate 

tensile strength (center), and elongation at break (right). Error bars represent ±2 standard error. 

 

Figure 8. Influence of specimen orientation in printed block on compressive yield strength. Error 

bars represent ±2 standard error.  
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Average Mechanical Properties 

The shear and elastic moduli of all alloys were greater than those for 1100 (Table 4). The 

elastic and shear moduli of 4047 were also greater than those observed for 4943. There was no 

significant difference in the moduli of 4043 and 4943. Greater variation in the data was observed 

for 4043 and 5356 specimens. The bulk modulus was largest for 1100 specimens. The low-

silicon 4043 and 4943 specimens exhibited a larger bulk modulus on average than 4047 although 

this trend was not statistically significant. The 5356 specimens exhibited the smallest bulk 

modulus.  

Table 4. Average calculated elastic properties for each aluminum alloy with ±2 standard error 

Alloy Poisson’s Ratio Elastic Modulus 
(GPa) 

Shear Modulus 
(GPa) 

Bulk Modulus 
(GPa) 

1100 0.36 ± 0.005 67.7 ± 0.5 25.0 ± 0.3 77.8 ± 2.5 
4043 0.34 ± 0.009 71.5 ± 2.7 26.7 ± 1.2 75.0 ± 1.4 
4943 0.34 ± 0.005 70.4 ± 0.9 26.2 ± 0.4 75.2 ± 2.1 
4047 0.34 ± 0.001 72.7 ± 0.2 27.1 ± 0.1 76.5 ± 0.4 
5356 0.31 ± 0.010 71.4 ± 1.6 27.4 ± 0.8 61.2 ± 1.8 

 

Tensile specimen fracture surfaces were highly ductile with typical cup-cone surface 

morphology (Figure 9). Variation in specimen diameters in Figure 8 demonstrate the reduction of 

area associated with tensile deformation. The 1100 tensile specimens also exhibited macro-

coning. Some of the 4047 tensile specimens exhibited some regions of brittle fracture while 

some of the 5356 tensile specimens exhibited cracking along discrete lines, likely corresponding 

to barriers between print layers. All fracture surfaces also exhibited higher than average bulk 
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porosity, likely resulting from material failure at locally weak regions having the highest 

concentration of defects.  

 

Figure 9. Tensile fracture surfaces of 3-D printed aluminum alloys. Note macro-coning in the 

1100 specimen and the region of brittle fracture in 4047 (A). Scale bar represents 2 mm.  

Rounded gas porosity was observed in all alloys (Figure 10). In all alloys except 1100,  

interdendritic or intergranular shrinkage was observed on the fracture surfaces. In these alloys, 

shrinkage porosity would often be combined with gas-type porosity.   
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Figure 10. Examples of porosity in each 3-D printed aluminum alloy.   

It should be noted that the Figure 10 images were taken of typical poor sizes for each alloy and 

thus shown at appropriate magnification to make them clear, but they are not all the same size 

and as can be seen in Figure 9 there are also much larger macro pores. The brittle regions in 4047 

also exhibited porosity, although to a lesser extent than the ductile regions (Figure 11). These 

brittle regions were only observed in some of the tensile specimens machined closest to the print 

substrate. The brittle fracture regions were marked by transgranular fracture in which aluminum 

grains were sheared. Element mapping of brittle regions in the 4047 fracture surfaces yielded 

large features containing primarily silicon with small amounts of iron exhibited as lamellar 

features. The iron lamellae were only visible in the bottom 1-2 mm of the gauge section.  
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Figure 11. Brittle 4047 fracture surface (left) with porosity (right). 

Given than no significant differences were observed with respect to sample location and 

orientation, all the mechanical measurements were averaged for subsequent analysis. 

Additionally, defective 4047 tensile specimens with visible brittle regions were removed from 

the analysis. The ultimate tensile strengths of the magnesium containing 4943 and 5356 alloys 

were the highest followed by 4047, 4043, and 1100 (Figure 12). The 2% offset tensile yield 

strengths generally followed the same trend except that 4943 fell to the same level as 4047. 

Compressive yield strength was significantly higher than tensile yield strength. Compressive and 

tensile yield strengths followed the similar trends on a per alloy basis. Elongation to failure was 

generally in the range of 15 to 17% except for 5356 which was at 10%. The 1100 alloy had the 

most elongation variation. 
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Figure 12. 0.2% offset yield, compressive yield, and ultimate tensile strengths of the aluminum 

tensile specimens (left). Elongation at failure of the tensile specimens based upon aluminum 

alloy type (right). Error bars represent ± 2 standard error.  

 

Microstructural Analysis  

The single-phase 1100 and 5356 compression specimens exhibited few microstructural 

features whereas the aluminum and silicon phases were visible in unetched 4043, 4943, and 4047 

specimens (Figure 13). The similar Si contents of 4043 and 4943 produced microstructures with   

comparable amounts of interdendritic dendrites; whereas 4047 had larger areas of eutectic 

microconstituent. Black features in the “bottom” images may correspond to either hydrogen 

porosity or regions in which the iron was pulled out of the specimen during polishing procedures.  
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Figure 13. Scanning electron images of 4000 series test specimens in the bottom, top, and middle 

of the printed block. Scale bar represents 40 µm.  

The secondary dendrite arm spacing (SDAS) of all the 4000 series alloys averaged 8-10 

µm (Figure 14). The 4043 and 4047 cross-sections exhibited consistent SDAS with no long 

range trends within the sample, while the 4943 SDAS increased linearly with distance from the 

substrate (Equation 4). 
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Figure 14. Box plots of 4000 series SDAS (left) and corresponding average cooling rates (right). 

Error bars represent ±2 standard error.  

              4943 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝜇𝜇𝜇𝜇) = [0.31 ∗ 𝑆𝑆𝐶𝐶𝐷𝐷𝑅𝑅𝑅𝑅𝐶𝐶𝐷𝐷𝑅𝑅 𝑓𝑓𝑓𝑓𝐶𝐶𝜇𝜇 𝐷𝐷𝑠𝑠𝑠𝑠𝐷𝐷𝑅𝑅𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅(𝜇𝜇𝜇𝜇)] + 5.72       (4) 

Iron contamination was observed in the first layer microstructure of each printed alloy 

(Figure 15), but the iron concentration decreased significantly in the second layer. In the 4000 

series specimens, iron contaminants were present as randomly oriented plates. These plates were 

not visible beyond the first print layer (approximately 3.8 mm above the print substrate) where 

the iron content was significantly lower than in the previous portion of the specimen (Figure 16). 
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Figure 15. Secondary electron images of iron contamination in the first print layer of 1100 and 

4047.  

 

Figure 16. Iron gradient from ESD of the first two print layers of 4043 and 4047. 
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The 4047 microstructure in brittle regions of the tensile fracture surface exhibited silicon and 

iron within the lamellar features (Figure 17) shown previously (Figure 15). Portions of the iron 

plates were pulled out during the polishing process, leaving behind crack-like formations that 

appear as voids.  

 

Figure 17. Ductile (left) and brittle (right) microstructures observed in 4047 tensile specimens. 

Scale bar represents 20 µm.  

Discussion 

As-Printed Dimensions & Porosity 

At similar cooling rates, one would expect alloys with large freezing ranges to take more 

time to solidify and thus have the potential to flow into wider beads. Indeed, the commercially 

pure 1100 aluminum and near-eutectic 4047 exhibited the smallest bead widths while the alloys 

with magnesium (4943 and 5356) had larger bead widths.  

Alloy fluidity aids in feeding interdendritic shrinkage. Improved fluidity is observed with 

decreasing solidification range and with a decrease in liquid metal viscosity.  Both silicon and 
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magnesium additions have been shown to decrease the internal friction in molten aluminum 

alloys, resulting in a decrease in viscosity45. Metal fluidity increases as the solidification range 

decreases such that pure alloys (1100) and near-eutectic alloys (4047) will exhibit less shrinkage 

porosity than alloys with larger solidification ranges (4043, 4943, and 5356)Error! Bookmark not 

defined.. The observed interdendritic shrinkage (Figure 10) is common in aluminum weld 

structures24. Alloys with higher silicon contents such as 4047 have fewer primary aluminum 

dendrites and are less likely to exhibit interdendritic shrinkage and cracks as interdendritic 

feeding is able to fill the space between dendrite before the metal is fully solidified46. In alloys 

with more primary aluminum, such as 4043 and 4943, interdendritic feeding is more difficult 

resulting in interdendritic porosity. Additionally, unlike aluminum, silicon has higher specific 

and latent heats, and expands as it solidifies; thus, alloys with higher silicon contents suffer less 

from interdendritic shrinkageError! Bookmark not defined.Error! Bookmark not defined.. Solidification 

shrinkage can be described as a ratio of an alloy’s solid and liquid  densities, ρs and ρl, 

respectively (Equation 5)47.  

  𝑆𝑆ℎ𝑓𝑓𝐶𝐶𝐶𝐶𝑟𝑟𝑅𝑅𝐶𝐶𝑅𝑅 =  𝜌𝜌𝑠𝑠−𝜌𝜌𝑙𝑙
𝜌𝜌𝑠𝑠

                   (5) 

Magnusson and Arnberg observed experimentally that increasing silicon content in hypoeutectic 

aluminum-silicon alloys increased the alloy’s liquid density and simultaneously decreased the 

solid density, reducing the shrinkage observed in castings47. The changes in density were 

attributed to silicon’s ability to expand upon solidification47. Magnesium additions in 4943 and 

5356 produce larger solidification ranges leading to higher shrinkage porosity.  

Weld porosity due to dissolved atmospheric gases such as hydrogen and nitrogen is a 

well-established phenomenon24,25,46. Aluminum has a high affinity for hydrogen, which is less 
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soluble in solid metal than in a liquid metal46. Upon cooling, this gas comes out of solution and 

either escapes or, if solidification is sufficiently fast, is trapped to form gas porosity. If reactive 

magnesium is oxidized, it can increase porosity by serving as heterogeneous nucleation sites for 

poresError! Bookmark not defined.. Thus, alloys with magnesium additions (4943 and 5356) would 

exhibit more nucleation sites for porosity formation.    

Influence of Specimen Orientation on Mechanical Properties 

Mechanical properties were not observed to differ significantly based upon specimen 

location or orientation. The layered structure of the 3-D printed parts did not negatively affect 

mechanical properties. Elevated iron levels were observed in the first layer of all alloys, up to 

approximately 4 mm above the print substrate, which resulted in fibrous iron intermetallics in the 

first layer (Figure 17). This iron gradient did not extend far enough in the 3-D printed blocks to 

cause elevated iron content in the gauge section of tensile specimens or in the compression 

specimens.  

Elevated iron content within the first 4 mm was a result of printing the aluminum test 

specimens on a steel substrate. To evaluate whether this iron content was the result of solid state 

diffusion, liquid mixing in the weld pool, or a combination thereof, the theoretical steady state 

diffusion length of iron in aluminum was calculated (Equation 6)48.  

    𝐿𝐿𝑅𝑅𝐶𝐶𝐶𝐶𝑅𝑅ℎ =  �𝑆𝑆𝐶𝐶𝑓𝑓𝑓𝑓𝑠𝑠𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶𝑅𝑅𝐷𝐷 ∗ 𝑅𝑅𝐶𝐶𝜇𝜇𝑅𝑅           (6) 

The diffusivity of iron in pure aluminum was reported by Hirano, et al., to be 4.9*10-9exp(-

13,900/RT) cm2/sec49. Using this information, the diffusion length of iron into aluminum was 

calculated at the melting temperature of pure aluminum (933 K) and at the eutectic temperature 

of a hypoeutectic aluminum-silicon alloy (850 K) (Figure 18).  
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Figure 18. Calculated diffusion length of iron in aluminum as a function of solidification time.  

From Figure 18 it was evident that even at long solidification times of 300 or more seconds, the 

maximum diffusion length of iron in aluminum is less than 1 mm. Thus, solid state diffusion 

cannot fully account for the iron gradient observed in 3-D printed aluminum parts. Fluid flow 

within the liquid metal weld pool mixed iron compounds into the first layer of the welded part, 

resulting in iron contents further into the welded part than could be accounted for by solid state 

diffusion46. In the aluminum-silicon alloys this resulted in lamellar features. These same features 

were observed in hypoeutectic aluminum-silicon alloyed with iron additions and were 

determined to be Al5FeSi platelets50. The use of alternate substrate release mechanisms for larger 
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prints, such as alumina or nitride coatings, may eliminate iron contamination when printing 

aluminum on steel22,23.  

 

Microstructural Analysis 

The SDAS in this study were similar to those reported by Heard, et al. who observed an 

approximately constant SDAS of 5.7 µm in four layers of 4047 printed by a GMAW-based 3-D 

printer with five minute pauses between layers31. The 4043 and 4047 specimens in this study had 

approximately constant SDAS of 8.4 µm across 15 print layers. In contrast, the 4943 SDAS 

averaged 10 µm but with an increasing linear trend with vertical distance from the substrate. 

Weld current and voltage in this study were lower than those used by Heard, et al31. Heat input is 

directly proportional to voltage and current and inversely proportional to weld speed25. Greater 

heat input results in slower cooling and larger SDAS. A weld speed was not reported by Heard, 

et al., but a faster speed could produce the smaller SDAS than that observed in this study. 

Additionally, differences in specimen size and shape could result in different cooling that could 

explain differences in SDAS.  The specimens in this study were blocks consisting of 15 layers 

requiring 40 minutes to print, whereas the specimen’s in Heard’s study were 4 layer cylinders. 

The larger specimen size in this study would contribute to slower cooling and thus a larger 

microstructure. Additionally, only a 1 minute pause was utilized between print layers in this 

study whereas 5 minutes per print layer reported in Heard’s study. Overall, results from this 

study were similar to those reported by Heard, allowing for small differences due to differences 

in experimental set-up. 
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There were no observed differences in the macro solidification structure such as a finer 

structure near the print outer surface as compared to interior. In castings, the metal solidifies first 

at the specimen edges and then directionally cools from the outside in51. Thus, the smallest 

microstructural elements would be found at the specimen edges, yielding to columnar growth 

inward then to large equiaxed grains in the center of the casting where slower cooling occurred. 

In welds solidification occurs faster because there is less material deposited at a given time and 

less heat to extract prior to solidification of the weld. In multi-layer welds, similar to weld-based 

3-D printing, the edges of previously welded beads are melted or partially melted which 

promotes homogenization of the microstructure25,46. SDAS on the order of 10 µm is common in 

welding whereas larger dendrite arm spacings on the order of 100 µm are more common in 

casting52. 

Mechanical Properties 

The average yield strengths and ultimate tensile strength of aluminum containing alloying 

elements such as silicon and magnesium (4043, 4943, 4047, and 5356) were greater than that of 

commercially pure 1100 aluminum. All 3-D printed alloys exhibited similar or superior 

mechanical properties in comparison to standard wrought, weld, or sand cast counterparts (Table 

5). Two exceptions to this trend were the lower ductility of 1100 printed specimens and the 

lower strength of printed 5356 as compared to the wrought material. The 3-D printed aluminum-

silicon alloys may have exhibited greater ductility than their cast counterparts due to a smaller 

microstructure, as described previously. The SDAS of 3-D printed specimens was smaller than 

average cast SDAS. These smaller dendrites would allow for greater dislocation motion prior to 

plastic deformation. In general, the fine structure of the printed materials outperformed their sand 

cast counterparts and approached the performance of wrought-processed material.  
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Table 5. Mechanical Properties of Aluminum Alloys from Multiple Processes Compared with 

Study Results 

Alloy Process  Tensile Yield (MPa) UTS (MPa) Elong. (%) 
1100-O53 

1100/110028 
1100 

Wrought 
Weld  

This Study 

34 
31 (min) 
49 ± 1 

90 
75.8 (min) 

92 ± 6 

40 
29 

17 ± 6 
443.0 (Al-5.2Si)53 

Al-5Si54 
4043 (~5.3 Si) 
4943 (~5.5 Si) 
Al-11.5 Si54 

4047 (~12 Si) 

Sand Cast 
Sand Cast 

This Study 
This Study 
Sand Cast 

This Study 

55 
60 

61 ± 3 
85 ± 4 

65 
88 ± 2 

130 
125 

141 ± 4 
193 ± 7 

170 
180 ± 4 

8 
5 

17 ± 3 
15 ± 2 

8 
15 ± 1 

5356-O53 
514.0 (Al-4Mg)53  

535.0 (Al-6.9Mg)53  
5356 (~5 Mg) 

Wrought 
Sand Cast 
Sand Cast 

This Study 

130 
83 
124 

109 ± 2 

285 
172 
250 

230 ± 10 

- 
9 
9 

10 ± 2 
 

Compressive yield strength was expected to be higher than in tension. Porosity defects, 

and particularly non-spherical porosity defects such as interdendritic shrinkage, act as stress 

concentrators. In tension these defects severely limit material strength whereas in compression 

they are less detrimental. The decrease in yield strength may also be related to the Peierls stress 

in aluminum alloys55,56. Peierls stress, also known as lattice friction, is the shear stress required 

to move a dislocation in a given crystal structure. The stress required to move a dislocation 

increases in compression due to the closer spaced planes and obstacles to dislocation motion.  As 

dislocation pileup occurs, the mobility of dislocations concurrently decreases and more stress 
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must be applied to plastically deform a material, resulting in work hardening55. There is also 

more dislocation pileup during compression than in tension, which can be further compounded 

by alloying additionsError! Bookmark not defined.. For instance, magnesium has been observed to 

increase dislocation multiplication and storage rates, thus increasing work hardening and 

suppressing recovery in aluminum-magnesium alloys.  

An estimate of the strain hardening behavior can be made by subtracting the tensile yield 

strength from the ultimate tensile strength for each alloy (Figure 19)57. As solute concentration 

increases, the amount of strain hardening also increases. Although there are only slight 

differences in silicon content between 4043 and 4943, the small magnesium solute concentration 

in 4943 contributes significantly to the strain hardening response.  
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Figure 19. Estimate of the strain hardening response of each aluminum alloy based upon solute 

content. 

In aluminum-silicon alloys, dislocations pile up at silicon phases during plastic deformation 

because the hard silicon phases cannot be sheared by dislocations. However, Peierls stress may 

be insufficient to explain the differences observed in yield strength.  

Porosity defects can act as stress concentrators causing premature tensile yielding. 

Interdendritic shrinkage porosity, which is typically elongated and has sharper edges, acts as a 

greater stress concentrator than spherical gas porosity. Fracture of the tensile specimens occurred 

in regions of higher than average porosity. Future work is necessary to optimize printer 

parameters (e.g., welder power, wire feed rate, welding speed, etc.) to minimize defect density. 

Hydrogen was likely a significant cause of the spherical gas porosity; these defects can be 

minimized through improved environmental control. Gas porosity defects in 1100 and the 

combination of gas porosity and interdendritic/intergranular shrinkage defects in 4043, 4943, 

4047, and 5356 led to reductions in mechanical properties, particularly elongation.  

 

 Conclusions 

A low-cost GMAW-based 3-D metal printer was used to print 1100, 4043, 4943, 4047, and 

5356 aluminum parts. The mechanical properties of 3-D printed aluminum alloys were evaluated 

via tensile and compression tests in conjunction with microstructural analysis. This work was 

performed in order to optimize process parameters and guide future development of alloys 

specifically for use with GMAW-based 3-D printing.  
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The 4000 series alloys performed better than the other alloys studied when considering 

porosity and strength. The 1100 specimens exhibited the smallest bead width and lowest 

porosity, but were also the weakest in tension and compression. The 4000 series alloys exhibited 

similar bead widths and porosities compared with 1100. Unlike 1100, the 4000 series alloys 

exhibited significantly higher strengths. The small magnesium additions in 4943 significantly 

increased its strength over 4043. While the 5356 specimens were the strongest, they also 

exhibited the largest bead width and the greatest amount of porosity. These porosity defects 

likely limited the 5356 test specimens’ strength compared with their wrought counterparts. 

These relationships between microstructure and properties can be used by researchers and 

engineers in the development of new parts, processes, alloys, and technologies for additive 

manufacturing. Thorough reviews of the structure-property relationships of additively 

manufactured aluminum are not widely available. However, the properties of 3-D printed 

aluminum alloys, and particularly 4000 series alloys, evaluated in this study were comparable or 

superior to those produced via other processes.  

Acknowledgments 

The authors wish to acknowledge helpful discussions with Dr. Stephen Kampe, P. Fraley, Z. 

Boyden, M. Schaub, and M. Yuan, and valuable microscopy and 3-D printing assistance from T. 

Wood and G. Anzalone, respectively. The authors would also like to acknowledge support and 

helpful discussions with C. Hsu and technical assistance from the Miller Electric Manufacturing 

Company. This material is based on research sponsored by Air Force Research Laboratory under 

agreement number FA8650-12-2-7230. The U.S. Government is authorized to reproduce and 

distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. 

http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099


Pre-print: Amberlee S. Haselhuhn, Michael W. Buhr, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce, Structure-
Property Relationships of Common Aluminum Weld Alloys Utilized as Feedstock for GMAW-based 3-D Metal 
Printing. Materials Science and Engineering: A, doi:10.1016/j.msea.2016.07.099 (in press, 2016) 
 

33 
 

The views and conclusions contained herein are those of the authors and should not be 

interpreted as necessarily representing the official policies or endorsements, either expressed or 

implied, of Air Force Research Laboratory or the U.S. Government. 

 

Author Disclosure Statement 

No conflicts of interest exist.  

References  

1 Gebhardt, A. Rapid Prototyping. Germany: Hanser Verlag, 2003. 
2 Gershenfeld, N. Fab: The Coming Revolution on Your Desktop – from Personal Computers to 

Pers. Fabr., New York: Basic Books, 2005.  
3 Wittbrodt, B. T., Glover, A. G., Laureto, J., Anzalone, G. C., Oppliger, D., Irwin, J. L., & 

Pearce, J. M. (2013). Life-cycle economic analysis of distributed manufacturing with 
open-source 3-D printers. Mechatron., 23(6), 713-726. 

4 Birtchnell, T., & Hoyle, W. (2014). 3D Printing for Development in the Global South: The 
3D4D Challenge. Palgrave Macmillan. 

5 Pearce, J. M., Blair, C. M., Laciak, K. J., Andrews, R., Nosrat, A., & Zelenika-Zovko, I. (2010). 
3-D printing of open source appropriate technologies for self-directed sustainable 
development. J. Sustain. Dev., 3(4), 17–29. 

6 Wohlers, T., & Caffrey, T. (2014). Wohlers Report 2014 Annual Worldwide Progress Report. 
Wohlers Associates, Inc. Fort Collins, CO. 

7 Pearce, J. M. (2012). Building research equipment with free, open-source 
hardware. Science, 337(6100), 1303-1304. 

8 Pearce, J. M. (2013). Open-source lab: How to build your own hardware and reduce research 
costs. Elsevier: New York. 

9 Sells, E., Smith, Z., Bailard, S., Bowyer, A., & Olliver, V. (2009). RepRap: The Replicating 
Rapid Prototyper: Maximizing Customizability by Breeding the Means of Production. in 
F. T. Piller, M. M. Tseng (Eds.), Handbook of Research in Mass Customization and 
Personalization: Strategies and concepts. Vol. 1. World Scientific, pp. 568-580, 2010. 

10 Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., & Bowyer, A. (2011). 
RepRap–the replicating rapid prototyper. Robotica, 29(01), 177-191. 

11 Bowyer, A., 2014. 3D Printing and Humanity's First Imperfect Replicator. 3D Printing and 
Addit. Manuf., 1(1), pp.4-5. 

12 Laeng, J., Stewart, J. G., & Liou, F. W. (2000). Laser metal forming processes for rapid 
prototyping – A review. Int. J. Prod. Res., 38(16), 3973-3996. 

                                                           

http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099


Pre-print: Amberlee S. Haselhuhn, Michael W. Buhr, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce, Structure-
Property Relationships of Common Aluminum Weld Alloys Utilized as Feedstock for GMAW-based 3-D Metal 
Printing. Materials Science and Engineering: A, doi:10.1016/j.msea.2016.07.099 (in press, 2016) 
 

34 
 

                                                                                                                                                                                           
13 Lewis, G. K., & Schlienger, E. (2000). Practical considerations and capabilities for laser 

assisted direct metal deposition. Mater. Des., 21(4), 417-423. 
14 Santos, E. C., Shiomi, M., Osakada, K., & Laoui, T. (2006). Rapid manufacturing of metal 

components by laser forming. Int. J. Mach. Tools Manuf., 46 (12-13), 1459-1468. 
15 Delgado, J., Ciurana, J., & Serenó, L. (2011). Comparison of forming manufacturing processes 

and selective laser melting technology based on the mechanical properties of products. 
Virtual Phys. Prototyp., 6(3), 167-178. 

16 Heinl, P., Rottmair, A., Körner, C., & Singer, R. F. (2007). Cellular titanium by selective 
electron beam melting. Adv. Eng. Mater., 9(5), 360-364. 

17 Gaytan, S. M., Murr, L. E., Medina, F., Martinez, E., Lopez, M. I., & Wicker, R. B. (2009). 
Advanced metal powder based manufacturing of complex components by electron beam 
melting. Mater. Tech., 24(3), 180-190. 

18 Murr, L. E., Gaytan, S. M., Ramirez, D. A., Marinez, E., Hernandez, J., Amato, K. N., Shindo, 
P. W., Medina, F. R., & Wicker, R. B. (2012). Metal fabrication by additive 
manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Tech., 
28(1), 1-14. 

19 Peels, J. (23 May 2014). Metal 3D printing: From lab to fab. Inside 3DP. Retrieved from 
http://www.inside3dp.com/metal-3d-pinting-lab-fab/. 

20 Ribeiro, F.  3D printing with metals, Comput. Control Eng. J., Vol. 9, no. 1, pp. 31–38, 1998. 
21 Anzalone G. C., Zhang C., Wijnen B., Sanders, P. G., Pearce, J. M. (2013). A low-cost open-

source metal 3-D printer. IEEE Access, 1, 803-810. 
22 Haselhuhn, A. S., Gooding, E. J., Glover, A. G., Anzalone, G. C., Wijnen, B., Sanders, P. G., 

& Pearce, J. M. (2014). Substrate release mechanisms for gas metal arc weld 3-D 
aluminum metal printing. 3-D Print. Addit. Manuf., 1(4), 204-209. 

23 Haselhuhn, A. S., Wijnen, B., Anzalone, G.C., Sanders, P.G., & Pearce, J.M. (2015). In situ 
formation of substrate release mechanisms for gas metal arc weld metal 3-D printing. J. 
Mater. Process. Tech., 226, 50-59. 

24 Easterling, K. Introduction to the physical metallurgy of welding; 1983. London, Butterworth. 
25 Lancaster, J. F. Metallurgy of Welding; 1993. London, Chapman & Hall. 
26 Zhao, H., Zhang, G., Yin, Z., & Wu, L. (2011). A 3D dynamic analysis of thermal behavior 

during single-pass multi-layer weld-based rapid prototyping. J. Mater. Process. Tech., 
211(3), 488-495. 

27 Zhao, H., Zhang, G., Yin, Z., & Wu, L. (2012). Three-dimensional finite element analysis of 
thermal stress in single-pass multi-layer weld-based rapid prototyping. J. Mater. Process. 
Tech., 212(1), 276-285. 

28 Dickerson, P. B. (1993). Welding of Aluminum Alloys. ASM Handbook, 6, 722-739. 
29 Anderson, B.E. (2011). U.S. Patent Application No. 13/023,158. Publication No. 

2011/0194973 (Published August 11, 2011). Washington, DC: U.S. Patent and 
Trademark Office. 

30 Martukanitz, R. P. (1993). Selection and Weldability of Heat-Treatable Aluminum Alloys. 
ASM Handbook, 6, 528-536. 

31 Heard, D. W., Brophy, S., & Brochu, M. (2012). Solid freeform fabrication of Al-Si 
components via the CSC-MIG process. Can. Metall. Q., 51(3), 302-312. 

32 Nilsiam, Y., Haselhuhn, A., Wijnen, B., Sanders, P. and Pearce, J.M., 2015. Integrated voltage-
current monitoring and control of gas metal arc weld magnetic ball-jointed open source 
3-D printer. Mach., 3(4), pp.339-351. 

http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099


Pre-print: Amberlee S. Haselhuhn, Michael W. Buhr, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce, Structure-
Property Relationships of Common Aluminum Weld Alloys Utilized as Feedstock for GMAW-based 3-D Metal 
Printing. Materials Science and Engineering: A, doi:10.1016/j.msea.2016.07.099 (in press, 2016) 
 

35 
 

                                                                                                                                                                                           
33 Wijnen, Bas. MTU-MOST Franklin, https://github.com/mtu-most/franklin, last accessed 

February 9, 2015. 
34 Pinar, A. Wijnen, B., Anzalone, G.C., Havens, T.C., Sanders, P.G., & Pearce, J.M. (2015). 

Low-Cost Open-Source voltage and current monitor for gas metal arc weld 3-D printing. 
J. Sens., 2015: 8. 

35 AlcoTec Wire Corporation. Alloy 1100 weld data sheet. http://www.alcotec.com/us/en/ 
support/upload/a1100tds.pdf, last accessed February 3, 2016. 

36 Hobart Brothers Company. Hobart MAXAL 4043. http://maxal.com/Hobart_Maxal_4043.pdf, 
last accessed 3 February 2016. 

37 Hobart Brothers Company. Hobart MAXAL 4943. http://maxal.com/Hobart_Maxal_4943.pdf, 
last accessed 3 February 2016. 

38 AlcoTec Wire Corporation. Aloy 4047 weld data sheet. http://www.alcotec.com/us/en/ 
support/upload/a4047tds.pdf, last accessed 3 February 2016. 

39 Hobart Brothers Company. Hobart MAXAL 5356. http://maxal.com/Hobart_Maxal_5356.pdf, 
last accessed 3 February 2016. 

40 ASTM B557-02. Standard Test Methods for Tension Testing Wrought and Cast Aluminum- 
and Magnesium-Alloy Products. ASTM International, West Conshohocken, PA, 2013, 
www.astm.org. 

41 Meyers, M, & Chawla, K. (2009). Mechanical Behavior of Materials. 2nd Ed. Cambridge: 
Cambridge University Press. 

42 Rasband, W. S., Image J., U.S. National Institutes of Health, Bethsesda, Maryland, USA, 
http://imagej.nih.gov/ig/, 1997-2014. 

43 Bouchard, D., & Kirkaldy, J. S. (1997). Prediction of dendrite arm spacings in unsteady- and 
steady-state heat flow of unidirectionally solidified binary alloys. Metall. Mater. Trans. 
B, 28(4), 651-663. 

44 Su, S., Liang, X., Moran, A., & Lavernia, E. J. (1994). Solidification behavior of an Al-6Si 
alloy during spray atomization and deposition. Int. J. Rapid Solidif., 8(3), 161-177. 

45 Hatch, J.E. Aluminum Properties and Physical Metallurgy. 1984. Metals Park, Ohio: American 
Society for Metals.  

46 Kou, S. (1987). Welding Metallurgy. New York: John Wiley & Sons. 
47 Magnusson, T., & Arnberg, L. (2001). Density and solidification shrinkage of hypoeutectic 

aluminum-silicon alloys. Metall. Mater. Trans. A, 32(10), 2605–2613.  
48 Porter, D.A., Easterling, K.E., & Sherif, M.Y. Phase Transformations in Metals and Alloys. 3rd 

Edition. 2009. Boca Raton, FL, CRC Press.  
49 Hirano, K., Agarwala, R. P., & Cohen, M. (1962). Diffusion of iron, nickel, and cobalt in 

aluminum. Acta Metall., 10(9), 857–863. 
50 Lu, L., & Dahle, A. K. (2005). Iron-rich intermetallic phases and their role in casting defect 

formation in hypoeutectic Al−Si alloys. Metall. Mater. Trans. A, 36(13), 819–835.  
51 Campbell, F. C. (Ed.). (2008). Elements of Metallurgy and Engineering Alloys, ASM 

International, Materials Park, OH, 487-508. 
52 Cross, C.E., Olson, D.L., & Liu, S. (2003). Aluminum Welding. In G.E. Totten & D.S. 

MacKenzie (Eds.), Handbook of Aluminum Volume 1 (481-532). New York: Marcel 
Dekker, Inc. 

53 Kaufman, J. G. (Ed.). (1999). Properties of aluminum alloys: Tensile, creep, and fatigue data at 
high and low temperatures. ASM International. 

http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099
http://www.astm.org/


Pre-print: Amberlee S. Haselhuhn, Michael W. Buhr, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce, Structure-
Property Relationships of Common Aluminum Weld Alloys Utilized as Feedstock for GMAW-based 3-D Metal 
Printing. Materials Science and Engineering: A, doi:10.1016/j.msea.2016.07.099 (in press, 2016) 
 

36 
 

                                                                                                                                                                                           
54 Gale W. F., & Totemeier, T. C. (Eds.). Smithells metals reference book, 8th Ed., Butterworth-

Heinemann, 2003, 14-16. 
55 Hertzberg, R.W., Vinci, R.P., & Hertzberg, J.L. (2012). Deformation and Fracture Mechanics 

of Engineering Materials. 5th Ed. New York: John Wiley & Sons. 
56 Shin, I. & Carter, E.A. (2013). Possible origin of the discrepancy of Peierls stresses of fcc 

metals: First-principles of dislocation mobility in aluminum. Phys. Rev. B, 88 (6), 1-10. 
57 Tiryakioglu, M., & Staley, J.T. (2003). Physical Metallurgy and the Effect of Alloying 

Additions in Aluminum Alloys. In G.E. Totten & D.S. MacKenzie (Eds.), Handbook of 
Aluminum Volume 1 (81-209). New York: Marcel Dekker, Inc. 

http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099
http://dx.doi.org/10.1016/j.msea.2016.07.099

