Local hydrogen environments in Gd 1– x Fe x thin films amorphous alloys from effusion experiments

M. Vergnat, H. Chatbi, G. Marchal

To cite this version:
M. Vergnat, H. Chatbi, G. Marchal. Local hydrogen environments in Gd 1– x Fe x thin films amorphous alloys from effusion experiments. Applied Physics Letters, American Institute of Physics, 1994, 64 (16), pp.2084-2086. 10.1063/1.111690 . hal-02113410

HAL Id: hal-02113410
https://hal.archives-ouvertes.fr/hal-02113410
Submitted on 28 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Local hydrogen environments in Gd$_{1-x}$Fe$_x$ thin films amorphous alloys from effusion experiments

M. Vergnat, H. Chatbi, and G. Marchal

Laboratoire de Métallurgie Physique et Sciences des Matériaux (U. R. A. au C. N. R. S. No. 155), Université de Nancy I, B. P. 239, 54506 Vandœuvre-les-Nancy Cedex, France

(Received 21 December 1993; accepted for publication 15 February 1994)

Thin films of hydrogenated Gd$_{1-x}$Fe$_x$ (0.25 $\leq x \leq$ 0.90) amorphous alloys were prepared by reactive evaporation. Effusion experiments, showing several hydrogen release peaks, allowed us to describe the site distribution of hydrogen in these alloys. The different local environments correspond to tetrahedral sites and the stability of these sites increases with the number of rare-earth neighbors.

This letter reports on the site distribution of hydrogen in Gd$_{1-x}$Fe$_x$ thin films amorphous alloys. We show that the effusion of hydrogen occurs in several stages corresponding to the release of hydrogen from different atomic sites. Such experiments have already been performed on amorphous metallic alloys,

$$T_r = \frac{1}{4} T_b$$

but the effusion curves never showed several separate peaks. As the Gd$_{1-x}$Fe$_x$ alloys are constituted of elements having a very large hydrogen affinity difference, we have distinguished the local hydrogen environments, which correspond to tetrahedral sites, and we have followed the evolution of these effusion peaks with composition.

Hydrogenated Gd$_{1-x}$Fe$_x$ (0.25 $\leq x \leq$ 0.90) amorphous alloys were prepared by reactive evaporation. Gadolinium and iron were evaporated from a thermal cell and from an electron beam gun, respectively, in a molecular hydrogen atmosphere on substrates maintained at 77 K. The deposition rate was 3 Å/s. The hydrogen flow was regulated by maintaining the total pressure in the evaporation chamber at 10^{-4} Torr. This procedure allowed us to obtain hydrogenated films, which do not fracture or disintegrate as in the case of the post-hydrogenation method.

Transmission electron microscopy was performed on 200-Å-thick samples annealed at temperatures ranging between 100 and 800 °C. The as-deposited alloys were amorphous in the composition range 0.25 $\leq x \leq$ 0.90 and two steps were observed in the crystallization process, a primary crystallization of α iron (or gadolinium for the Gd$_{0.75}$Fe$_{0.25}$ alloy) in the amorphous matrix, and next the crystallization of this matrix with the apparition of other phases. The different crystallization temperatures T_{cr} are shown in Fig. 1. The Gd$_{1-x}$Fe$_x$ alloys are rather stable since, except the Gd$_{0.10}$Fe$_{0.90}$ sample which crystallizes at 100 °C, the other samples have a crystallization temperature greater than 500 °C.

The stability of hydrogen was monitored by effusion experiments performed on 1000-Å-thick samples deposited on float glass substrates, with a heating rate of 15 °C/min. In fact, deuterated films were used to suppress background effects due to adsorbed water, but the generic term hydrogen will be used in subsequent discussions. The hydrogen concentration in the samples was obtained from the area of these spectra after calibration of the quadrupole mass spectrometer.

Three typical effusion spectra are shown in Figs. 2–4. The Gd$_{0.10}$Fe$_{0.90}$ alloy presents a single peak of 200 °C (Fig. 2). The hydrogen concentration is weak, it corresponds to a ratio (H/M) (M is the number of Gd and Fe metallic atoms) equal to 0.01. The temperature of the peak is higher than the crystallization temperature of α iron in the film. In fact, it can be supposed that a part of the iron atoms is in excess in the amorphous matrix and this excess precipitates as soon as 100 °C. The hydrogen atoms remain in the amorphous phase. At 200 °C, hydrogen effuses from this phase which crystallizes after 600 °C. For the Gd$_{0.75}$Fe$_{0.25}$ alloy, the intensity of this peak increases and a well separated second peak, very less intense, appears at higher temperature, 260 °C. The hydrogen concentration increases with a ratio H/M equal to 0.15. Contrary to the preceding sample, the amorphous phase is much more stable since T_{cr} is greater than 500 °C. Therefore, the effusion process appears in a perfectly amorphous phase and this occurs well before the crystallization. The presence of the two peaks can be explained by assuming that hydrogen is trapped at specific sites of different energy in the network. The Gd$_{0.33}$Fe$_{0.67}$ alloy presents a more complex spectrum (Fig. 3), with a ratio H/M of 0.55. The second peak has increased and a third peak has appeared at higher temperature, 370 °C. With the increasing gadolinium concentration, the high-temperature peaks take more and more in-

\[T_{cr} (\degree C) \]

\[X \]

\[0.2 0.4 0.6 0.8 1 \]

\[0 0.2 0.4 0.6 0.8 1 \]

\[200 400 600 800 1000 \]

\[0 200 400 600 800 1000 \]

\[\begin{align*}
T_r &= \frac{1}{4} T_b \\
X &= \frac{1}{2} - \frac{1}{2} \frac{T}{T_b} \\
0 &\leq X \leq 1
\end{align*} \]

FIG. 1. Crystallization temperatures T_{cr} of the Gd$_{1-x}$Fe$_x$ alloys vs annealing temperature. The symbol \bigcirc and $+$ correspond to the primary crystallization of α iron (or gadolinium) and to the apparition of the other crystallized phases respectively.
portance. In fact, hydrogen atoms with several gadolinium neighbors are more and more numerous and it may be assumed that these sites are deeper in energy, so that these hydrogen atoms can only escape at higher temperatures. The spectrum complexity still increases for the Gd$_{0.35}$Fe$_{0.50}$ alloy with the appearance of a fourth peak at 550 °C (Fig. 4). The ratio H/M is 0.6. Finally, the spectrum of the Gd$_{0.75}$Fe$_{0.25}$ alloy always contains four peaks, appearing at the same temperatures than for the preceding sample, but the first peak is very weak when the three following are very intense. The ratio H/M is 0.6. As expected, the hydrogen content increases with the gadolinium concentration since the rare earths can absorb a great deal of hydrogen. The measured values remain high since, except for the iron-rich alloys, one introduces as many hydrogen atoms as gadolinium by this reactive evaporation method.

The sites available for hydrogen storage in glass models are generally considered as basically (distorted) tetrahedral sites. Thus, in the Gd$_{1-x}$Fe$_x$ amorphous alloys, the interstitial sites can be divided into five tetrahedral groups, labeled by the types of atoms at its vertices (Gd$_4$, Gd$_3$Fe, Gd$_2$Fe$_2$, GdFe$_3$, Fe$_4$, or generally Gd$_{4-p}$Fe$_p$). The amount of hydrogen per metal atom which can be stored in each type of tetrahedral sites is proportional to the number of these tetrahedral sites in a chemically random glass, i.e., proportional, for a Gd$_{1-x}$Fe$_x$ alloy, to the different terms in the expansion of $[(1-x)+x]^4$. The energy level of a hydrogen atom at a particular site is determined by the nature of the four neighboring metal atoms. Because of the large exothermic heats of formation of rare earth hydrides relative to those of the transition metal hydrides, the site energy increases with the number p of iron neighbors. As the hydride formation enthalpy of iron is positive, the sites Fe$_4$ do not contain hydrogen atoms. Therefore, the four peaks observed in the experiments correspond to the GdFe$_3$, Gd$_3$Fe$_2$, Gd$_2$Fe, and Gd$_4$ sites.

The hydrogen evolution in a hydrogenated sample, as a thermally activated process, can be considered to be controlled by the jumping process from one interstitial site to another. Assuming a constant saddle point energy, the activation energy for jump is directly related to the energy of the equilibrium position of the interstitial sites. Thus, when the sample is heated with a uniform warming rate, hydrogen atoms at high energy sites with a small activation energy preferentially evolve at low temperatures and hydrogen atoms at lower energy sites having a higher activation energy evolve at higher temperatures. In order to determine the energy associated with each site, the kinetics of the release of the dissolved hydrogen was analyzed. The classic calculation of the jump frequency from a site follows the same line as the calculation of a rate in chemical kinetics, the saddle point corresponding to the "activated state" of the Eyring theory of absolute reaction rates. This theory assumes that the hydrogen atom must overcome a Gibbs free energy barrier ΔG in order to be evolved and the frequency at which the barrier is confronted is approximated by the factor kT/h, where k and h are the Boltzmann and Planck constants respectively, and T is the absolute temperature. Therefore, the effusion rate R_p from each site follows:

$$R_p = \frac{d(c/c_p)}{dt} = \left(\frac{kT}{h}\right) \left(1 - \frac{c}{c_p}\right)^n \exp\left(\frac{\Delta S}{k}\right) \exp\left(-\frac{\Delta H}{kT}\right),$$

with c_p and c the original and evolved hydrogen concentrations and n the order of the reaction. The free energy ΔG is
equal to $\Delta H - T \Delta S$, where ΔH is the enthalpy and ΔS is the entropy of reaction. The total effusion rate is the summation of the effusion rates of each site. The best fit of the different experimental effusion spectra has been obtained with a second-order kinetics for the four peaks, as it can be expected since desorbed molecular hydrogen is formed with two hydrogen atoms. The dotted lines in Figs. 2–4 show the simulated individual peaks and the total effusion rate. The ΔG values are nearly equal for a given peak, whatever the composition of the alloy. Then, these simulations allow us to deduce the ΔG values of the different hydrogen sites, which are $\Delta G = 1.4, 1.6, 1.9,$ and 2.5 ± 0.1 eV for the GdFe$_3$, Gd$_2$Fe$_2$, Gd$_3$Fe, and Gd$_4$ configurations, respectively. The relative contributions of the Gd$_{1-p}$Fe$_p$ sites, which can be theoretically written

$$C_p^p x^p (1-x)^{p-3}$$

are displayed in Table I, with the experimental values. A very good agreement is observed between the theoretical and experimental values, which confirms the existence of the tetrahedral sites.

In conclusion, coevaporation of gadolinium and iron under a pressure of molecular hydrogen allows us to obtain thin films of hydrogenated amorphous Gd$_{1-x}$Fe$_x$ alloys in the composition range $0.25 \leq x \leq 0.90$. Effusion experiments indicate hydrogen release at 200 °C in Gd$_{10}$Fe$_{90}$ alloys. With increasing gadolinium concentration, three other peaks appear at higher temperatures with an increasing weight. The four peaks correspond to different hydrogen tetrahedral sites of Gd$_{4-p}$Fe$_p$ type with $0 \leq p \leq 3$. Moreover, the ΔG values of these sites can be obtained by computer modeling each peak of the effusion curves by the Eyring formula.

The authors are indebted to Professor Mangin and to Professor Gerl for stimulated discussions.

<table>
<thead>
<tr>
<th>x</th>
<th>GdFe$_3$ site</th>
<th>Gd$_2$Fe$_2$ site</th>
<th>Gd$_3$Fe site</th>
<th>Gd$_4$ site</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>1</td>
<td>0.85</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>0.75</td>
<td>0.63</td>
<td>0.62</td>
<td>0.37</td>
<td>0.31</td>
</tr>
<tr>
<td>0.66</td>
<td>0.50</td>
<td>0.50</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>0.50</td>
<td>0.27</td>
<td>0.27</td>
<td>0.36</td>
<td>0.40</td>
</tr>
<tr>
<td>0.25</td>
<td>0.04</td>
<td>0.05</td>
<td>0.25</td>
<td>0.21</td>
</tr>
</tbody>
</table>