A. D. Mcnaught and A. Wilkinson, Gold Book"), IUPAC. Compendium of Chemical Terminology, 1997.

C. M. Lastoskie and K. E. Gubbins, Characterization of porous materials using molecular theory and simulation, Advances in Chemical Engineering, vol.28, pp.203-250, 2001.

C. R. Catlow, B. Smit, and R. A. Van-santen, Computer Modelling of Microporous Materials Elsevier Ltd, 2004.

P. A. Monson, Recent Progress in Molecular Modeling of Adsorption and Hysteresis in Mesoporous Materials, Adsorption, vol.11, pp.29-35, 2005.

N. Seaton, J. Walton, and N. Quirke, A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements, Carbon, vol.27, pp.853-861, 1989.

J. Landers, G. Y. Gor, and A. V. Neimark, Density functional theory methods for characterization of porous materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013.

P. Monson, Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory, Microporous and Mesoporous Materials, vol.160, pp.47-66, 2012.

P. A. Monson, Mean field kinetic theory for a lattice gas model of fluids confined in porous materials, J. Chem. Phys, vol.128, p.84701, 2008.

L. Cerovic, G. Lefèvre, A. Jaubertie, M. Fedoroff, and S. Milomjic, Deposition of hematite particles on polypropylene walls in dynamic conditions, J. Colloid Interface Sci, vol.330, p.284, 2009.

C. Henry, J. P. Minier, G. Lefèvre, and O. Hurisse, Numerical Study on the Deposition Rate of Hematite Particle on Polypropylene Walls: Role of Surface Roughness, Langmuir, vol.27, p.4603, 2011.

C. Henry, J. P. Minier, and G. Lefèvre, Towards a description of particulate fouling: From single particle deposition to clogging, Advances in colloid and interface science, pp.34-76, 2012.

S. J. Green and G. Hetsroni, PWR steam generators, Int. J. Multiphase Flow, vol.21, p.1, 1995.

J. M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-liquid flows, Computers & Fluids, vol.55, pp.57-69, 2012.

J. Peixinho, G. Lefèvre, F. Coudert, and O. Hurisse, Water evaporation in silica colloidal deposits, J. Colloid Interface Sci
URL : https://hal.archives-ouvertes.fr/hal-02116876

D. P. Bentz and N. S. Martys, Hydraulic Radius and Transport in Reconstructed Model Three-Dimensional Porous Media, vol.17, pp.221-238, 1995.

D. P. Bentz, E. H. Garboczy, and D. A. Quenard, Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass, Modelling Simul. Mater. Sci. Eng, vol.6, pp.211-236, 1998.

P. Levitz, V. Tariel, M. Stampanoni, and E. Gallucci, Topology of evolving pore networks, Eur. Phys. J. Appl. Phys, vol.60, p.24202, 2012.

S. Berg, H. Ott, S. A. Klapp, A. Schwing, R. Neiteler et al., Real-time 3D imaging of Haines jumps in porous media flow, Proceedings of the National Academy of Sciences, vol.110, pp.3755-3759, 2013.

P. A. Crossley, L. M. Schwartz, and J. R. Banavar, Image-based models of porous media: Application to Vycor glass and carbonate rocks, Appl. Phys. Lett, vol.59, p.3553, 1991.

L. D. Gelb and K. E. Gubbins, Characterization of Porous Glasses: Simulation Models, Adsorption Isotherms, and the Brunauer-Emmett-Teller Analysis Method, Langmuir, vol.14, pp.2097-2111, 1998.

Y. Shi, A mimetic porous carbon model by quench molecular dynamics simulation, J. Chem. Phys, vol.128, p.234707, 2008.

L. Monette, G. Grest, and M. Anderson, Three-dimensional Ising system with long-range interactions: A computer model of Vycor glass, Phys. Rev. E, vol.50, pp.3361-3369, 1994.

I. Varga and F. Kun, Computer method for modeling the microstructure of aerogel, CMM-2011, Computer Methods in Mechanics, 2011.

A. Kharaghani, C. Kirsch, T. Metzger, and E. Tsotsas, Micro-scale fluid model for drying of highly porous particle aggregates, Computers & Chemical Engineering, vol.52, pp.46-54, 2013.

E. Masoero, E. Gado, R. J. Pellenq, F. J. Ulm, and S. Yip, Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing, Phys. Rev. Lett, vol.109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00773481

E. Caglioti, V. Loreto, H. Herrmann, and M. Nicodemi, Tetris-Like" Model for the Compaction of Dry Granular Media, Phys. Rev. Lett, vol.79, pp.1575-1578, 1997.

M. Piccioni, V. Loreto, and S. Roux, Criticality of the "critical state" of granular media: Dilatancy angle in the Tetris model, Phys. Rev. E, vol.61, pp.2813-2817, 2000.

J. Deshon, PWR Axial Offset Anomaly (AOA) Guidelines, Revision, vol.1, p.51, 2004.

J. F. Gouyet, M. Plapp, W. Dieterich, and P. Maass, Description of far-from-equilibrium processes by mean-field lattice gas models, Advances in Physics, vol.52, pp.523-638, 2003.

P. A. Monson, Contact Angles, Pore Condensation, and Hysteresis: Insights from a Simple Molecular Model, vol.24, pp.12295-12302, 2008.

J. Edison and P. Monson, Dynamic mean field theory of condensation and evaporation in model pore networks with variations in pore size, Microporous and Mesoporous Materials, vol.154, pp.7-15, 2012.

J. R. Edison and P. A. Monson, Modeling Relaxation Processes for Fluids in Porous Materials Using Dynamic Mean Field Theory: An Application to Partial Wetting, J Low Temp Phys, vol.157, pp.395-409, 2009.

J. R. Edison and P. A. Monson, Left: each domain has length 2; right: each domain has length 5. Key for snapshot colors: red = hydrophilic solid, green = hydrophobic solid, grayscale indicates fluid density, Faraday Discuss, vol.146, p.167, 2010.

, Upper panel: adsorption and desorption isotherms from static calculations on a chemically heterogeneous porous deposit. Lower panel: snapshots of the system during adsorption (top) and desorption (bottom); red = hydrophilic solid, green = hydrophobic solid, grayscale indicates fluid density, vol.6