, Note that the estimate of the covariance mentioned in the introduction, in case (ii), can now be done as well. Indeed, denoting by REFERENCES

A. Asselah and B. Schapira, Boundary of the range of transient random walk, Probability Theory and Related Fields, vol.168, pp.691-719, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01171542

A. Asselah and B. Schapira, Deviations for the Capacity of the Range of a Random Walk
URL : https://hal.archives-ouvertes.fr/hal-01832098

A. Asselah, B. Schapira, and P. Sousi, Capacity of the range of random walk on Z d, Transactions of the A.M.S, vol.370, pp.7627-7645, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01272481

A. Asselah, B. Schapira, and P. Sousi, Capacity of the range of random walk on Z 4, Ann. Probab
URL : https://hal.archives-ouvertes.fr/hal-01422908

I. Benjamini, G. Kozma, A. Yadin, and A. Yehudayoff, Entropy of random walk range, Ann. Inst. Henri Poincaré Probab. Stat, vol.46, pp.1080-1092, 2010.

N. Berestycki and A. Yadin, Condensation of random walks and the Wulff crystal, Ann. Inst. Henri Poincaré Probab. Stat

Y. Chang, Two observations on the capacity of the range of simple random walk on Z 3 and Z 4, Electron. Commun. Probab, vol.22, 2017.

R. Durrett, Probability: theory and examples, 2010.

G. Deligiannidis, S. Gouezel, and Z. Kosloff, Boundary of the Range of a random walk and the Fölner property

A. Dvoretzy and P. Erdós, Some problems on random walk in space, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp.353-367, 1950.

P. Erdós and S. J. Taylor, Some intersection properties of random walk paths, Acta Math. Acad. Sci. Hungar, vol.11, pp.231-248, 1960.

W. Feller, An introduction to probability theory and its applications, vol.II, p.669, 1971.

N. C. Jain and S. Orey, On the range of random walk, Israel J. Math, vol.6, pp.373-380, 1968.

N. C. Jain and W. E. Pruitt, The range of transient random walk, J. Analyse Math, vol.24, pp.369-393, 1971.

. Lawler, Intersections of random walks. Probability and its Applications, vol.219, 1991.

G. F. Lawler and V. Limic, Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, 123, p.364, 2010.

J. Gall, Propriétés d'intersection des marches aléatoires. I. Convergence vers le temps local d'intersection, Comm. Math. Phys, vol.104, issue.3, pp.471-507, 1986.

I. Okada, The inner boundary of random walk range, J. Math. Soc. Japan, vol.68, issue.3, pp.939-959, 2016.

F. Spitzer, Principles of random walk, Graduate Texts in Mathematics, vol.34, p.408, 1976.

K. Uchiyama, Green's functions for random walks on Z N, Proc. London Math. Soc, issue.3, pp.215-240, 1998.

A. Université, C. , and C. Marseille, , vol.2, 13453.