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Idiothetic Verticality Estimation
through Head Stabilization Strategy

Ildar Farkhatdinov, Hannah Michalska, Alain Berthoz, and Vincent Hayward

Abstract—The knowledge of the gravitational vertical is funda-
mental for the autonomous control of humanoids and other free-
moving robotic systems such as rovers and drones. This article
deals with the hypothesis that the so-called ‘head stabilization
strategy’ observed in humans and animals facilitates the estima-
tion of the true vertical from inertial sensing only. This problem is
difficult because inertial measurements respond to a combination
of gravity and fictitious forces that are hard to disentangle.
From simulations and experiments, we found that the angular
stabilization of a platform bearing inertial sensors enables the
application of the separation principle. This principle, which
permits one to design estimators and controllers independently
from each other, typically applies to linear systems, but rarely
to nonlinear systems. We found empirically that, given inertial
measurements, the angular regulation of a platform results in
a system that is stable and robust and which provides true
vertical estimates as a byproduct of the feedback. We conclude
that angularly stabilized inertial measurement platforms could
liberate robots from ground-based measurements for postural
control, locomotion, and other functions, leading to a true
idiothetic sensing modality, that is, not based on any external

reference but the gravity field.
Index Terms—Biologically-Inspired Robots; Biomimetics;
Sensor-based Control

I. INTRODUCTION

OR humans, as for other living creatures, it is substantial

to know the spatial orientation of our body with respect
to the external world. Most of our sensory systems can
contribute to this task. Interestingly, visual, auditory, tactile,
proprioceptive, or olfactory sensory inputs can be easily put
out of action, but the vestibular inputs are always available,
even in the absence of gravity [1]. In artificial systems, robots
in particular, inertial measurement units (IMUs) often play
the role of a ‘robotic vestibular system’. These IMUs sense
the movements of the robot and provide its control system
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with data that can be further processed to yield estimates of
the robot location and displacement in space. The operating
principle of biological motion sensors and of engineering
inertial sensors is based on the same laws of mechanics. Thus,
we believe that strategies observed in biological systems, such
as head stabilization, can also benefit the design of robotic
systems.

In all fast moving animals, including fishes, reptiles, am-
phibians, birds, mammals, in brief, in all vertebrates, the
vestibular sensors are located in the head and each comprises
two types of organs: two otolith organs and three semicircular
canals. The otolith organs, which are responsible for gravita-
tional and acceleration sensing, comprise the utricle and the
saccule. They respond to the acceleration of the head in three
dimensions and to static tilt relative to vertical planes. When
the head is upright, the saccule is vertical and it responds
to linear accelerations in the sagittal plane, specifically up
and down movements. The utricle is horizontally oriented
and responds to accelerations in the interaural transverse
(horizontal) plane (anterio-posterior and medio-lateral accel-
erations). Otoliths, like all accelerometers, are sensitive to the
gravitational acceleration vector, and provide us with a sense
of absolute verticality [2]. The knowledge of gravitational
verticality is essential for balancing and posture control, but
more generally, enables the specification of ‘up’ and ‘down’
for spatial orientation.

Head stabilization behavior, which is universally observed
in humans and animals, is directly related to the functions
of the vestibular system alluded earlier [3]]. In humans, ex-
perimental studies have shown that the head is stabilized
during the performance of different locomoting, balancing,
and other postural tasks [4} [5]. The plane of stabilization was
determined by the task, could vary, and was controlled by
the gaze. The head remained stable relative to the vertical
during locomotion. Head angular stabilization close to the
vertical orientation was essential for effective postural control
during the execution of complex, dynamic tasks. In some
cases head stabilization could be related to the skill of a
person, such as a dancer or an acrobat. Often too, head
stabilization was the result of vestibular-ocular interactions [6]].
However, in all of these cases, vestibular information was
important for the head-neck control system, and sometimes
it was the only source of information available [7]. Additional
behavioral studies showed that the orientation of the head
anticipates turning during locomotion relative to the walking
direction [8]]. This observations suggests that head orientation
and gaze stabilization are important functions for motion
planning during locomotion and that both visual and vestibular
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cues are processed by the neural system for the head to be
stabilized in orientational space.

In robotic systems, inertial sensors could play a role similar
to that of the vestibular system in humans and animals.
However, most robots have an IMU, or, as we may call it, an
artificial vestibular system in the main body regions: hip, torso,
trunk, or pelvis. Some robot designers do locate an IMU in the
head [9, 10, [11]]. The rational for this choice, however, is often
unrelated to biological vestibular functions. To our knowledge
only very few humanoid robots have inertial sensors in the
head for posture control during locomotion and balancing. One
example was found in a humanoid robot with two IMUs: one in
the head and another one in the torso [12]. In another example,
a robot head stabilization control based on orientation was
demonstrated [[13]. However, the performance of such systems
was deemed insufficient owing to the latency of the sensory
feedback. One additional exception was a proposal for a
feedback learning algorithm based on artificial neural networks
employed to stabilize head orientation independently from the
trunk motions [14]]. In other studies it was suggested that head
and trunk stabilization contributes to stable passive walking
in humanoid robots [15], however the dynamics of vestibular
organs was not taken into consideration.

In this paper we model the biomechanics of the otolith
organ, which is the main source of gravity-related information
in the vestibular systems of animals. We use the model to
elucidate the benefits of the ubiquitous head stabilization
strategy. The understanding of how verticality estimation and
head stabilization are achieved in biological systems may lead
to better design and control of robotic systems, such as human-
like and animal-like walking robots, or free-roaming drones.
The problem of modeling verticality estimation by a nonlin-
ear Newton-method-based observer as well as an extended
Kalman filter was previously addressed in [16} [17]. Here,
we show empirically that the platform-inertial-measurement
system—a strongly nonlinear system that we model in Sec-
tion Il and [[l—in closed-loop with a linear controller-observer
pair yields local linearization of an otherwise fully nonlinear
observer-based closed-loop system. Convergence follows from
the robustness margin of the full linearization which is demon-
strated in Section [Vl

II. MODELING VERTICALITY ESTIMATION

A. Brief recall of fictitious forces in non-inertial frames: the
case of a free or constrained point mass

From Galileo, we know that the measurement of the grav-
itational acceleration, g, is invariant in a frame moving at
constant velocity and which does not rotate. It is the very
definition of an ‘inertial frame’ where all free motions can be
explained by a uniform acceleration field. A point located by
a vector 7 in an inertial frame is located in another frame, 1,
by 'r = r — ry, where 7, is the vector locating the origin
of frame 1. Let this frame accelerate at rate aq, from vector
addition, the acceleration of free-falling bodies relatively to 1
is 'g = g — a;. To an observer fixed with respect to 1, the
quantity ma; is a ‘fictitious force’ acting on a mass m. The
tests, |'g| # |g| and g # 0, can tell an observer that the

frame of observation is not inertial. If the frame rotates at rate
w1, there are additional fictitious forces,

1 .
g=9g— w1 X7 —2wi X v —wi X (w1 Xxr1)—a, (1)

Euler Coriolis centrifugal

where the Euler term results from the angular acceleration of
the moving frame, the Coriolis term forces the mass to remain
in a fixed plane of rotation, the centrifugal term tends to force
the mass to travel in straight line, and where the last term is
due to relative acceleration. An observer moving with frame 1
will see masses fall according to field , but for an observer
in the inertial frame, the same masses will fall according to
g. If a mass attached to an ideal force sensor is forced to
move, all these terms appear in the measurement since the
force —m 'g acts on the mass to keep it fixed with respect to
the moving frame.

B. Head and otoliths dynamics

In the vestibular system, the movements of the otolith
organs, small solid masses immersed in a viscous fluid, is
the response to the gravitational field and to fictitious forces
induced by the movements of the head. In an accelerometer,
a small test mass is constrained to move along one single
direction but responds to the same forces. The otolith masses
are constrained to move in two directions. These cases differ
only by the constraints imposed on the movements of the
test mass. Verticality sensors, such as the otolith organs or
inclinometers, can be modeled as damped spherical pendula.
Such a pendulum system has two interesting properties. It can
be implemented in the form of a liquid-based inclinometer, a
device that is free from injurious properties such as hysteresis.
The spherical pendulum is also a reasonable model for the
otolith organs which gives our results biological relevance.
The mechanical model of a platform representing a head and
a pendulum representing otolith organs is shown in Fig. [I]

B. sagittal plane

measurement
real orientation

Fig. 1. A. Mechanical system used to model the head and the vestibular
system. B. Sagittal plane projection of the system.

Quantities that are sensitive to the frame in which they are
expressed are given a left superscript to indicate it. Frame I
is the inertial frame with unit vectors, {Hi, I 7, Hk:}; frame H,

Hi, H 7, Hk}, is the body-fixed head-centered frame; frame S,

%i,%j,5k}, is the body-fixed pendulum (sensor) coordinate
frame, such that its Sk axis is aligned with the arm of the
pendulum and the pivot coincides with the center of mass
of the head. We model the head, H, as a symmetric rigid
body rotating about its center of mass with inertia tensor
IHIJH = Julsz. The orientation of the head frame, H w.r.t.
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I, is described by a rotation matrix, Ry € SO(3), that
transforms by left multiplication vectors expressed in H to
vectors expressed in I. The center of mass of the head
coincides with its center of rotation and it is constrained by
a spherical joint. The expressions describing the dynamics
of multi-body systems are considerably simplified if they are
expressed in body-fixed coordinates. For the head, neglecting
the influence of the movements of the pendulum, if HiﬂwH eR?
expresses the angular velocity of H w.rt. I, the dynamics
forced by a torque 7 € R3 obeys,

Hy H - H Hy H H
Jyrwy = —jwy X Jy jwy + 77,

_ H ~,
Ry = 1Ry 1@n,

where Y@y is a skew-symmetric matrix of the platform
angular velocity. The orientation of the pendulum frame, S,
w.r.t. I, is described by a rotation matrix, ;Rg. The pendulum
has a concentrated mass, m, a length, [, and damping, /3. Let
$J4 be the inertia tensor of the pendulum, $wy its angular
velocity w.r.t. the inertial frame, and 51 = (0 0 [)T the vector
from the pivot of the pendulum to its center of mass. Noting
that (R; = ;RZ, that Ig = (0 0 g)7, the equations of
motion are found similarly by differentiating the pendulum
angular momentum expressed in pendulum coordinates and
by adding the terms corresponding to viscous forces and the
relative acceleration of the head, fa € R3,

ST S, _ _S ST S S I
Jojwg = —Jwg X “Jgjws + m I x gRy'g
- ﬁ(ﬂgws - SRHHEIwH) —ml x sRiy HRHHa7
- o~
Rs = 1Rg 1@s,

Neglecting the influence the gyroscopic terms, owing to the
fact that these terms become negligibly small for low angu-
lar velocities and small size devices, the overall model of
the head-vestibular-system, despite simplifications, becomes
a rather complicated system of forced, nonlinear, coupled
differential equations,

S  —ST-17,S I S H

twg ="Jg [m I x Ry g — B(fws — sRyjwy)

S H
-m>l x Ry Ry "al,
_— o~
1Rs = Rg 1&g, 2)
. —1
Hﬁle =HJ o Hr,
- H~

Ry = Ry 1@y
In biological vestibular systems, it has been observed that the
otolith organs in each inner ear respond to the head tilt in
frontal and lateral planes. In our model, the angles between
the pendulum’s body-fixed frame, S, and platform’s body fixed
frame, H, define the orientation of the head w.r.t. the vertical.
In the above model, the orientations are described by rotation
matrices whose elements are the projections of unit axes of
one coordinate frame into another coordinate frame. Then,
the following expressions can be used to express the angles
between the pendulum and head frames in the frontal and
lateral planes through the projections of the unit vectors,

[6Rs] (5.9) [6Rs] 5.1y

tan ¢ = —————,

3)
[HRS} {3,3}

tan ¢, = ,
! [HRS] {3,3}

where Ry = [Rf |Rg and the notation [M]y,, ,,} represents
the element of the matrix M in the n-th row and m-th column.
Angles ¢, ¢, are the angles between the projections of Sk
to the frontal and lateral head planes and "k, respectively.
Egs. (B) express the measurements (outputs) for the system (2))
which can model the otolith responses in the human vestibular
system.

III. MODELING HEAD STABILIZATION

We define that the head is horizontally stabilized (or up-
right) when the heads longitudinal axis is aligned with the
gravitational vertical. Pursuing the goal of stabilizing the head
around the vertical from idiothetic measurements requires the
design of an observer to extract the true vertical from the
sensor movements known in head coordinates. The results are
fed to a controller, which naturally calls for the application
of the separation principle. Unfortunately, the application this
principle to nonlinear systems is still an active topic of
theoretical research with sparse results that apply to restricted
classes of systems [18| [19]. In the following, the separation
principle is considered and the controller and observer designs
is carried out for a system linearized around an equilibrium.

Control design. A possible danger when using simplified
control and observation can be the small region of convergence
for the controller and for the estimator. However, global
attitude control laws for rigid bodies in SO(3) are known,[20]

3
ir = - K, Q- K fwy, with Q= "e; x (R Ry ),
i=1
where K, = kI3 and Ky = k4I3, are symmetric, positive
definite control gain matrices, (e; ey e3) = I3, and RY is
the desired rotation matrix. When the desired rotation is the
identity matrix, R! = I3, this control law stabilizes the head
platform horizontally from any initial conditions. An alternate,
simpler design may merely employ the head tilt angles in the
frontal and lateral planes and the head angular velocity are the
mputs,

Ry|,.
Br, =kpo | ¢ — arctan LRl ka,o Twy .,
[[HRH{]]{:S,IS} ’ 4)
IR]}H E
Hry =kpy | ¢ — arctan o {830 ) — kg, HEIwHU.
[ll H]{3,3} i

where kj, kq are the control gains and ¢4 and ¢ are the
desired frontal and lateral tilts of the head w.r.t. the inertial
frame. When the platform is close to be horizontal, Ry ~ I3,
(@) can be further linearized around the horizontal orientation,

{ HTI = kp,x ((bg -

H"'y = kp,y((bg -

The orientation of the head w.r.t. the inertial frame, ;Ry;, must
be observed.

Observer design. Let # = (Swg, [Rg, wy, Ry) " be a
state vector made of the elements of the vectors and matrices
arranged in a single vector. The system (2)) and outputs (3) are
then conveniently expressed in the form,

z = f(x,u), y=h(x),

[]IRH] {3,2}) —kdo HﬁIme’
[1Ry] {3,1}) — Ky H]-IHwHy‘

)



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL 23, 2019

A. B. head is not horizontal
(non-)horizontal I s )
stabilization / 60|
<
s |F
© d 5
g 530 ———
X observer L5 0
i sensor feedbackonly ! o horizontally stabilized head
=60
=
meas?lred ) Lﬁ A_A_J
---- actua “_ 0
estimated £ 30 |
o 0
1s
Fig. 2. A, Control diagram for simulation and experimental validations.

B, Simulation results for Kalman filter for the cases of non-horizontal and
horizontal head stabilization.

Fig. 3.
link of the gimbal mechanism was moved manually. The task of the controller
was to stabilize the platform horizontally. B, Mechanical design. 1 — gimbal’s
platform with inclinometer; 2 — rotational joint with encoder (frontal tilt); 3
— rotational joint with encoder (lateral tilt); 4 — MEMS accelerometer; 5 —
actuator for frontal tilt; 6 — base link; 7 — actuator for lateral tilt; 8 — liquid
based inclinometer.

Experimental setup. A, Platform stabilization experiment. The base

where u = (Ha,HT)T is an input due to the translational
movement of the head combined with the torque applied to
it. Linearizing the system around the horizontal orientation
xo = [(0,0,0),1,(0,0,0),I]T, where the platform’s rotation
matrix is identity and the angular velocity zero,

& =Ax+ Bu, y=C(z), (6)
with constant matrices,
_of _of _ 0Oh
Ai% T =xo Bi% T=x0 ’ T 9zl T=x0
H_ _ H_ _ Hy — 0

A linear state observer (Luenberger observer [21]) for the
linearized system is of the following form:

= A& +Bu+L(y—C), (7)
where Z is the estimated state and L the observer gain matrix.
We could employ a Kalman filter to estimate the state when
the measurements are noisy. The observer gain, L, in (7)) is
then replaced by a Kalman gain and standard design equations
can be used.

IV. RESULTS

Simulation. The parameters of the verticality sensor were
those of the model of type later in the experiments (Model 900,
Applied Geomechanics). For a critically damped sensor with
a natural frequency of 10 Hz we get the following parameter
values: 3/(m SI%) = 126 N-s/kg-m? and g/51 = 3944 1/s?
with ¢ = 9.81 m/s%2. The head inertia was taken to be
Jg = 0.0001 kg-m?. For simplicity, we present results
for only one tilt value of the platform. In the simulation
scenarios, the platform was accelerated at an oscillatory rate,
Ha = [0, 3sin(10t), 0]T. A PD-regulator with control gains
kp = 1 N/m/rad and kg = 0.1 N-s/m/rad was used. The
platform initial orientation was set to 23°. The numerical
integration of the system equations was performed with a
1 ms time-step. Fig. PJA shows a simplified diagram of the
observer-based control system configuration which was used
in simulations and experimental validation. Depending on the
test scenario the head angular orientation was controlled based
on direct sensor feedback or else based on estimated state
feedback.

The head was accelerated while the controller tried to
maintain the orientation of the head at 60° in the first case,
Fig. 2B, and at 0° in the second case, Fig. ZD. The estimated
head’s pitch and angular velocity were fed back to the PD-
regulator. As the plots show, the actual tilt was greater than
60° which meant that the PD-regulator was receiving incorrect
estimates of the state. This happened because of the approxi-
mation introduced by the linearization of the model around the
horizontal orientation for the observer design. The estimation
error was reduced from ~ 30° to ~ 4° when the platform
was horizontally stabilized. When noise was introduced to the
measurements (standard deviation of process noise 0.06° and
measurement noise 1°), tests with a Kalman filter showed sim-
ilar performance. Moreover, uncertainty in model parameters
values up to 10% did not affect performance.

Experiment. To test the proposed verticality estimation by
the head stabilization strategy, we constructed a two degrees-
of-freedom (2-dof) gimbal mechanism which could be held in
the hand as shown in Fig. B]A. Two motors (Maxon Model EC-
powermax 22 mm, Faulhaber Model 024 SR) controlled the
angular orientation of the platform. The mechanical details,
Fig. BB, show how the two motors acted to the axes of the
gimbal via two capstan drives. The liquid-based inclinometer
(model T900, Applied Geomechanics) provided two decoupled

orientation measurements based on the degree of immersion

of four electrodes in a liquid contained in a vial. The plat-
form formed the distal link of the gimbal mechanism. The
inclinometer was located near the center of rotation. The
observation and control algorithms ran on a Gumstix computer
with a sampling period of 5 ms. A MEMS-based 3-axis
accelerometer (ST Microelectronics, Model LIS344ALH) was
mounted on the platform in the vicinity of the inclinometer.
Two potentiometers (US Digital Model MA3) were mounted
on the gimbal axes for joint angle monitoring. They were not
used for control.

The system dynamics were identified. The two drives were
modeled as first order mass-damper system with an integrator.
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Fig. 4. Experimental results. A: stabilization based on direct roll and pitch measurements from the inclinometer. B: stabilization based on the estimated

head’s orientation. The system was stable. C: head stabilization during horizontal acceleration based on direct inclinometer measurements (left panel) and

based on state estimation (right panel).

Pitch and roll rotations were identified independently from
the response to step inputs. The orientation of the platform
was measured as an output. The dynamic model parameters
were identified with the help of Matlab Identification Toolbox.
For the pitch, the parameter values were: moment of inertia
J1 = 0.008 kg:m2, damping b; = 1.35 N-m-s. For the roll,
the parameters were: moment of inertia .J, = 0.0006 kg-m?,
damping b2 = 0.137 N-m-s. A second order system was used
to model the inclinometer dynamics. During the experiments,
the observer received measurements from the inclinometer and
from the accelerometer.

Experimental results. We experimentally tested two cases:
sensor-based direct feedback and observer-based feedback.
The task of the controller was to stabilize the platform hori-
zontally in spite of any random motions of the mechanism base
link. The potentiometers monitored the angular orientation
of the head with respect to the base link. When the head
was horizontally stabilized their measurements provided the
orientation of the base link with respect to the estimated
gravitational vertical.

We first tested the case when stabilization was achieved by
direct feedback of the pitch and roll measurements were fed to
the PD-regulator. The base link was oscillated at a magnitude
of 40-50°. Fig. shows the results. The first row displays the
time history of the inclinometer measurements as well as the
joint angular measurements of the platform with respect to the
base link. The inclinometer measurements lagged behind the
angular measurements since the liquid in the capsule had slow
dynamics. The platform became unstable. The second row of
Fig. BJA shows the control input given by the PD-controllers.

In the observer-based stabilization test, the base link was
again moved with 40-50° oscillations. Fig. B shows the
estimated angular orientation of the platform. The tilt mea-
surements from the inclinometer reached 20° and the system
remained stable. The first row displays the time history of
the inclinometer measurements, the platform angular mea-
surements, and the estimated platform absolute pitch and
roll angles. The second row shows the control inputs. The
magnitude of the platform oscillations in absolute coordinates
were significantly smaller than the magnitudes of the relative
angular oscillations.

The system was then accelerated back-and-forth with an

acceleration of about 2 m/s2. The results are shown in Fig. Ep
left panel. The first row shows the relative head orientation.
The second row shows the acceleration of the head. The
system quickly became unstable due to disturbed inclinometer
measurements with large spontaneous oscillations. The ac-
celerometer attached to the platform was strongly influenced
by the movements and was not providing accurate information.

Fig. f[C, right panel, shows the results when the observer
was used for head stabilization during acceleration. The head
was linearly accelerated while the PD-regulator forced the
platform to remain horizontal. The platform oscillated with
a magnitude smaller than 6°, which was much smaller than
in the first experiment. The accelerometer measurements were
much less influenced.

V. CONCLUSION

We performed simulations and experiments to study the
head stabilization strategy that is universally observed in
nature with a view to apply it in robotics. It was shown that
this strategy could provide gravitational verticality estimates
based on pure inertial measurements in a non-inertial frame.
When an inertial platform is maintained horizontal by observa-
tion and feedback, the measurements respond to translational
movements only and angular components are rejected. It
therefore becomes straightforward to estimate the unknown
linear acceleration by solving the dynamics equations of the
sensing device. This result hinges on the applicability of the
separation principle when the controller and the observer are
designed independently. We surmise that this principle could
apply because the head stabilization strategy linearized the
closed loop system sufficiently.

In terms of application to robotics, the stabilization was
effective even with simplified linear control, and results in
dramatically improved verticality estimation. Locating IMU
in a robot’s head and implementing the head stabilization
strategy has been recently demonstrated in several humanoid
robots applications with a view to mimic human gaze stabi-
lization behavior [22]]; to improve gaze stabilization for visual
tracking [23]], and to efficiently coordinate the robot’s body
movement [23] [24]. Whereas some progress has been achieved
in transferring anthropomorphic behaviors to humanoid robots,
substantial research and development challenges remain in
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particular the role of head stabilization in resolution of gravito-
inertial ambiguity. Resolution of gravito-inertial ambiguity for
inertial sensor measurements is problematic for robots with id-
iothetic sensing and very often employment of external sensors
with a fixed frame of reference is required. The present work
addressed this issue through modeling the sensor’s and the
head’s dynamics with closed loop head stabilization controller
and observer. The result presented here complements recent
developments in the field [22] 23| 24] 25] by demonstrating
that head stabilization significantly improves the quality of
verticality estimation. This result has many applications in the
control of humanoid robots, rovers, drones, as well as human
mobility assistance robots [26, 27].

Gravity-based inertial measurements are the only absolute
sources of information about the gravitational verticality. We
believe that inertially stabilized platforms could provide for
the development of ground-independent locomotion strategies
in future robots. Such robots would be free of the assumption
of interacting with firm, flat, and horizontal grounds. Posture
control could then be realized in top-to-down manner, from a
stabilized platform down to the robot appendages.
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