
HAL Id: hal-02112921
https://hal.archives-ouvertes.fr/hal-02112921

Submitted on 27 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An extensible approach to high-quality multilingual
typesetting

John Plaice, Yannis Haralambous, Chris Rowley

To cite this version:
John Plaice, Yannis Haralambous, Chris Rowley. An extensible approach to high-quality multi-
lingual typesetting. Research Issues in Data Engineering: Multi-lingual Information Management,
IEEE; International Institute of Information Technology, Mar 2003, Hyderabad, India. pp.62-67.
�hal-02112921�

https://hal.archives-ouvertes.fr/hal-02112921
https://hal.archives-ouvertes.fr

An extensible approach to
high-quality multilingual typesetting

John Plaice
School of Computer Science and Engineering

The University of New South Wales
UNSW SYDNEY NSW 2052, Australia
plaice@cse.unsw.edu.au

Yannis Haralambous
DCpartement Informatique

Ecole Nationale SupCrieure des Tdtcommunications de Bretagne
BP832, F-29285 Brest Cedex, France

Yannis.Haralambous@enst-bretagne.fr
Chris Rowley

Faculty of Mathematics and Computing
The Open University, UK

Milton Keynes MK7 6AA, United Kingdom
C.A.Rowley@open.ac.uk

Abstract- We nmnose to create and studv a new model for will allow the tvnesetter to he inteerated with more general
the micro-typograhi Part of automated mdt%ingud typesetting. text processing tools, such as spell-checkers, style-checkers,
This new supPQrt quality for a number Of content-checkers, transliterators, or translators (see also Mit-
modem and ancient scripts.

The maior innovations in the proposal are: the DIW~SS is re- telbach and Rowley [*I).
lined into four phases, each depeodeni ou B multidimensional tree-
structured context summarizing the current linguistic and cultural
environment. The four phases am: preparing the input stream for
typesetting; segmenting the stream into clusters (words); typeset-
tine these clusters: and then recomhinine the clusters into a tvw-

11. BACKGROUND

A. Computer Typeseting, ’$ and ’
I I _.

set text stream. The context is pervasive throughout the pme=; ne first steps in computer typesetting took place in the
1950s, hut it was not until 1982, when Donald Knuth introduced
T# [5] , that it became possible to use computer software for

the algorithms used in each phase are context-dependent, as are
the meanings of fundamental entities such as language, script, font
and character.

high-quality typesetting of, at least, English and mathematics,
as in his The Art of Computer Programming series.

In TEy’s very speedy character-level typesetter, characrers in
the input file are transformed almost directly into glyphs in the
current font, and these glyphs are positioned side-by-side ‘on
the baseline’; the only small refinement of this transformation
process is that a font-specific finite-state automaton can he used
to change the glyphs used (typically by using ligatures) and
their horizontal placement (by keming). The ‘words’ thus type-
set are then separated by a font-specific amount of stretchable
inter-word space (glue) to form a stream (a horizontal list) that
is typically passed to Tfls paragraph maker. In the T S model,
each glyph is an object that has only width, height, and depth; a
similar box-and-glue model is also used for higher-level layout.

The 0 system [IO], developed by the first two authors, is
a series of extensions to the TEy system that facilitate multi-
lingual typesetting. The Cl system has been used for typeset-
ting languages in the following scripts: Latin (including Gothic
and Gaelic), Greek, Cyrillic, Armenian, Georgian, Arabic,

I. INTRODUCTION
We present in this paper the outline of a new approach to the

automation of some aspects of typesetting. Traditionally, type-
setting was defined thus “The production of printed matter by
computer, usually by producing a master copy for offset repro-
duction” [3] hut we include a far greater range of output me-
dia in our view. One of the key innovations outlined here is to
consider each of language, script, font, and character as multi-
dimensional entities, as opposed to the current view, reiterated
at length in the Unicode standard [17], that they are discrete
and unchanging. As a result, typesetting will he undertaken in
a mulridimensioml context - formally, a point in a multidi-
mensional space - that summarizes the current linguistic and
cultural environment. This point of view, consistent with the
intensional programming approach explained in Sections 11-B
and IV below, will efficiently support much greater variation in
the behavior of the typesetting engine. Moreover, this approach

62 0-7803-7868-7/03/$17.00 0 2003 IEEE.

mailto:Yannis.Haralambous@enst-bretagne.fr
mailto:C.A.Rowley@open.ac.uk

Hebrew, Syriac, Tifinagh, Japanese, Thai, Khmer, Devanagari
(for Hindi, Sanskrit), Malayalam and Tamil.

The major difference between the T# model and the current
R model is that, before glyph selection, the character stream
to be typeset is segmented and processed by a series of filters,
each reading from standard input and writing to standard out-
pnt. Once all of the filters are applied, the stream is passed
to the standard T@ character-level typesetter. Filters have been
written for character set conversion, transliteration, morpholog-
ical analysis, spell-checking, and contextual analysis. In ad-
dition, a number of filters have been written for what we call
1.5-dimensional layout, used for scripts that are written hori-
zontally, but for which there is substantial vertical displacement
for proper placement of glyphs: examples where this is neces-
sary are typesetting Arabic, Indic and South-East Asian scripts,
typesetting mathematics, and stacking International Phonetic
Alphabet (IPA) diacritics.

There are two current limitations to the use of R. First, be-
cause R is so versatile, it is difficult to define good high-level
interfaces that can be used without in-depth understanding of
the low-level system. Second, the output from applying sev-
eral filters is simply too low-level; the relationship between the
original input and the typeset output is simply too distant. If
one is only interested in the final visual layout, this is not so
much of a problem. However, we are increasingly interested in
the ability to he able to search through documents to find infor;
mation; we therefore need to be able to retain the link between
the original text and the typeset output, so that this information
can be placed in all generated documents.

B. Intensional Programming
lntensional programming [I21 is an approach to computing

that supposes that there is a multidimensional context, and that
all programs are capable of adapting themselves to this context.
The context is pervasive, and can simultaneously affect the be-
havior of a program at the lowest, highest and middle layers.

When an intensional program is running, there is a current
context. This context is initialized upon launching the program
from the values of environment variables, from explicit parame-
ters, and possibly from active context servers. The current con-
text can be modified during execution, either explicitly through
the program’s actions, or implicitly, through changes at an ac-
tive context server.

A context is a point in a multidimensional space, i.e., given
a dimension, the context will return a value for that dimension.
The simplest contexts are dictionaries (lists of attribute-value
pairs). A natural generalization is what will be used in this
paper: the values themselves can be versions, resulting in a
tree-structured context. The set of contexts is furnished with
a partial order C called a refinement relation.

For example, to describe Australian English, we could use
the context:

<script:<Latin>+
lang:<English;dialect:<Australian>>z

where script and lang are called dimensions, and
1ang:dialect a compound dimension. See Section IV for
more details.

During execution, the current context can be que?ed, dimen-
sion by dimension, and the program can adapt its behavior ac-
cordingly. In addition, if the programming language supports it,
then contextual conditional expressions and blocks can be de-
fined, in which the most relevant case, with respect to the cur-
rent context and according to the partial order, is chosen among
the different possibilities.

In addition, any entity can be defined in multiple versions. A
version is of the same structure as a context. Whenever an iden-
tifier designating an entity appears in an expression or a state-
ment, then the most relevant version of that entity, with respect
to the current context, is chosen. This is called the variant sub-
structure principle. The general approach is called intensional
versioning [141.

The ISE programming language [I31 was the first language
combining both intensional programming and versioning. It
is based on the procedural scripting language Perl, and it bas
greatly facilitated the creation of multidimensional Web pages.
Similar experimental work has been undertaken under the su-
pervision of the first author with C, C++, Java, and Eiffel. And,
when combined with a context server (see Paul Swoboda’s PbD
thesis [IS]), it becomes possible for several documents or pro-
grams to be immersed in the same context.
/

111. SIGNIFICANCE

The significance of high-quality highly automated multilin-
gual typesetting cannot be overestimated. We know from Mar-
shall McLuhan’s work [6] just how important was the intro-
duction of metal type to European society. Typesetting was, in
some sense, the first industrial process, upon which all others
were based. It was also the process that enabled the others,
since it allowed knowledge to spread rapidly across Europe. It
also facilitated the rise of national vernaculars and the subse-
quent creation of nation-states.

Today, with the development of the Intemet and even more so
the Web, something different is occurring. We now have access
to online documents in hundreds of languages, using a multi-
tude of scripts. At the same time, grandiose endeavors such
as the Million Book Project 171 (scanning of about 490 of the
books ever written) are being undertaken. Bit by bit, the world’s
collected writings are being made available, to everyone. And,
with miniaturization of storage, these writings will be available
not just online, hut on our personal portable devices.

However, making these works available is not sufficient.
They still need to be printed, whether it he on a screen, in a
bound paper volume, or on some future substrate. But we are
not yet at a point where we can automatically reproduce the
quality of books typeset in the nineteenth century, particularly
for the non-Latin scripts. In fact, the problem is harder, because
we now need real-time printing of documents from the Web.

In India, this problem is of utmost importance. India has two
national languages (Hindi and English), one recognized mother
language (Sanskrit), and 14 official languages, each with its
own script. In addition, there are approximately 200 minority
languages. Clearly, a better, more general approach to multilin-
gual typesetting is needed, one that promises ease of use with
high quality.

63

More prosaic areas, such as the formatting of legal docu-
ments and business forms, also have a need for high quality
typographic design in a range of languages and here high levels
of automation are often paramount due to the high volume of
material and the essential need for clarity and accuracy. Less
conventionally, safety critical systems need very high quality
typographic designs as has been shown by the screen fonts and
layout requirements for the new British air traffic control sys-
tem.

Iv. STRUCTURING THE CONTEXT

As was stated in Section 11-B, we use the same notation to
designate versions of entities and to designate contexts. This
section has three subsections. First, we define versions and the
refinement relation. Then, we define version binders, which
hold versional entities. Finally, we define version operators,
which are used to change from version to version. In the fol-
lowing section, we will show how all of these are to be used.

A. Versions and Refinement
Let {(Si, E;)}; be a collection of sets of ground values, each

with its own partial order. Let S = U&. Then the set of ver-
sions V (3 V) over S is given by the following syntax:

V ::= 0 J A I R I (B ; L) . (1)
B ::= e) a) w l v (2)
L ::= 0~ 1 d : V + L (3)

where d, U E 8.
There are three special versions:

0 is the empry version (also called vanilla);
A is the minimally defined version, just more defined than
the empty one;
R is the marimally defined version, more defined than all
other versions.

The normal case is that there is a base value B, along with a
version list (L for short), which is a set of dimension-version
pairs. We write SL for the set of dimensions of L.

A sequence of dimensions is called a compound dimension.
It can be used as a path into a version. Formally:

D = . 1 d : D (4)

If V-is a version, V(D) is the subtree of V whose root is
re?ched by following the path D from the root of V

V(.) = v (5)
(B;d:V‘+L) (d : D) = V’(D) (6)

% As with versions, there are three special base values:
c is the empry base value; . a is the minimally defined base value, just more defined
than the empty base value; . W is the maximally defined base value, more defined than
all others.

The, normal case is that a base value is simply a scalar.

To the set V, we add an equivalence relation =, and a rejine-
meni relation E. We begin with the equivalence relation:

0 FE (c ; 0 L) (7)
A G (a ; 0 ~) (8)

R

d:O
d : V + d:V‘

(B; L) + (B; L’)
L+0L
Z + L

L + L’
z + (L’ + L”)

(u : c d : .)
d E S

0L

d : (V+V‘)
(B; Z + L‘)
L
L
L’+L
(Z + Z’) + Z”

Therefore 0 and A are notational conveniences, while R cannot
be reduced. The + operator is idempotent, commutative, and
associative.

We now give the partial order over the base values:

e C B (17)

B E B

B C w

B$e
a E B

(21)
U0 c U1

The last rule states that if vo and 211 belong to the same set Si
and are comparable according to the partial order C;, then that
order is subsumed for refinement purposes.

Now we can define the partial order over entire versions:

V0,Vl E si vo r; U 1

0cLv (22)

VCR (23)

A c V
vo v,
v , r K
KCVI

d : & r d : V ,

__ (25)

(26)

0 L c L (27)

(28)

(29)

zo E L I J5;
Lo+Lb c L I + L ;

Bo E & Lo C L i
{Bo; Lo) 5 (BI; LI)

Rule 28 ensures that the + operator defines the least upper
bound of two versions.

B. Version Domains and Version Binders Version operators can also be applied to version operators.

When doing intensional programming, we work with sets of

ation on version domains, namely the best-fit. Given a version

best-fit version is defined by:

There are cases:

versions, called version domains, written V . There is one oper- 1 P o p i B o p o ; ~ o p o l 1e ;Bopl ;Lopl I = (45)

domain V of existing versions and a requested version V,,,, the [pop; (Bop0 ~ o p l) ; ~ o p i)]

[Pop; Bop,; Lop01 [- - ; B o p , ; Lop11 = (46)
bestv(V, K,) = max{V E V I V g Kq} (30)

[- P i (Bop0 ~ o p i) ; ((Lwo\(JLopn - ~ ~ o p i)) ~ o p i)]
If the maximum does not exist, there is no best-fit version.

Typically, we will be venioning something, an object of
n i S is done using version binders, simply

Version binder domains Vh then become

NOW that we have given the formal syntax and semantics of
versions, version binders, and version operations, we can move
On to @PesttinS.

type.
(V. obi&\ o a k ~, 1 , I

functions mapping versions to objects. The best-fit object in
a version binder domain is given by: v. THE FOUR PHASES OF TYPESETTING

At its most basic level. a micro-twesetter is a function that ,_

besto(vb,&,,) = Vb(bestv(dom vb,vreq)) (31) transforms a stream of characters to a stream of positioned
glyphs. In our new model, micro-typesetting is split into four
separate phases: preparation, segmentation, micm-typesetting
and recombination. Since each of these phases is dependent on
the context, we can write the process, using C++ syntax, as:

C. Version Operators

Their syntax is similar to that of versions.
Version operators allow one to selectively modify versions.

stream<Glyph>
micro-typeset(stream<Char> input,

Version context) { K p ::= v I ~Pop;Bop;Lo*l (32)
Pop ::= - - I e (33) streamcChar> prepared =

Bo, ::= - 1 B (34) input.apply(otp-list.best(context));
Lop ::= 0~~~ 1 d : K, + Lop (35) stream<Cluster> segmented =

segmenter.best(context) (prepared);
A version operator is applied to a version to transform it into
another version. (It can also be used to transfonn a version
operator into another; see below.) The - operator removes the
current base value, while the -- operator in Pop is used to
clear all dimensions not explicitly listed at that level.

Now we give the semantics for V V,,, the application of
version operator V,, to version V :

vo VI = v, (36)
n vop = error (37)

(B; L) I--; Boo; LoD1 = (38)

stream<TypesetCluster> typeset =

streamcGlyph> recombined =

return recombined;

clusterset.best(context) (segmented);

recombine.best(context) (typeset);

>
wherefunction. best (context) means that the most relevant
version of function, with respect to context, is selected. Below,
we examine each of the phases in detail.

A. Preparation . . _
stream<Char> prepared =

(B ; L\(JL - JL,,)) [~;BOp;LoPl input.apply(otp-list.best(context));

(B; L) [e; Bop; LOPI = ((B Bop); (L Lop)) (39) The preparation phase in this new approach is similar to the
current situation in the Cl system. At all times, there is an active

Translation Processing List (ClTP-list). This list consists of
individual Q Translation Processes (QTP's), each of which is a
filter reading from standard input to standard output. What is

B - = e (40) new is that the whole process will become context-dependent.
Bo Bi = B1 (41) First, the most relevant ClTP-list, with respect to the context and

using the refinement relation over contexts, will be the one that
is active. Second, once chosen, it can test the current context
and adapt its behavior, by selectively turning on or off, or even

The preparation phase will work entirely on characters, i.e. at
the information exchange level but it will allow additional typo-
graphic information to be added to the character stream, so that
the following phases can use the extra have information to pro-
duce better typography.

The general case consists of replacing the base value and re-
placing the version list. First, the base value:

Now, the version list:

L0L,, = L (42) replacing, individual QTPs.
(d : V + L) (d:V,, + Lop)

L (d : Kp + Lop)

= (43)
d : (V Kp) + (L Lop)
=

d : (0 Kp) + (L Lop). d # JL

65

B. Segmentation
stream<Cluster> segmented =

segmenter.best (context) (prepared) ;

The segmentation phase splits the stream of characters into
clusters of characters; typically, segmentation is used for word
detection. In English, word’detection is a trivial problem, and
segmentation just means recognizing ‘white space’ such as the
blank character, Unicode U+ 02 0. By contrast, in Thai, where
there is normally no word-delimiter in the character stream
(blanks are traditionally only used as sentence-delimiters), it
is impossible to do any form of automatic processing unless a
sophisticated morphological analyzer is being used to calculate
word and syllable boundaries. In many Germanic and Slavic
languages, it is also necessary to find the division of compound
words into their building blocks. These processes are closely
related to finding word-division points so this should be incor-
porated into this part of the process (a very different approach
to that of TH) . The choice of segmenter is thus clearly seen to
be context-dependent.

C. Cluster typesetting
stream<TypesetCluster> typeset =

clusterset.best(context) (segmented);

During the typesetting phase, a cluster engine processes a char-
acter cluster, taking into account the current context including
language and font information, and produces the typeset out-
put - a sequence of positioned glyphs. In many cases, such
as when hyphenation or some other form of cluster-breaking
is allowed, there will be multiple possible typeset results, and
all of these possibilities must be output. When dealing with
complex scripts or with fonts allowing great versatility (as with
Adobe Type 3 fonts), numerous different cluster engines will
be needed these will be selected and their behaviour will be
fine-tuned according to the context.

D. Recombination
stream<Glyph> recombined =

recombine.best(context) (typeset);

The final phase, before calling a higher-level formatting process
such as a paragrapher, is the recombination phase. Here, the
typeset clusters are placed next to each other. For simple text,
such as the English in this proposal, this simply means placing
a fixed stretchable space between typeset words. In situations
such as Thai and some styles of Arabic typesetting, kerning
would take place between words. Once again, the recomhiner’s
behavior is context-dependent.

VI. EXAMPLES
Given the sophistication of the four-phase process, and that

the choice of segmenter, cluster engine and recombiner are all
context-dependent, and that the actions of each of these, once
they are chosen, also depends on the context, this new model
of typesetting engine is potentially much more powerful than
anything previously proposed or implemented. We intend to
test an ’ .’ ‘ite it on, at least, the following scripts:

Latin, Greek and Cyrillic, IPA: left-to-right, discrete
glyphs, numerous diacritics, stacked vertically, above or
below the base letters, widespread hyphenation; . Hebrew: right-to-left, discrete glyphs, optional use of di-
acritics (vowels and breathing marks), which are stacked
horizontally below base letter; . Arabic, Nuskh style: right-to-left, contiguous glyphs, con-
textually shaped, numerous ligatures, optional use of di-
acritics (vowels and breathing marks), placed in 1.5-
dimensions, above and below; . Indic scripts: left-to-right, 1.5-dimensional layout of clus-
ters, numerous ligatures, applied selectively according to
linguistic and stylistic criteria; . Chinese, Japanese: vertical or left-to-right, often on fixed
grid, with annotations to the right or above the main se-
quence of text, automatic word recognition - Chinese and
Japanese words use one or more characters, but these are
not visually apparent - needed for any form of analysis;
Egyptian hieroglyphics: mixed left-to-right and right-to-
left, 1.5-dimensional layout.

Once the basic typesetting is ‘validated, then further experi-
ments, viewing language as a multidimensional entity, will be
undertaken. Already with 0, we have typeset Spanish with both
the Hebrew and Latin scripts; Berber with the Tifinagh, Arabic
and Latin scripts; Arabic with Arabic, Hebrew, Syriac, Latin
and even Arabized Latin (Latin script with a few additional
glyphs reminiscent of the Arabic script). The Arabic script can
be rendered in Naskh or Nastaliq or many other styles. Japanese
can be typeset with or without furigana, little annotations above
the kanji (the Chinese characters) to facilitate pronunciation.

The objective is to incorporate solutions to all such problems,
currently solved in an ad hoc manner, into our framework; each
time, the key is to correctly summarize the context. With this
key, then the choice of segmenters, clusters engines and recom-
hiners to build, and of how they are built, is clarified; never-
theless, these algorithms may remain complex, because of the
inherent complexity of the problems they are solving.

VII. CONCLUSIONS

If the model that we propose to develop is successful, then
we will be able to produce, with relative ease, high-quality doc-
uments in many different languages and scripts.

Furthermore, this new approach of contexts can be used to
improve macro-typesetting as well as micro-typesetting. The
third author, in his role as a leader of the EC@3 Project, has
worked with closely related ideas in the context of Minelbach’s
templates for higher-level formatting processes 121. Here the
particular instance of a template object that is used to format a
document element will depend on a context that is derived from
both the logical position of that element in the structured doc-
ument and from the formatting of the physically surrounding
objects in the formatted document. Collaboration between the
current authors and other members of the I4TS3 team will lead
to many new interfaces that give access to the new functionality.

Other examples of the importance of such a structured con-
text in document processing can be found in work by the third
author with Frank Mittelbach 191.

66

Another example of dependence on this visual context oc-
curs in the use of Adobe Type 3 fonts, which are designed so
that glyphs can be generated differently upon each rendering
(see [l] for a discussion of a number of effects). On another
level, the Open-Type standard I l l] , jointly developed by Adobe
and Microsoft, allows for many different kinds of parameters -
beyond the basic three of width, height, and depth -, multiple
baselines, and a much richer notion of ligature. Our new engine
for micro-typography will provide new capabilities, adaptable
to new kinds of parameters, and increased control. Thus we
shall be able to provide a simple high-level interface that takes
advantage of new developments in font technologies.

In addition, the full-scale introduction of context will even al-
low reconsideration of the very contexts of glyph and character.
In the second author's article on the relationship between the
two 141, it is clear that glyphs and characters are not absolutes,
but, rather, fluid from one context to another.

systems have al-
ready influenced the specifications of XML 1181 (how to deal
with multiple character sets), SVG [16] (the text model) and
XSL [I91 (the model for printing in multiple-directions and the
concept of formatting objects). The success of this project and
of our further research in typesetting will lead directly to addi-
tional enhancements to XSL and SVG, by providing, for exan-
ple, specifications for XSL formatting objects to suppoTt high-
quality typography and a text model that better supports glyph
specification.

Finally, this proposed model should be understood as the
preparation for a much more ambitious project, that will deal
not just with low-level typesetting but also general problems
of document structuring and layout for demanding typographic
designs in a highly automated environment. Detailed discussion
along these lines has already been initiated between the n and
Mix3 projects, which look forward to these wider horizons.

At another level, the existing n and

REFERENCES
[I] Jacques Andd. Cdotion defontes en 'ypogrophie numdrique [Creating

fonts for digital typography]. Documents #habilitation, IRISA+IFSIC,
Rennes, 1993.

121 David Carlisle, Frank Mittelbach and Chris Rowley. New interfaces for
!4T@ class design, 1999.
http://wWw.latex-project.org/papers/tu999.pdf

131 Computer Typesetting.
http://wWw.xrefer.com/entry/441575

I41 Yannis Haralambous. Unicnle et typographic : un amom impos-
sible [Unicode and typography: an impassible couple]. Documents
nwndriquer 1:1,2002.

[51 Donald ffiuth. Computers and Typesening. 5 volumes, Addison-Wesley,
1986.

[6] Marshall McLuhan. The Gulenberg Galaxy: The Making ofTypographic
Mon. University of Toronto Press, 1962.

[71 Million Book Project. http://reeb.library.cmu.edu/
Librar ies /LIT/Pro jec ts / lMBooks .h tml

181 Frank Mittelbach and Chris Rowley, 1996. Application-independent rep-
resentation of text for document processing.
http://www.latex-project.org/papers/unicode5.pdf

[9] Frank Mitlelbach and Chris Rowley. Language information in structured
documents, 1997.
http://uWW.latex-project.org/papers/language-
tu997~paper-revised.pdf

1101 Omega Typesening and Document Processing System.
http://omega.cse.unsw.edu.au

[I I J OpenType. http : / /unuw. opentype .org
I121 John Plaice and Joey Paquet. Introduction to intensional programing. In

lnrenrional Pmgramming I, World-Scientific, Singapore. 1996.
[U] John Plaice, Paul Swobada and A m Ah"r Building intensiooal

communities using shared contexts. In Distributed Communities on the
Web, LNCS 1830:55-61, Springer-Vedag, ZOW.

[I41 John Plaice and William W. Wadge. A new approach to version control.
lEEE.TSE 19(3):268-276. 1993.

[151 Paul Swaboda. A Fomurlirotion andlmplementotion ofDislributedlnten-
sionnl Programming. PhD Thesis. The University of New South Wales.
Svdnev. Australia. 2003.

http://uWW.w3c.org/XML
[I91 The Extensible Stylesheet Language (XSL)

67

http://wWw.latex-project.org/papers/tu999.pdf
http://wWw.xrefer.com/entry/441575
http://reeb.library.cmu.edu
http://www.latex-project.org/papers/unicode5.pdf
http://uWW.latex-project.org/papers/language
http://omega.cse.unsw.edu.au
http://uWW.w3c.org/XML

