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Abstract

In the paper, we propose a branch-cut-and-price algorithm for the two-echelon capaci-
tated vehicle routing problem in which delivery of products from a depot to customers is
performed using intermediate depots called satellites. Our algorithm incorporates signifi-
cant improvements recently proposed in the literature for the standard capacitated vehicle
routing problem such as bucket graph based labeling algorithm for the pricing problem,
automatic stabilization, limited memory rank-1 cuts, and strong branching. In addition, we
make some specific problem contributions. First, we introduce a new route based formula-
tion for the problem which does not use variables to determine product flows in satellites.
Second, we introduce a new branching strategy which significantly decreases the size of the
branch-and-bound tree. Third, we introduce a new family of satellite supply inequalities,
and we empirically show that it improves the quality of the dual bound at the root node
of the branch-and-bound tree. Finally, extensive numerical experiments reveal that our
algorithm can solve to optimality all literature instances with up to 200 customers and 10
satellites for the first time and thus double the size of instances which could be solved to
optimality.

1 Introduction

In a context of economic globalization, the growth of urban population leads to an increase
in freight transportation in cities. Freight transportation may deteriorate the quality of the
urban environment with, for example, high noise levels, greenhouse gas emissions, and decrease
of air quality. Moreover, freight transportation faces several constraints such as reduced access
within cities and deliveries within time-windows. As a result, freight distribution patterns in
city logistics change (Taniguchi and Thompson, 2002). In the past, customers were delivered
straight from depots located on the outskirts of cities. Nowadays, transporters tend to use
two-tier distribution systems. In the first tier, large urban trucks ships freight from warehouses

∗guillaume.marques@inria.fr
†ruslan.sadykov@inria.fr
‡jean-christophe.deschamps@ims-bordeaux.fr
§remy.dupas@ims-bordeaux.fr

1



or production sites to intermediate distribution facilities called satellites. In satellites, freight is
processed and consolidated. Freight is then loaded in small city freighters which deliver customers
located in city centers.

At the strategic level, two-tier distribution systems are considered in location-routing prob-
lems (Crainic et al., 2011). These are integrated problems in which we take decisions on both
locating facilities and routing from open facilities. At tactical and operational levels, locations
of depots and satellites are known. We plan only routing of vehicles. However, we should take
routing decisions on both levels at the same time to devise cost-effective solutions in two-tier
distribution systems. Such integration gave rise to two-echelon routing problems (Crainic et al.,
2009). The first such problem proposed in the literature by Gonzalez-Feliu et al. (2007) is the
two-echelon capacitated vehicle routing problem (2E-CVRP).

In the 2E-CVRP, we must determine the number of goods to be shipped from the depot
to the satellites and from satellites to customers, and the optimal routes connecting entities
in each level such that vehicle capacities are not exceeded. We aim at minimizing the sum of
handling costs at satellites and transportation costs depending on the total distance traveled by
all vehicles.

Recently, several exact algorithms for the 2E-CVRP have been proposed in the literature.
The most efficient one by Baldacci et al. (2013) is based on an enumeration of collections of
first-level routes. Thus, it can efficiently tackle only instances with a small number of satellites
(up to six). Moreover, this algorithm solves to optimality instances with up to 100 customers
whereas the best exact algorithms for other vehicle routing problems can handle up to 300
customers (Pecin et al., 2017a). Santos et al. (2015) proposed the only branch-cut-and-price
algorithm in the literature for the 2E-CVRP. This algorithm can be used to solve instances with
a larger number of satellites, but experimentations show that it is less efficient than the one of
Baldacci et al. (2013).

In this paper, we propose an improved branch-cut-and-price (BCP) algorithm for the 2E-
CVRP which is built on recent advances for the classical capacitated vehicle routing problem
(CVRP). To further improve the efficiency of our BCP algorithm, we propose the following
problem-specific enhancements:

• A new route based formulation for the problem which does not involve variables which
explicitly define product flow in satellites. New level balancing constraints guarantee flow
conservation in satellites.

• A new family of inequalities to improve the quality of the linear programming (LP) relax-
ation of the formulation. These inequalities are inspired by the depot capacity constraints
introduced for the capacitated location-routing problem by Belenguer et al. (2011).

• A new branching strategy which uses variables defining the number of urban trucks visiting
a subset of satellites.

To improve the current primal bound, we employed a column generation based heuristic in
the course of the algorithm. Our BCP algorithm with the embedded heuristic outperformed
largely the state-of-the-art exact approach by Baldacci et al. (2013) for the problem, since it
solved to optimality all instances available in the literature with up to 200 customers and 10
satellites.

Finally, we generated a new set of large instances for the problem to inspire further re-
search on the 2E-CVRP. This set involves instances with up to 300 customers and 15 satellites.
These instances are derived from ones recently proposed by Schneider and Löffler (2019) for the
capacitated location-routing problem.

The remaining of the paper is organized as follows. Section 2 reviews the literature. Section 3
describes the standard and the new formulations of the problem. Section 4 introduces the new
family of satellite supply inequalities. Section 5 describes the proposed branch-cut-and-price
algorithm. Section 6 reveals and discusses the computational results. Section 7 concludes and
presents further research perspectives.
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2 Literature review

Gonzalez-Feliu et al. (2007) first considered the 2E-CVRP. They proposed a freight-flow formu-
lation enhanced by two families of valid inequalities. Their branch-and-cut algorithm solved to
optimality instances with up to 22 customers and 2 satellites. Perboli et al. (2011) improved
these results. The authors strengthened the formulation with one family of valid inequalities.
They solved to optimality some instances with 33 customers. Two matheuristics were also sug-
gested. They found feasible solutions to instances up to 50 customers with 10% of average gap
from the lower bound.

Later, Jepsen et al. (2013) pointed out that the formulation in (Perboli et al., 2011) is not
correct for instances with more than two satellites. They proposed an alternative formulation
that combines the relaxation of the split-delivery CVRP by Belenguer et al. (2000) for the first
level and the model for the capacitated location routing problem by Contardo et al. (2013) for
the second level. Although this formulation is an outer approximation, its LP relaxation is
stronger than one of Perboli et al. (2011). Since this formulation has an exponential number
of constraints, the authors used a branch-and-cut algorithm. A specialized branching scheme
was employed to cut non-feasible integer solutions. This approach solved to optimality instances
with up to 50 customers and 5 satellites. It remains the best branch-and-cut algorithm for the
problem in the literature.

Contardo et al. (2012) proposed another branch-and-cut algorithm for the two-echelon ca-
pacitated location-routing problem. This problem is a generalization of the 2E-CVRP in which
there are several depots and opening costs for satellites. Their branch-and-cut algorithm solved
to optimality instances with up to 50 customers and 10 potential satellites.

Santos et al. (2015) proposed the first branch-cut-and-price algorithm for the 2E-CVRP.
They considered a route based formulation strengthened by some valid inequalities from the
CVRP literature. First-level routes are enumerated whereas second-level routes are priced by the
shortest path problem with resource constraints. The pricing problem generates non-elementarity
routes. They used branching strategies in the following priority order: (1) branching on the
number of vehicles traveling on a first-level route, (2) branching on the number of second-level
vehicles starting from a satellite, and (3) branching on the use of an arc by a second-level route.
The computational results of Santos et al. (2015) were similar to those by Jepsen et al. (2013).

The exact approach by Baldacci et al. (2013) also uses a route based formulation. The
method is based on an intelligent enumeration of collections (i.e. subsets) of first-level routes.
Authors devised lower and upper bounding procedures to limit the number of collections which
may lead to an optimal solution. By fixing a subset of first-level routes, the problem is reduced
to the multi-depot capacitated vehicle routing problem with limited depot capacities. The latter
was solved by an adaptation of the algorithm by Baldacci and Mingozzi (2009). Computational
experiments showed that the overall approach outperforms the one by Jepsen et al. (2013).
Baldacci et al. (2013) could solve instances with up to 100 customers and 5 satellites. Their
approach remains the best exact algorithm in the literature until now. However, the fact that
collections of first-level routes are enumerated does not allow one to employ this approach for
instances with 10 satellites or more.

There are several heuristic approaches for the 2E-CVRP in the literature. Hemmelmayr et al.
(2012) proposed an adaptive large neighborhood search based heuristic that works for both 2E-
CVRP and the location-routing problem. It largely improved the best feasible solutions found
by Perboli et al. (2011). Moreover, the authors proposed a new test set of instances with up to
200 customers and 10 satellites.

Zeng et al. (2014) suggested a hybrid heuristic which is composed of a greedy randomized
adaptive search procedure (GRASP) with a route-first cluster-second procedure embedded in
a variable neighborhood descent (VND). Breunig et al. (2016) developed an improved large
neighborhood-based hybrid meta-heuristic. It combines enumerative local search with destroy-
and-repair principles, as well as some tailored operators to optimize the selections of satellites.
Both these approaches improved the best-known solutions for many instances.
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Recently, two matheuristics were proposed in the literature. Wang et al. (2017) employed
a mixed-integer mathematical model for the 2E-CVRP, in which arc variables are used for the
first level, and path variables for the second level. They used variable neighborhood search to
construct the set of second-level routes, and they then solved the mathematical model to improve
the obtained solution. The authors improved 13 best-known solutions. Finally, Amarouche et al.
(2018) used a similar approach in which a pool of routes is collected by a local search heuristic
combined with a destroy-and-repair method. Then, the route based formulation is solved with
the hope to improve the best solution found so far. This approach improves 7 best-known
solutions for the largest instances of the 2E-CVRP.

Further information can be found in the survey on two-echelon routing problems by Cuda
et al. (2015).

3 Formulation

Let us now formally define the problem. At the first level, a set K of homogeneous urban trucks
ships freight from a depot denoted as 0 to a set S of intermediate depots called satellites. At
the second level, a set L of homogeneous city freighters picks freight at satellites and deliver it
to a set C of customers. Each vehicle must return to the place from where it started its tour
(depot for urban trucks and satellites for city freighters). Urban trucks have a capacity of Q1

items, and city freighters have a capacity of Q2 items. A satellite s ∈ S can hold up to Ls city
freighters and charges fHs for each processed item of freight. Each customer c ∈ C asks for dc
items of freight and must be visited exactly once. At each satellite, the total amount of freight
delivered by urban trucks must be equal to the amount of freight picked by city freighters that
start at this satellite. The objective of the problem is to minimize the sum of handling costs fH

and transportation costs fT .

We use the route based formulation to model the problem. The first level is similar to the
split-delivery CVRP since several urban trucks can supply a satellite. However, the amount of
freight delivered to each satellite is not known. A complete undirected graph G1 = (V1, E1),
V1 = {0} ∪ S, represents the first level of the distribution system. Let P be the set of feasible
first-level routes and let z̃pe ∈ N denote the number of times path p ∈ P uses edge e ∈ E1.

The second level corresponds to the multi-depot CVRP where depots are satellites. Each
customer is visited by one city freighter, and each satellite cannot supply more freight than
the amount delivered to it by urban trucks. This level is represented by an undirected graph
G2 = (V2, E2) where V2 = C ∪ S and E2 = {(i, j) | i ∈ S ∪ C, j ∈ C, i 6= j}. For any satellite
s ∈ S, let Rs be the set of feasible second-level routes starting and finishing in s. We denote
R = ∪s∈SRs. A second-level route r ∈ R is described by vector x̃r where element x̃re ∈ N denotes
the number of times route r uses edge e ∈ E2. We also introduce vector ỹr where element ỹrc ∈ N
denotes the number of times route r visits customer c ∈ C. Given graph Gi, i = 1, 2, we denote
as δi(v) the set of edges in Ei incident to vertex v ∈ Vi.

The cost of traversing edge e ∈ E1 ∪ E2 is denoted by fTe . From now on, we make two
assumptions. First, transportation costs fT satisfy the triangle inequality. Otherwise, we trans-
form the instance to an equivalent one: if the minimum cost path between two vertices v, v′

passes by other vertices, we set the cost fT(v,v′) to the cost of the minimum path. The second
assumption is that transportation costs are symmetric. If this is not the case, graphs G1 and
G2 become directed ones, edges become arcs, and all values z̃e=(v,v′) and x̃e=(v,v′) depending on
edges are replaced by sums of values z̃a=(v,v′) + z̃a=(v′,v) and x̃a=(v,v′) + x̃a=(v′,v) depending on
arcs. All instances in the 2E-CVRP literature satisfy these two assumptions.

3.1 Standard formulation

We now describe the standard route based formulation for the 2E-CVRP. It was proposed by Bal-
dacci et al. (2013) and used in Santos et al. (2015); Amarouche et al. (2018). Integer variable

4



λp is equal to the number of urban trucks traveling on first-level route p ∈ P . We denote as Sp
the set of satellites visited by route p ∈ P : Sp = {s ∈ S :

∑
e∈δ1(s) z̃

p
e = 2}. We denote as PS

the set of first-level routes visiting at least one satellite in S ⊆ S: PS = {p ∈ P : Sp ∩ S 6= ∅}.
Continuous variable wps is equal to the amount of freight that first-level route p ∈ P{s} delivers
to satellite s ∈ Sp. Binary variable µr is equal to one if and only if a city freighter travels on
second-level route r ∈ R. To simplify the presentation, we introduce the continuous auxiliary
variable bs that is equal to the total amount of freight delivered to satellite s ∈ S.

(F1) min
∑
p∈P

∑
e∈E1

fTe z̃
p
eλp +

∑
r∈R

∑
e∈E2

fTe x̃
r
eµr +

∑
s∈S

fHs bs (1)

s.t.
∑
r∈R

∑
c∈C

ỹrcµr = 1 c ∈ C (2)∑
r∈Rs

µr ≤ Ls s ∈ S (3)

∑
r∈R

µr ≤ |L| (4)∑
p∈P

λp ≤ |K| (5)

∑
s∈Sp

wps ≤ Q1λp p ∈ P (6)

bs =
∑

p∈P{s}

wps s ∈ S (7)

bs =
∑
r∈Rs

∑
c∈C

dcỹ
r
cµr s ∈ S (8)

λp ∈ N p ∈ P (9)

µr ∈ {0, 1} r ∈ R (10)

wps ≥ 0 p ∈ P, s ∈ Sp (11)

Objective function (1) minimizes the sum of transportation and handling costs. Constraints
(2) ensures each customer is visited by exactly one second-level route. Constraints (3), (4), and
(5) are upper bounds on the number of used vehicles. Constraints (6) make sure that the capacity
of urban trucks is not exceeded. Constraints (7) and (8) ensure the flow balance between the
two distribution levels. Constraints (9), (10) and (11) define domains of variables.

3.2 Modified formulation

In F1, we use variable w together with constraints (6) and (7) to ensure the flow balance between
two distribution levels. To obtain the modified formulation, we project F1 to the space of
variables λ and µ only. Investigation of this kind of projection for the CVRP has been performed
by Letchford and Salazar-González (2006). To simplify the presentation, we introduce auxiliary
integer variables uS that define the number of urban trucks visiting a non-empty subset S ⊆ S
of satellites. The modified formulation is then

(F2) min
∑
p∈P

∑
e∈E1

fTe z̃
p
eλp +

∑
r∈R

∑
e∈E2

fTe x̃
r
eµr +

∑
s∈S

fHs bs

s.t.
∑
r∈R

∑
c∈C

ỹrcµr = 1 c ∈ C∑
r∈Rs

µr ≤ Ls s ∈ S
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∑
r∈R

µr ≤ |L|∑
p∈P

λp ≤ |K|

bs =
∑
r∈Rs

∑
c∈C

dcỹ
r
cµr s ∈ S

uS =
∑
p∈PS

λp S ⊆ S, S 6= ∅ (12)

∑
s∈S

bs ≤ Q1uS S ⊆ S, S 6= ∅ (13)

λp ∈ N p ∈ P
µr ∈ {0, 1} r ∈ R

Constraints (12) define variables u. Level balancing constraints (13) replace variables w and
constraints (6), (7), (11). We now prove that F2 is a projection of F1. The proof is illustrated
in Figure 1.

Proposition 1. A solution (λ̄, µ̄) is feasible for the LP relaxation (LF2) of formulation F2 if
and only if there exists a feasible solution (λ̄, µ̄, w̄) for the LP relaxation (LF1) of formulation
F1.

Proof. We first prove necessity, i.e “only if” part. Given a solution (λ̄, µ̄) for F2 and its computed
values (b̄, ū), we construct a directed graph Ḡ = (V̄ , Ā). Set V̄ of nodes contains source s̃, sink
t̃, set P̄ = {p ∈ P : λ̄p > 0} of nodes representing first-level routes in the solution, and set
S̄ = {s ∈ S : b̄s > 0} of nodes representing satellites used in the solution. Set Ā of arcs is the
union of the following three sets: Ā1 connects the source with P̄ , Ā2 connects P̄ with S̄, and Ā3

connects S̄ with the sink. An arc (s̃, p) in Ā1 has capacity Q1λ̄p. An arc (p, s) belongs to Ā2 if
and only if s ∈ Sp and has infinite capacity. An arc (s, t̃) in Ā3 has capacity b̄s.

Let us now prove by contradiction that the maximum value of the s̃- t̃ flow in graph Ḡ is
equal to

∑
c∈C dc = d(C). Suppose that the maximum flow is strictly less than d(C). Let V̄ ′ be

the subset of V̄ obtained from a minimum s̃-t̃ cut in Ḡ, s̃ ∈ V̄ ′. Let S̄′ = S̄ \ V̄ ′ and P̄ ′ = P̄ \ V̄ ′.
We denote as δ(V̄ ′) = {(v, v′) ∈ Ā | v ∈ V̄ ′, v′ 6∈ V̄ ′} the set of arcs forming the minimum cut.
From the supposition and the max-flow-min-cut theorem it follows that the total capacity of
δ(V̄ ′) is less than d(C). Thus δ(V̄ ′) contains at least one arc in Ā1 and does not contain all arcs
in Ā3. Therefore, the total capacity of arcs in Ā1 ∩ δ(V̄ ′) is strictly less than the total capacity
of arcs in Ā3 \ δ(V̄ ′): ∑

p∈P̄ ′

Q1λ̄p <
∑
s∈S̄′

b̄s. (14)

Set δ(V̄ ′) does not contain any arc in Ā2 as they have infinite capacity. Thus V̄ ′ ∩ P̄ ∩ PS̄′

is empty, and λ̄p = 0 for all p ∈ PS̄′ \ P̄ ′. From the latter and (14), it follows that
∑
s∈S̄′ b̄s >

Q1

∑
p∈PS̄′ λ̄p which violates constraints (12) and (13) for set S̄′ of satellites. Thus (λ̄, µ̄) is not

a feasible solution for LF2 which leads to a contradiction.

We have just proved that the maximum flow in graph Ḡ has value d(C). We now set w̄ps
equal to the flow from p ∈ P̄ to s ∈ S̄ for every (p, s) ∈ Ā2, and to 0 otherwise. By construction
of graph Ḡ, constraints (6) and (7) are satisfied by (λ̄, b̄, w̄), and (λ̄, µ̄, w̄) is a feasible solution
for LF1.

To show the sufficiency (“if” part), we prove that constraints (13) are valid for LF1. If
(λ̄, µ̄, w̄) is feasible for LF1, then for an arbitrary subset of satellites S ⊆ S, S 6= ∅, we have

∑
s∈S

b̄s
(7)
=
∑
s∈S

∑
p∈P{s}

w̄ps =
∑
p∈PS

∑
s∈Sp

w̄ps
(6)

≤
∑
p∈PS

Q1λ̄p
(12)

≤ Q1uS .
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Thus, (λ̄, µ̄) is feasible for LF2.

Q1λ̄p
b̄s1

b̄s2

b̄s3

b̄s4
s̃ t̃

P̄ S̄Ā1 Ā2 Ā3

S̄′P̄ ′

Figure 1: Illustration for graph Ḡ and its minimum cut in Proposition 1.

The main advantage of formulation (F2) is a significantly smaller number of variables. This
comes at the cost of an additional exponential set of constraints (12) and (13). However, these
constraints can be separated in polynomial time as showed in the proof of Proposition 1. In the
separation procedure, we search for a minimum cut in graph Ḡ constructed from a fractional
solution (λ̄, µ̄) of (F2). Once set S̄′ of satellites is found, it is further separated into subsets such
that there is no path in P̄ visiting two satellites in different subsets. Then, we add constraints (12)
and (13) for every such subset of satellites.

An additional potential advantage of formulation (F2) is the possibility to generate variables
λp dynamically, similarly to variables µ. Dynamic generation of λ is necessary when the number
of satellites is large. We do not do it in our work, as we consider instances with at most 15
satellites. Instead, we enumerate all the first-level routes. In this procedure, for each subset
S ⊆ S of satellites, we solve the traveling salesman problem in which we find the shortest route
starting and finishing at the depot 0 and visiting all satellites in S exactly once. Then, we assign
each first-level route to a λ variable, and we add all first-level route variables λ to the formulation
before starting the algorithm. Thus, the formulation contains 2|S| − 1 first-level route variables.
All exact algorithms in the literature for the 2E-VRP use enumeration of first-level routes.

3.3 Valid inequalities

In our BCP algorithm, we use four families of valid inequalities. In this section, we present the
first three families. To simplify the presentation, we introduce auxiliary variables x and y:

xse =
∑
r∈Rs

x̃reµr, s ∈ S, e ∈ E2, ysc =
∑
r∈Rs

ỹrcµr, s ∈ S, c ∈ C.

Integer variable xse is equal to the number of times edge e ∈ E2 is used by city freighters started
from satellite s ∈ S. Binary variable ysc is equal to one if and only if customer c ∈ C is visited
by a city freighter started from satellite s ∈ S.

3.3.1 Rounded capacity cuts

Rounded capacity cuts were introduced by Laporte and Nobert (1983) for the CVRP. Term
dd(C)/Q2e is a lower bound on the number of city freighters which have to visit at least one
customer in C. Therefore, the next rounded capacity cuts (RCC) are valid:∑

s∈S

∑
e∈δ2(C)

xse ≥ 2

⌈
d(C)

Q2

⌉
, C ⊆ C. (15)

Constraints (15) are separated using the CVRPSEP package (Lysgaard, 2018) which implements
the heuristic by Lysgaard et al. (2004).
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3.3.2 Chvátal-Gomory rank-1 cuts

Here we consider Chvátal-Gomory rounding of set-partitioning constraints (2) relaxed to ≤
inequalities. Consider a vector α of multipliers such that αc ≥ 0, c ∈ C. Then, the following
rank-1 cut (R1C) is valid:

∑
s∈S

∑
r∈Rs

⌊∑
c∈C

αcỹ
r
c

⌋
µr ≤

⌊∑
c∈C

αc

⌋
. (16)

An inequality (16) obtained using a vector of multipliers with l positive components is called
an l-row rank-1 cut. If all positive components of α are the same, the corresponding inequality
is called a subset-row cut. Jepsen et al. (2008) first introduced 3-row subset-row cuts. Pecin
et al. (2017a) used l-row subset-row cuts with l ≤ 5. General l-row rank-1 cuts with l ≤ 5 were
considered by Pecin et al. (2017b). They determined all dominant vectors of multipliers for such
cuts: if an l-row rank-1 cut with l ≤ 5 is violated, at least one rank-1 cut obtained using a
dominant vector of multipliers is violated.

Similarly to Sadykov et al. (2017), separation of l-row rank-1 cuts with l ≤ 5 is performed
using a local search heuristic separately for every dominant vector of multipliers. We employ
the limited memory technique by Pecin et al. (2017a) to reduce the impact of rank-1 cuts on the
solution time of the pricing problem.

3.3.3 Visited satellite inequalities

A customer can be visited by a route r ∈ Rs only if satellite s is visited by at least one urban
truck. Therefore, next visited satellite inequalities (VCI) are valid:

ysc ≤ u{s}, c ∈ C, s ∈ S. (17)

Although inequalities (17) are rather straightforward, we did not find any work in the literature
which uses them. Separation of constraints (17) is performed by enumeration of all pairs (c, s) ∈
C × S.

3.3.4 Lower bounds on the number of vehicles

We define lower bounds on the number of urban trucks

∑
p∈P

λp ≥
⌈
d(C)
Q1

⌉
(18)

and the number of city freighters ∑
r∈R

µr ≥
⌈
d(C)
Q2

⌉
(19)

Moreover, a subset S of satellites must be visited by enough urban trucks to supply the
demand that cannot be delivered from satellites in S \ S. Therefore, the next lower bound on
uS is valid :

uS ≥

⌈
d(C)−

∑
s∈S\S LsQ2

Q1

⌉
, S ⊂ S (20)

Inequalities (20) are useful when the number of city freighters that can start from satellites
is limited (Ls < |L|, s ∈ S).
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4 New family of valid inequalities

We propose a new family of satellite supply inequalities (SSI) inspired by the depot capacity
constraints introduced for the capacitated location-routing problem by Belenguer et al. (2011).
To simplify the presentation below, we denote C{ = C \C and S{ = S \S. Let us introduce SSI
using an example.

Example 1. Consider urban trucks with capacity Q1 = 10 and city freighters with capacity
Q2 = 6. Figure 2 shows a fractional solution (ū, µ̄) for LF2. Here S = {s1, s2} and set C
contains seven customers. Consider subset C of customers with d(C) = 11. Consider also subset
S = {s2} of satellites with ūS = 1. Clearly, S can supply only demand of at most Q1ūS = 10
units and thus cannot supply set C of customers alone. In this fractional solution, C is supplied
by 1.8 city freighters coming from S and 0.2 city freighters coming from S{. The violated SSI
states that either two or more urban trucks should visit S = {s2} or at least one city freighter
coming from satellites in S{ = {s1} should visit some customers in C:∑

s∈S{

∑
e∈δ(C)

xse ≥ 2 · (2− uS) .

C

S

3

2

1

2

3

1 2

depot

i satellite si

d customer with demand d

0.2 vehicles

0.8 vehicles

1 vehicle

Capacities:

Q1 = 10 items

Q2 = 6 items

Figure 2: Example of a satellite supply inequality, violated for given S and C.

4.1 Satellite supply inequalities

We now define gC(u) as the function which gives a lower bound on the number of city freighters
required to cover the demand of a subset C of customers that buc urban trucks cannot supply:

gC(u) = max

{
0,

⌈
d(C)−Q1buc

Q2

⌉}
.

Proposition 2. Given C ⊂ C and S ⊂ S, the following inequality is valid for the 2E-CVRP∑
s∈S{

∑
e∈δ2(C)

xse ≥ 2 · gC(uS). (21)

Proof. Consider a feasible solution (x̄, b̄, ū) of formulation (F2). The following rounded capacity
inequality is satisfied by x̄ and b̄:

∑
s∈S{

∑
e∈δ2(C)

x̄se ≥ 2

⌈
d(C)−

∑
s∈S b̄s

Q2

⌉
(22)
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From constraint (13) and the integrality of variable ūS , it follows∑
s∈S

b̄s ≤ Q1ūS = Q1būSc. (23)

By combining (22) and (23) we obtain that (21) is satisfied by x̄ and ū.

Function gC(u) is not linear and cannot be used directly. Instead, we use the piecewise linear
function, denoted as hC(u), which forms the convex hull of the epigraph of gC(u). We denote as
ũC the ordered vector of (integer) values u of extreme points of hC :

ũC =
(
ũC0 = 0, ũC1 , . . . , ũ

C
k(C) = dd(C)/Q1e

)
.

Figure 3 depicts an example of functions gC and hC for Q1 = 10, Q2 = 4, and d(C) = 32. In
the left plot, the epigraph of gC is the grey area. In the right plot, function hC is the bold
line. Extreme points of hC are H0, H2, H3, H4, but not H1. Therefore, ũC = (0, 2, 3, 4), and
k(C) = 3.

Figure 3: Example of functions gC (on the left) and hC (on the right).

Proposition 3. Given subsets C ⊂ C, S ⊂ S, and an integer 0 < k ≤ k(C), the following
inequality is valid for the 2E-CVRP

∑
s∈S{

∑
e∈δ2(C)

xse ≥ 2 ·

(
hC(ũCk−1)−

hC(ũCk−1)− hC(ũCk )

ũCk − ũCk−1

(uS − ũCk−1)

)
(24)

Proof. The right-hand side of each constraint (24) corresponds to a linear piece of function hC .
Thus the proof follows from Proposition 2 and from the fact that hC(u) ≤ gC(u) for all u ≥ 0.

4.2 Separation of SSI

Let (x̄, ū) be the values of variables x and u in a solution for LF2. The following problem finds
the most violated inequality.

max
S⊂S,C⊂C

2 · hC(ūS)−
∑
s∈S{

∑
e∈δ2(C)

x̄se (25)
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The first and second terms of the objective function are non-linear functions of C and S.
Thus enumeration of C and S is required to compute (25) exactly using an integer program.
Since the number of subsets is exponential, we propose a heuristic to separate SSI. Although the
heuristic does not necessarily find the most violated inequality, it offers a good trade-off between
the computational effort and the violation of found inequalities. Our heuristic works with a fixed
set of satellites. The following proposition gives a dominance rule which will allow us to discard
non-interesting subsets of satellites.

Proposition 4. Consider a solution (x̄, ū) for LF2 and a fixed set C of customers. If SSI (24)
is violated for C and a set S1 of satellites, then it is violated for C and any set S2 ⊇ S1 such
that ūS2 = ūS1 .

Proof. The right-hand side of (24) is fixed for a fixed set C of customers and a fixed value uS .
Thus right-hand side of the SSIs for pairs (C, S1) and (C, S2) is the same. For fixed values of
variables x, the left-hand side of the SSI for pair (C, S2) is not larger than one of the SSI for
pair (C, S1), as S{

2 ⊆ S{
1 . Thus the violation of the SSI for pair (C, S2) is not smaller than one

of the SSI for pair (C, S1).

To enumerate all the non-dominated sets of satellites, we first build the power set Ū of set S̄
of satellites used in the solution. Since we look for the largest subsets of satellites, we append
all satellites in S \ S̄ to each set in Ū . Finally, we exclude from Ū all sets S1 such that there
exists S2 ∈ Ū with S2 ⊇ S1 and ūS2 = ūS1 . This is done by the exhaustive enumeration as the
cardinality of set Ū is not large for the instances of the literature.

V̄S

S

ŪS

W̄S

3

2

1

2

3

1 2

depot

i satellite si

0.2 vehicles

0.8 vehicles

1 vehicle

Figure 4: Separation graph Ḡ2(S) for the fractional solution in Example 1

Given a set S ∈ Ū of satellites, we now look for subsets of customers that violate SSI. We
split customers in three subsets. Let ŪS ⊂ C be the set of customers visited only by routes
started from S{, let V̄S ⊂ C be the set of customers visited only by routes started from S, and
let W̄S = C \ (ŪS ∪ V̄S). Figure 4 illustrates the partition of customers of Example 1. We then
build graph Ḡ2(S) in the following way.

• Graph Ḡ2(S) is the subgraph of G2 induced by vertices in ŪS ∪ W̄S ∪ S{.

• Weight of each edge e in Ḡ2(S) is equal to
∑
s∈S{ x̄se.

• Set ŪS ∪S{ of vertices in Ḡ2(S) is merged into one vertex s̄ by successively contracting all
edges having two incident vertices in ŪS ∪ S{. Weight of each edge (s̄, c), c ∈ W̄S , in final
graph Ḡ2(S) is then equal to

∑
s∈S{

∑
i∈ŪS∪S{ x̄s(i,c).

Afterwards, we compute the minimum cut in Ḡ2(S). Let C̄S be the subset of vertices obtained
from the minimum cut, s̄ 6∈ C̄S . First, we verify whether SSI based on set S of satellites and set
C = C̄S ∪ V̄S of customers is violated. Then, we iteratively enlarge set C in a greedy manner
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and check the violation of SSI based on S and C at each iteration. Customer c′ to include in
current set C (and exclude from W̄S) in each iteration is

c′ = arg max
c∈W̄S

{ ∑
s∈S{ dcȳ

s
c∑

s∈S{

∑
i∈Ū(S,C,c) x̄

s
(c,i)

}
, (26)

where Ū(S,C, c) = S{ ∪ ŪS ∪ W̄S \ {c}. The intuition behind (26) is that we try to increase the
first term of (25) while increasing not too much the second term. The separation procedure is
formally given in Algorithm 1.

Algorithm 1 Separation procedure for the satellites supply inequalities

We are given (λ̄, µ̄) and computed entities P̄ , ū, x̄, ȳ
I is the set of found violated SSI
Find set Ū of non-dominated subsets of satellites
for all S ∈ Ū do

Find ŪS , V̄S , W̄S and build graph Ḡ2(S)
Compute the minimum cut in Ḡ2(S) and corresponding set C̄S
C ← C̄S ∪ V̄S
repeat

If SSI based on S and C is violated by (ū, x̄), add the inequality to I
Find customer c′ in W̄S using (26)
C ← C ∪ {c′}
W̄S ← W̄S \ {c′}

until W̄S = ∅
end for
Return a specified number of the most violated SSI in I

We now analyse the complexity of Algorithm 1. The cardinality of set Ū is at most 2|S̄|, as
well as the number of iterations in the separation algorithm. Construction of graph Ḡ2(S) takes
at most |S̄| · |C|2 operations. Computing the minimum cut has complexity O(|C|3). The number
of iterations of the internal loop is at most |C|, and the complexity of each iteration is |S̄| · |C|2.
Thus, the overall complexity of the separation algorithm is O

(
2|S̄| · |S̄| · |C|3

)
.

5 Branch-Cut-and-Price algorithm

Formulation F2 together with valid inequalities RCC, R1C, VCI, and SSI is solved by an adap-
tation of the branch-cut-and-price algorithm proposed by Sadykov et al. (2017). In this section,
we describe the main ingredients of this algorithm. The reader is invited to consult the original
paper for all details.

As the number of variables depends exponentially on the number of satellites and customers,
LF2 (called the master problem) is solved by the column and cut generation approach.

5.1 Pricing problem

Second-level route variables µ are dynamically generated by solving the pricing problem. It is
decomposed into |S| subproblems (SPs), one per satellite s ∈ S. The set of feasible solutions for
SPs is the set Rs of paths in graph G2. A path r belongs to Rs if and only if :

• it starts and finishes in vertex s:
∑
e∈δ2(s) x̃

r
e = 2;

• it does not pass through other satellites:
∑
e∈δ2(S\{s}) x̃

r
e = 0;

• it passes through each customer at most once: ỹrc ≤ 1, ∀c ∈ C.

12



• its total delivered demand does not exceed the capacity of a city freighter:
∑
c∈C ỹ

r
c ≤ Q2.

Let π, ψ, φ, ρ, τ , θ, ξ, and ζ be optimum dual values for the master problem restricted
to a subset of variables µ. These dual values correspond to constraints (2), (3), (4), (8), (15),
(16), (17), and (24). Let also K be the collection of active rank-1 cuts corresponding to vectors
(αk)k∈K , and Ms be the collection of active SSI based on sets (Sm, Cm)m∈Ms

, s ∈ S{
m. The

reduced cost of a path r ∈ Rs is then equal to

∑
e∈E2

fTe − ∑
C∈C:
e∈δ(C)

τC −
∑

m∈Ms:

e∈δ2(Cm)

ζm

 x̃re

−
∑
c∈C

∑
e∈δ2(c)

1

2
(πc + dcρs − ξsc) x̃re +

∑
k∈K

θk

⌊∑
c∈C

αkc ỹ
r
c

⌋
+ ψs + φ.

(27)

When rank-1 cuts (16) are absent, a path has a reduced cost that is equal to the sum of
reduced costs of its edges. In this case, pricing subproblem SPs is the resource constrained
elementary shortest path problem. This problem can be time-consuming to solve. Therefore, we
relax the elementarity constraint and work with ng-paths (Baldacci et al., 2011). This relaxation
has an impact only on the optimum value of LF2. The validity of F2 is preserved. For each
customer, its ng-neighborhood is static and includes 8 closest customers including itself.

Presence of active rank-1 cuts makes the pricing problem more complicated because each such
cut adds a resource to the problem. To limit the increase in difficulty of the pricing problem, we
use the limited memory technique proposed by Pecin et al. (2017a). For each cut (16) a memory
is associated. It consists of a subset of edges in E2. This memory makes the resource associated
to the cut local: we need to track its consumption only in a small part of the graph.

Each pricing subproblem SPs is solved by the bucket graph based bi-directional labeling
algorithm proposed by Sadykov et al. (2017). This algorithm supports both ng-path relaxation
and presence of dual values associated with limited-memory rank-1 cuts. If the transportation
costs fT are symmetric, the algorithm exploits the forward-backward path symmetry.

5.2 Column and cut generation

We use three-stage column generation to speed up convergence. In the first two stages, the pricing
problem is solved by the same heuristic labelling algorithms as in (Sadykov et al., 2017). In the
last stage, the pricing problem is solved by the exact labelling algorithm. For each subproblem,
heuristic pricing generates at most 30 columns, and exact pricing generates at most 150 columns.
We also apply automatic dual pricing smoothing stabilization suggested by Pessoa et al. (2018)
to further speed-up the convergence of column generation.

We use the bucket arc elimination procedure (Sadykov et al., 2017). It reduces the size of
graph G2 by removing arcs which are proved to be absent from any improving solution to the
problem. The procedure is first performed after the first column generation convergence, and
then each time the primal-dual gap decreases by more than 10%. Note that graph reduction is
not the same in different pricing subproblems.

After each call to the bucket arc elimination procedure, we use the elementary route enu-
meration technique by Baldacci et al. (2008). For each pricing subproblem, this procedure tries
to enumerate all elementary routes with reduced cost smaller than the current primal-dual gap.
If the enumeration succeeds, the pricing subproblem is solved by inspection in future column
generation iterations, similarly to Contardo and Martinelli (2014). If the total number of enu-
merated routes in all subproblems is less than 5000, all the routes are added to formulation F2
and the latter is solved by the MIP solver.

We define variables u only for subsets with 5 satellites or less in order to limit the size of
the formulation and reduce the number of candidates for branching. Moreover, for every subset
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S such that |S| ≥ 6, we replace variable uS by expression t1 −
∑
p 6∈PS

λp, where t1 is the total
number of urban trucks used. This replacement allows us to keep the coefficient matrix sparse.
In the beginning, all constraints (13) are added to formulation F2 for instances with at most
10 satellites. For instances with 15 satellites, only constraints (13) for sets S ⊂ S, |S| ≤ 5, are
added. Other constraints are dynamically separated as described in Section 3.2.

In each cut generation round, we add at most 100 rounded capacity cuts (15), 450 rank-1
cuts (16), 50 VCI (17), and 150 SSI (24) to the master problem. The cut generation is stopped
either by the tailing-off condition or when the time spent to solve at least one pricing subproblem
exceeds 1 second. The tailing-off condition is satisfied when after 3 cut generation rounds the
primal-dual gap decreases by less than 2% per round.

The parameterisation of column and cut generation is inherited from the BCP algorithm
in Sadykov et al. (2017).

5.3 Branching

We perform branching on: the number of first-level routes visiting a subset of satellites (variables
u), the use of first-level routes (variables λ), the use of an edge in E2 (variables x), the assignment
of a customer to a satellite (variable y), the number of first-level routes (

∑
p∈P λp), the number

of second-level routes (
∑
r∈R µr), and the number of second-level routes started from a satellite s

(
∑
r∈Rs

µr). We use a multi-phase strong branching procedure, similar to Sadykov et al. (2017),
to choose the most promising branching candidate.

The branching procedure first chooses at most 50 branching candidates. Up to half of the
candidates are chosen according to the branching history using pseudo-costs. In the first phase,
we solve the LP relaxation of the restricted master problem. Three candidates with the largest
product of lower bound improvements in the branches are chosen for the next phase. In the
second phase, column generation is performed, but the pricing problem is solved with only
heuristic labeling algorithms. The best candidate is chosen using the same product rule. In the
third phase, the exact column and cut generation is performed in both branches of the chosen
candidate using the same parameters as in the root node.

5.4 Primal heuristic

After each node in the branch-and-bound tree, a heuristic looks for improving feasible solutions
to the 2E-CVRP. We first tried the standard restricted master heuristic (Sadykov et al., 2018)
in which the MIP solver solves the current restricted master problem. However, we have not
been satisfied with the performance of this heuristic, especially for instances with large capacity
of city freighters. The reason is that sometimes only a small part of columns in the restricted
master are elementary, thus making the solution space of the restricted master very small or
even empty.

Instead, we use the heuristic based on an artificial primal bound and the elementary route
enumeration, similar to Pessoa et al. (2009). In an iterative procedure, we decrease the artificial
bound in order to divide the primal-dual gap by two in each iteration. Then, we perform
elementary route enumeration for each pricing subproblem. The iterative procedure stops when
the enumeration succeeds for all subproblems. Afterward, we pick 10000 elementary routes with
the smallest reduced cost and add them to the master problem. Finally, we let IBM CPLEX
MIP solver to solve the resulting problem with the time limit of |C|/2.5 seconds. We activate
the polishing heuristic (Rothberg, 2007) implemented in CPLEX.
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6 Computational Results

The implementation of proposed algorithm is done using VRPSolver by Pessoa et al. (2019),
which is available at https://vrpsolver.math.u-bordeaux.fr for free academic use. This
solver includes the following components:

• BaPCod C++ library (Vanderbeck et al., 2019) which implements the BCP framework;

• C++ code, developed by Sadykov et al. (2017), which implements the bucket graph based
labeling algorithm, bucket arc elimination procedure, elementary route enumeration, and
the separation algorithm for R1C;

• CVRPSEP C++ library (Lysgaard, 2018) which implements heuristic separation of RCC.

IBM CPLEX Optimizer version 12.8.0 is used as the LP solver in column generation and as the
solver for the enumerated MIPs.

To reproduce the results, it suffices to i) define models F1 and F2; ii) to implement separation
algorithms for the exponential set of constraints (12) and (13), and valid inequalities VCI and
SSI. For other components, VRPSolver and CPLEX can be used. Our implementation of models
and separation algorithms is done in Julia 0.6 language using JuMP (Dunning et al., 2017),
LightGraphs and VRPSolver packages.

Experiments were run on a 2 Dodeca-core Haswell Intel Xeon E5-2680 v3 servers at 2.5 GHz.
On each server, we solved 24 instances with up to 200 customers and up to 10 satellites that
share 128Go of RAM. Larger instances having either 300 customers or 15 satellites were solved
by batches of 4 instances sharing 128Go of RAM. Each instance is solved on a single thread.

6.1 Instances

Table 1 shows the sets of instances from the literature that we used. Constraints (3) limiting the
number of city freighters per satellite are required only for set 4B. Therefore, constraints (20) are
useful only for set 4B. Set 5 duplicates each instance: the first instance has the standard capacity
of city freighters, and the second one, with suffix “b”, has the double capacity. Only set 6B has
non-zero handling costs. We do not consider instances of set 3, proposed in (Gonzalez-Feliu
et al., 2007), as they are easily solved by our algorithm and by Baldacci et al. (2013).

Table 1: Sets of instances from the literature used for experiments
Set # |S| |C| Notes Authors
4A 54 2, 3, 5 50 Ls < |L| Crainic et al. (2010)
4B 54 2, 3, 5 50 Crainic et al. (2010)
5 18 5, 10 100, 200 low and high Q2 Hemmelmayr et al. (2012)
6A 27 4, 5, 6 50, 75, 100 Baldacci et al. (2013)
6B 27 4, 5, 6 50, 75, 100 fHs > 0 Baldacci et al. (2013)

We also generated 51 additional instances involving up to 300 customers and 15 satel-
lites. They are based on instances of families a, b, and c proposed by Schneider and Löffler
(2019) for the capacitated location-routing problem. In comparison with the original instances,
we added the position of the depot, capacity of urban trucks, the number of urban trucks,
and the number of city freighters. We put the depot at location (0, 0). We set Q1 = 9 ·
Q2, |K| = d1.75 · d(C)/Q1e, and |L| = d2.5 · d(C)/Q2e. New set of instances available at
www.math.u-bordeaux.fr/~rsadykov/tests/2E-VRP-set7.zip.
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6.2 Experimental analysis of BCP variants

In the first experiment, we compare different variants of our BCP algorithm for solving the 54
largest literature instances from sets 5, 6A, and 6B with 75, 100, and 200 customers. To eliminate
randomness related to improvement of primal bounds, all variants were executed without primal
heuristic and with the initial primal bound equal to the optimum solution value (plus small ε)
for each instance. We tested the following BCP variants.

F1+RCC+R1C — the base variant which does not separate new valid inequalities VCI and SSI
and does not branch on u. This variant can be considered as a straightforward adaptation
of the BCP algorithm in (Sadykov et al., 2017) for solving the 2E-CVRP (i.e. the direct
application of VRPSolver to the 2E-CVRP). This variant borrows all recent advances for
classical problems like CVRP.

F1+RCC+R1C+u — the base variant with branching on variables u.

F2+RCC+R1C+VCI+SSI+u — the best variant, which is based on formulation (F2), with
separation of VCI and SSI, and with branching on variables u.

F2+RCC+R1C+VCI+SSI — the best variant without branching on variables u.

F2+RCC+R1C+SSI+u — the best variant without separating VCI.

F2+RCC+R1C+VCI+u — the best variant without separating SSI.

F1+RCC+R1C+VCI+SSI+u — the best variant, but based on formulation (F1).

Table 2 gives the comparison of BCP variants. It contains average values for the root gap,
geometric mean values for the root solution time, the number of branch-and-bound nodes, the
geometric mean of the master problem solution time, the geometric mean of total solution time
in seconds, and the number of instances solved within the time limit set to 3 hours. For unsolved
instances, the solution time is set to the time limit.

Table 2: Comparison of variants of the BCP algorithm
Root Master Total

Variant Gap (%) Time (s) Nodes Time (s) Time (s) Solved
F1+RCC+R1C 4.29 83.6 76.0 713.7 2333.0 31/54
F1+RCC+R1C+u 4.28 99.5 24.5 338.9 1020.5 44/54
F1+RCC+R1C+VCI+SSI+u 0.68 177.8 5.9 96.2 421.4 49/54
F2+RCC+R1C+VCI+u 1.64 115.5 12.5 88.4 426.1 49/54
F2+RCC+R1C+SSI+u 0.71 238.6 6.6 85.8 501.0 50/54
F2+RCC+R1C+VCI+SSI 0.67 161.2 7.0 63.0 384.7 50/54
F2+RCC+R1C+VCI+SSI+u 0.68 159.0 6.3 59.0 361.7 51/54

We see that the base variant F1+RCC+R1C is the worst as it solves only 31 out of 54
instances. Adding branching on variables u improves significantly the base variant as variant
F1+RCC+R1C+u solves 13 more instances. The best variant F2+RCC+R1C+VCI+SSI+u
solves 7 more instances to optimality within the time limit. Table 2 shows that all our contri-
butions improve the efficiency of the BCP algorithm. The root gap decreases significantly when
new valid inequalities VCI and SSI are separated. Although the root solution time increases
when additional inequalities are separated, the overall time decreases due to the much smaller
size of the branch-and-bound tree. Thus, branching on variables u has a small effect on the
performance of variant F2+RCC+R1C+VCI+SSI+u. However, adding branching on variables
u is the simplest way to make the base variant F1+RCC+R1C much more efficient.

If one uses formulation F2 instead of F1, i) the cumulative time to solve the restricted master
LP reduces, as the number of variables decreases; ii) the root gap however does not change, as it
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is expected from Proposition 1 which shows equivalence of LF1 and LF2; iii) two more instances
are solved to optimality; iv) the average reduction of the solution time is relatively small, as the
cumulative time to solve the restricted master LP is minor in comparison with the total solution
time.

6.3 Comparison with the state-of-the-art algorithm

Let us now compare the variants F1+RCC+R1C and F2+RCC+R1C+VCI+SSI+u to the best
exact algorithm by Baldacci et al. (2013). For a fair comparison, we do not use initial primal
bounds in this experiment. Instead, we rely on the primal heuristic presented in section 5.4 to
find feasible solutions. Baldacci et al. (2013) did not set an overall time limit for their algorithm.
They set a limit on the number of collections of first-level routes considered, as well as a time
limit of 5000 seconds for solving each subproblem with fixed subset of first-level routes. In our
BCP algorithm, we set the time limit to 10 hours.

Table 3 shows the summary results of this experiment. For each set of literature instances,
we give the average gap between the root dual bound and the best primal bound found (Rg),
the geometric mean of the number of branch-and-bound nodes (Nds), the geometric mean of
the solution time in seconds (t), and the number of instances solved to optimality (Solved). For
a fair comparison, the solution time of (Baldacci et al., 2013) is divided by 1.6 because of the
difference in computer speeds. The algorithm in (Baldacci et al., 2013) was tested only on 6 out
of 18 instances of set 5. It has not been applied for instances with 10 satellites, as it is based on
an enumeration of subsets of first-level routes. Since our algorithms are free from this drawback,
they were tested on all instances of set 5.

Table 3: Comparison of two BCP variants with the state-of-the-art exact algorithm for the
2E-CVRP Baldacci et al. (2013)

F1+RCC+R1C F2+RCC+R1C+VCI+SSI+u Literature
Set Rg(%) Nds t (s) Solved Rg(%) Nds t (s) Solved t (s) Solved

4A 5.76 14.2 772 51/54 0.91 3.3 144 54/54 271 50/54
4B 4.45 12.7 550 52/54 0.98 3.6 203 54/54 232 52/54
5 5.83 222.9 20612 6/18 1.41 22.5 3215 15/18 8405 3/6
6A 7.04 99.7 2604 24/27 0.89 4.9 233 27/27 802 22/27
6B 3.15 57.8 1562 24/27 0.46 4.3 196 27/27 513 19/27

The base variant F1+RCC+R1C solves to optimality more instances than the best algorithm
in the literature. However, the running time of the latter is on average smaller. The variant
F2+RCC+R1C+VCI+SSI+u largely outperforms both other algorithms for all sets of instances.
Indeed, our best BCP solves to optimality 31 open instances within 10 hours. Detailed results
for this variant are given in A. The remaining 3 open instances were solved to optimality by
providing the best-known solution of the literature as initial primal bound and using a special
parameterisation. Detailed results for these instances are given in B.

Table 4 shows that our BCP algorithm could improve 10 best-known solutions (BKS) for
literature instances. Their optimum solution values are given in column Opt. The improvement
(Imp) is generally small. Thus, the existing heuristics for the 2E-CVRP have very good quality
(at least when applied to literature instances).

6.4 Experimental results for new instances

As all instances from the literature were solved to optimality, we generated a new set of larger
instances. The main goal was to test the scalability of our best algorithm, i.e. to determine the
size of instances which cannot be solved in a reasonable time.

The new instances involve 5 – 15 satellites and 100 – 300 customers. When testing our
algorithm on these instances, we set the time limit to 60 hours. We gave more time to the
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Instance BKS Reference Opt Imp (%)
Set 5 100-5-1b 1103.55 Amarouche et al. (2018) 1099.35 0.38

100-10-3b 849.73 Amarouche et al. (2018) 848.16 0.19
200-10-1 1538.35 Amarouche et al. (2018) 1537.52 0.05
200-10-1b 1175.81 Amarouche et al. (2018) 1173.07 0.23
200-10-3 1779.68 Amarouche et al. (2018) 1177.49 0.12
200-10-3b 1196.93 Amarouche et al. (2018) 1192.35 0.38

Set 6A C-n101-4 1297.42 Wang et al. (2017) 1292.04 0.41
Set 6B B-n101-4 1500.55 Breunig et al. (2016) 1499.71 0.06

B-n101-5 1395.32 Breunig et al. (2016) 1394.79 0.04
C-n101-5 1964.63 Breunig et al. (2016) 1962.52 0.11

Table 4: Improved best-known solutions for the literature instances

primal heuristic when solving the largest instances. For instances with 300 customers and 10
satellites, this time was set to 600 seconds. For instances with 15 satellites, this time was set to
4 · |C| seconds.

Out of 51 instance, our algorithm solved to optimality 23 instances, including some instances
with 300 customers or with 15 satellites. The algorithm found both dual and primal bounds for
17 instances. The primal heuristic did not find any feasible solution for 9 instances having 300
customers and/or 15 satellites. Only lower bounds are thus currently known for these instances.
We could not obtain dual bounds for 2 instances because the LP solver spent more than one
hour to solve the restricted master LP during the first column generation convergence. Detailed
results are given in C.

From the results on new instances, we conclude that our algorithm can solve to optimality
instances up to 200 customers and 10 satellites, although sometimes in a long run. Our results
on new instances up to 200 customers and 10 satellites are consistent with those on literature
instances, even if one of these new instances was not solved to optimality. Increasing the instance
size to either 300 customers or to 15 satellites makes our algorithm much less efficient. The
instances with 300 customers and 15 satellites are particularly challenging, as none of them were
solved to optimality.

For the largest instances with 15 satellites, the size of the restricted master problem becomes
very large so that its solution takes significant time. In some extreme cases, a modern LP solver
cannot solve it within 1 hour. Even when the LP relaxation of the restricted master for large
instances can be solved, the primal heuristic based on solving the restricted master is often
inefficient. One of the possible remedies is to generate first-level routes dynamically.

7 Conclusions

In this paper we proposed an improved branch-cut-and-price algorithm for the two-echelon ca-
pacitated vehicle routing problem. Our BCP algorithm includes both techniques for the classic
vehicle routing problems proposed recently and new problem-specific components such as new
route based formulation, two families of valid inequalities, and a new branching strategy. The
proposed algorithm is empirically shown to be highly efficient, as it solved all instances available
in the literature for the 2E-CVRP with up to 200 customers and 10 satellites. 34 instances were
solved to optimality for the first time.

In order to inspire further progress on solution approaches for the 2E-CVRP and related
problems, a new set of 51 instances is proposed to the community. Among them, 28 instances
are currently open. Testing our algorithm on new instances revealed its limitations.

Dynamic generation of first-level routes is essential if one wants to solve instances with more
than 15 satellites. Our new formulation for the problem without product flow variables allows one
to do such dynamic generation. However, column generation of first-level routes is not straight-
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forward for the modified formulation. A first-level route has coefficient one in constraints (12) if
and only if it visits at least one satellite in a certain set. Thus, these constraints resemble strong
capacity constraints introduced in (Baldacci et al., 2008). They are non-robust (Pessoa et al.,
2008), i.e. they modify the structure of the pricing problem for the first level.

Our BCP algorithm could be extended to the two-echelon location-routing problem (Con-
tardo et al., 2012) in which satellites have predefined capacities and fixed opening costs. Our
preliminary research showed that additional valid inequalities are necessary for this variant of the
problem. If one separates only the valid inequalities considered in this paper, the LP relaxation
of the route based formulation in general, does not produce strong lower bounds.

Another important possible extension of our algorithm concerns the two-echelon vehicle rout-
ing problem with time windows. This problem variant was considered by Dellaert et al. (2019).
However, the authors impose there a restrictive assumption that city freighter can receive prod-
ucts from only one urban truck. It would be useful to consider the 2E-CVRP with time windows
without this assumption.
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A Detailed BCP results for literature instances

In following tables, Rg stands for the root gap, Rt stands for the time spent in the root node,
BPB is the best primal bound found, and t stands for the total time spent. Note that if the
time in the column “Literature” has prefix “>” for a given instance, Baldacci et al. (2013) did
not solve this instance to optimality.

In sets 4A and 4B, instances Instance50-i.dat with i = 1, 2 . . . 18 have two satellites.
Instances with i = 19, 20 . . . 36 have three satellites. Instances with i = 37, 38 . . . 54 have five
satellites. In set 5, instance names have the format 2eVRP_i_j_k.dat with i the number of
customers, j the number of satellites, and k an identifier. In sets 6A and 6B, instance names
have the form I-ni-j.dat with an identifier I that is the letter A, B or C, i− 1 the number of
customers, and j the number of satellites.

Table 5: Results of experiments on instances of set 4A

Our best BCP with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)
Instance50-1.dat 1.41 30 3 1569.42 58 47
Instance50-2.dat 0.00 35 1 1438.33 35 101
Instance50-3.dat 1.50 30 3 1570.43 67 44
Instance50-4.dat 0.20 55 3 1424.04 106 64
Instance50-5.dat 0.24 44 3 2193.52 92 415
Instance50-6.dat 0.00 55 1 1279.87 55 27
Instance50-7.dat 1.04 32 3 1458.63 76 63
Instance50-8.dat 0.33 58 3 1363.74 124 1414
Instance50-9.dat 0.94 32 3 1450.27 56 53
Instance50-10.dat 0.44 38 3 1407.65 77 71
Instance50-11.dat 0.53 29 15 2047.46 302 212
Instance50-12.dat 0.00 14 1 1209.42 14 43
Instance50-13.dat 1.36 35 3 1481.83 72 58
Instance50-14.dat 0.06 58 3 1393.61 93 743
Instance50-15.dat 1.47 39 3 1489.94 72 45
Instance50-16.dat 0.02 48 3 1389.17 84 39
Instance50-17.dat 0.17 41 3 2088.49 98 191
Instance50-18.dat 0.65 47 3 1227.61 90 73
Instance50-19.dat 0.68 33 3 1564.66 56 146
Instance50-20.dat 0.66 66 3 1272.97 111 88
Instance50-21.dat 0.53 38 3 1577.82 67 137
Instance50-22.dat 0.00 55 1 1281.83 55 50
Instance50-23.dat 0.92 41 5 1807.35 88 944
Instance50-24.dat 0.00 49 1 1282.68 49 50
Instance50-25.dat 0.61 40 3 1522.42 80 210
Instance50-26.dat 0.12 49 3 1167.46 73 34
Instance50-27.dat 0.43 61 3 1481.57 115 222
Instance50-28.dat 0.73 68 3 1210.44 148 185
Instance50-29.dat 1.21 38 13 1722.04 287 >5683
Instance50-30.dat 1.30 87 3 1211.59 333 152
Instance50-31.dat 1.98 53 5 1490.33 226 >7226
Instance50-32.dat 1.31 73 3 1199.00 205 2506
Instance50-33.dat 1.37 55 3 1508.30 116 >8076
Instance50-34.dat 0.93 69 5 1233.92 307 129
Instance50-35.dat 1.55 42 5 1718.41 859 >12736
Instance50-36.dat 0.56 92 3 1228.89 196 96
Instance50-37.dat 1.62 77 7 1528.73 328 505
Instance50-38.dat 1.51 151 3 1169.20 409 1030
Instance50-39.dat 1.23 58 3 1520.92 119 434
Instance50-40.dat 2.02 83 3 1199.42 245 623
Instance50-41.dat 1.34 57 7 1667.96 375 840
Instance50-42.dat 0.27 133 3 1194.54 367 140
Instance50-43.dat 1.41 64 9 1439.67 376 685
Instance50-44.dat 1.62 99 3 1045.12 322 272
Instance50-45.dat 0.72 85 3 1450.96 154 484
Instance50-46.dat 1.57 68 7 1088.77 350 841
Instance50-47.dat 0.65 90 5 1587.29 274 979
Instance50-48.dat 0.07 58 3 1082.20 90 57
Instance50-49.dat 1.16 77 3 1434.88 181 447
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Our best BCP with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)
Instance50-50.dat 2.11 117 5 1083.12 595 836
Instance50-51.dat 0.89 87 3 1398.05 144 468
Instance50-52.dat 2.60 94 5 1125.67 485 959
Instance50-53.dat 1.44 81 7 1567.77 1557 2640
Instance50-54.dat 1.80 83 3 1127.61 346 651

Table 6: Results of experiments on instances of set 4B

Our best BCP with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)
Instance50-1.dat 1.61 40 5 1569.42 126 73
Instance50-2.dat 0.00 42 1 1438.33 42 118
Instance50-3.dat 1.46 41 5 1570.43 249 61
Instance50-4.dat 0.20 80 3 1424.04 146 72
Instance50-5.dat 0.25 41 3 2193.52 87 395
Instance50-6.dat 0.00 62 1 1279.87 62 33
Instance50-7.dat 0.09 36 3 1408.57 61 48
Instance50-8.dat 0.27 61 3 1360.32 117 2058
Instance50-9.dat 0.00 38 1 1403.53 38 51
Instance50-10.dat 0.00 47 1 1360.56 47 29
Instance50-11.dat 0.53 27 17 2047.46 445 282
Instance50-12.dat 2.37 89 5 1209.42 459 70
Instance50-13.dat 0.59 56 3 1450.93 321 59
Instance50-14.dat 0.04 63 3 1393.61 105 669
Instance50-15.dat 1.25 47 3 1466.83 168 66
Instance50-16.dat 0.44 59 3 1387.83 110 62
Instance50-17.dat 0.18 42 3 2088.49 86 224
Instance50-18.dat 1.16 52 5 1227.61 368 80
Instance50-19.dat 2.03 46 11 1546.28 474 183
Instance50-20.dat 0.67 65 3 1272.97 126 107
Instance50-21.dat 0.97 37 3 1577.82 78 157
Instance50-22.dat 0.00 70 1 1281.83 70 43
Instance50-23.dat 1.07 61 3 1652.98 122 121
Instance50-24.dat 0.00 33 1 1282.68 33 50
Instance50-25.dat 0.06 47 3 1408.57 89 97
Instance50-26.dat 0.03 68 3 1167.46 96 35
Instance50-27.dat 0.37 62 3 1444.50 122 124
Instance50-28.dat 1.99 81 5 1210.44 369 156
Instance50-29.dat 0.62 76 3 1552.66 123 162
Instance50-30.dat 2.34 94 5 1211.59 470 154
Instance50-31.dat 1.40 55 5 1440.86 257 164
Instance50-32.dat 1.36 79 5 1199.00 313 2383
Instance50-33.dat 1.14 73 7 1478.86 252 292
Instance50-34.dat 1.00 79 5 1233.92 363 180
Instance50-35.dat 2.34 88 5 1570.72 516 812
Instance50-36.dat 0.84 74 3 1228.89 186 113
Instance50-37.dat 2.03 91 19 1528.73 1184 >9076
Instance50-38.dat 0.63 161 5 1163.07 715 727
Instance50-39.dat 2.71 71 9 1520.92 822 1119
Instance50-40.dat 1.40 156 3 1163.04 630 218
Instance50-41.dat 1.26 97 3 1652.98 235 1482
Instance50-42.dat 0.71 120 3 1190.17 345 270
Instance50-43.dat 0.79 75 5 1406.11 235 6936
Instance50-44.dat 0.90 82 5 1035.03 353 242
Instance50-45.dat 1.81 67 7 1401.87 653 303
Instance50-46.dat 1.98 110 5 1058.11 339 267
Instance50-47.dat 0.82 96 3 1552.66 169 767
Instance50-48.dat 0.28 78 3 1074.50 142 78
Instance50-49.dat 1.21 91 5 1434.88 342 >8713
Instance50-50.dat 0.49 126 3 1065.25 225 318
Instance50-51.dat 2.22 111 5 1387.51 497 812
Instance50-52.dat 2.29 160 5 1103.42 1060 529
Instance50-53.dat 1.51 89 5 1545.73 273 1497
Instance50-54.dat 1.23 105 3 1113.62 234 642
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Table 7: Results of experiments on instances of set 5

Our best BCP with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)
2eVRP 100-5-1b.dat 1.97 121 443 1104.06* 35993 >15018
2eVRP 100-5-1.dat 0.89 59 189 1564.46 5331 5850
2eVRP 100-5-2b.dat 1.71 125 167 782.25 10643 >16312
2eVRP 100-5-2.dat 1.96 63 365 1016.32 8416 6574
2eVRP 100-5-3b.dat 1.14 147 5 828.54 531 >20434
2eVRP 100-5-3.dat 0.37 65 3 1045.29 95 1831
2eVRP 100-10-1b.dat 3.00 335 71 911.80 12139 –
2eVRP 100-10-1.dat 1.35 201 7 1124.93 621 –
2eVRP 100-10-2b.dat 0.73 311 7 766.28 1040 –
2eVRP 100-10-2.dat 0.66 133 7 985.40 346 –
2eVRP 100-10-3b.dat 2.34 351 71 848.16 16894 –
2eVRP 100-10-3.dat 0.54 243 3 1042.63 451 –
2eVRP 200-10-1b.dat 2.23 1653 19 1173.07* 35958 –
2eVRP 200-10-1.dat 1.06 633 11 1537.52 2804 –
2eVRP 200-10-2b.dat 0.81 1345 7 985.99 4132 –
2eVRP 200-10-2.dat 0.45 555 9 1352.87 1658 –
2eVRP 200-10-3b.dat 3.78 1611 27 1221.42* 36336 –
2eVRP 200-10-3.dat 0.35 775 15 1777.49 2988 –
* These best primal bounds have not been proved optimal. The gap between the best
dual bound and the best primal bound is 1.54% for 2eVRP 100-5-1.dat,
0.53% for 2eVRP 200-10-1b.dat, and 3.13% for 2eVRP 200-10-3b.dat.

Table 8: Results of experiments on instances of set 6A

Our best BCP with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)
A-n51-4.dat 0.87 58 3 652.00 115 74
A-n51-5.dat 0.39 74 3 663.41 125 97
A-n51-6.dat 0.13 98 3 662.51 148 164
A-n76-4.dat 0.78 51 3 985.95 94 215
A-n76-5.dat 1.50 66 5 979.15 148 536
A-n76-6.dat 1.82 83 9 970.20 368 2080
A-n101-4.dat 1.25 91 5 1194.17 278 3732
A-n101-5.dat 0.63 104 5 1211.35 481 3015
A-n101-6.dat 1.74 131 27 1155.89 1483 >73798
B-n51-4.dat 0.31 45 3 563.98 80 36
B-n51-5.dat 0.03 72 3 549.23 118 82
B-n51-6.dat 0.00 64 1 556.32 64 78
B-n76-4.dat 0.36 49 3 792.73 77 209
B-n76-5.dat 0.59 60 3 783.93 95 382
B-n76-6.dat 0.54 78 3 774.17 133 1297
B-n101-4.dat 0.29 93 3 939.21 165 1570
B-n101-5.dat 0.68 130 5 967.82 330 4412
B-n101-6.dat 0.63 115 5 960.29 242 2358
C-n51-4.dat 0.26 54 3 689.18 112 49
C-n51-5.dat 0.94 83 3 723.12 181 270
C-n51-6.dat 0.62 87 3 697.00 182 104
C-n76-4.dat 0.92 50 3 1054.89 142 284
C-n76-5.dat 3.16 79 15 1115.32 775 1136
C-n76-6.dat 2.92 104 73 1060.52 3840 >29901
C-n101-4.dat 0.65 92 5 1292.04 304 >18516
C-n101-5.dat 0.71 119 5 1304.86 446 >6791
C-n101-6.dat 1.23 144 47 1284.48 2235 >17481
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Table 9: Results of experiments on instances of set 6B

Our best BCP with primal heuristic Literature
Instance Rg (%) Rt (s) Nodes BPB t (s) t (s)
A-n51-4.dat 0.05 50 3 744.24 95 55
A-n51-5.dat 0.42 48 3 811.51 69 54
A-n51-6.dat 0.63 69 3 930.11 140 240
A-n76-4.dat 0.65 62 3 1385.51 125 416
A-n76-5.dat 0.57 59 3 1519.86 106 311
A-n76-6.dat 0.30 69 3 1666.06 127 430
A-n101-4.dat 0.79 97 9 1881.44 589 2100
A-n101-5.dat 0.45 124 15 1709.06 1033 >6928
A-n101-6.dat 1.02 119 11 1777.69 886 >23948
B-n51-4.dat 0.00 58 1 653.09 58 20
B-n51-5.dat 0.02 38 3 672.10 60 27
B-n51-6.dat 0.48 67 3 767.13 122 77
B-n76-4.dat 0.46 43 3 1094.52 81 79
B-n76-5.dat 0.14 54 3 1218.12 96 82
B-n76-6.dat 0.17 71 3 1326.76 114 143
B-n101-4.dat 0.43 85 5 1499.71 232 >3673
B-n101-5.dat 0.96 117 11 1394.79 729 >20189
B-n101-6.dat 0.44 121 5 1445.97 300 >3970
C-n51-4.dat 0.22 63 3 866.58 108 75
C-n51-5.dat 0.74 72 3 943.12 138 149
C-n51-6.dat 0.49 76 3 1050.42 126 182
C-n76-4.dat 0.22 59 3 1438.96 94 114
C-n76-5.dat 0.79 68 5 1745.39 234 525
C-n76-6.dat 0.34 78 3 1756.46 139 902
C-n101-4.dat 0.57 76 25 2064.86 1900 >7550
C-n101-5.dat 0.50 126 11 1962.52 687 >7762
C-n101-6.dat 0.62 140 7 1860.73 616 >14553

B Detailed results for unsolved instances using a special
BCP parameterisation

We have run our BCP algorithm for three unsolved instances 2eVRP 100-5-1b.dat, 2eVRP 200-
10-1b.dat, and 2eVRP 200-10-3b.dat using a special parameterisation for each instance, and
initial primal bounds which are greater than the best known solution values. All instances were
solved to optimality within 60 hours. Table 10 provides the results for this three instances.

Table 10: Results for three instances unsolved with our best BCP in 10 hours
BCP with special parameterisation

Instance InitPB Rg (%) Rt (s) Nodes BPB t (s)
2eVRP 100-5-1b.dat 1104.00 1.39 166 809 1099.35 66212
2eVRP 200-10-1b.dat 1177.00 1.69 2634 47 1173.07 28667
2eVRP 200-10-3b.dat 1201.00 0.98 3288 159 1192.35 181652

C Detailed BCP results for new instances

In set 7, instance names have the format 2e-i-j-k.dat with i the number of customers, j the
number of satellites, and k an identifier.
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Table 11: Results of experiments on instances of set 7

Our best BCP with primal heuristic
Instance Rg (%) Rt (s) Nodes BLB BPB t (s)
2e-100-5-1c.dat 0.40 78 3 1284.59 1284.59 121
2e-100-5-2c.dat 0.49 68 3 821.42 821.42 98
2e-100-5-3c.dat 0.00 67 1 841.17 841.17 67
2e-100-5-4a.dat 2.56 53 11 895.37 895.37 339
2e-100-5-4b.dat 5.34 174 5 560.25 560.25 530
2e-100-10-1c.dat 0.52 221 5 961.61 961.61 401
2e-100-10-2c.dat 0.48 145 3 860.66 860.66 217
2e-100-10-3c.dat 0.48 105 3 815.32 815.32 155
2e-100-10-4a.dat 2.17 261 629 886.61 886.61 34096
2e-100-10-4b.dat 1.15 436 11 594.70 594.70 2458
2e-200-10-1c.dat 1.28 726 63 1513.95 1513.95 10180
2e-200-10-2c.dat 1.06 885 259 1370.65 1370.65 25385
2e-200-10-3c.dat 0.58 1206 415 1793.82 1793.82 85502
2e-200-10-4a.dat 1.23 1213 221 1411.80 1411.80 46575
2e-200-10-4b.dat 2.56 1960 19 896.96 910.23 217533
2e-200-15-1a.dat 2.01 3319 89 1512.42 1535.11 215920
2e-200-15-1b.dat 3.00 5165 99 982.56 1001.43 216404
2e-200-15-1c.dat 2.07 2822 203 1439.06 1461.80 215915
2e-200-15-2a.dat 0.42 1562 13 1493.41 1493.41 8153
2e-200-15-2b.dat 1.13 5461 5 916.78 916.78 22446
2e-200-15-2c.dat 0.72 2777 5 1275.75 1275.75 14201
2e-200-15-3a.dat 0.81 2988 35 1569.77 1569.77 50171
2e-200-15-3b.dat 0.57 3688 19 972.28 972.28 49405
2e-200-15-3c.dat 1.96 3528 209 1313.21 1330.52 216018
2e-200-15-4a.dat 4.40 4187 87 1317.25 1366.52 216174
2e-200-15-4b.dat ∞ 5391 13 859.95 ∞ 215936
2e-200-15-4c.dat 1.79 3159 319 1386.61 1403.5 215908
2e-300-10-1a.dat 0.75 3289 281 4223.34 4223.34 164537
2e-300-10-1b.dat 2.96 3913 103 2541.05 2596.69 215964
2e-300-10-1c.dat 3.59 2770 73 4781.32 4920.97 215908
2e-300-10-2a.dat 0.79 2420 381 4040.08 4060.08 215888
2e-300-10-2b.dat ∞ 2576 37 2286.88 ∞ 215907
2e-300-10-2c.dat 2.38 1989 115 3546.18 3613.03 215897
2e-300-10-3a.dat 0.94 2654 189 4008.59 4008.59 86489
2e-300-10-3b.dat ∞ 4677 75 2315.30 ∞ 216040
2e-300-10-3c.dat ∞ 2253 123 4590.85 ∞ 215907
2e-300-10-4a.dat 0.24 1846 11 4094.94 4094.94 4219
2e-300-10-4b.dat ∞ 2851 73 2339.32 ∞ 215907
2e-300-10-4c.dat 0.45 2495 225 3938.17 3938.17 59323
2e-300-15-1a.dat 3.20 6796 47 3948.09 4058.67 215828
2e-300-15-1b.dat ∞ 12431 45 2460.70 ∞ 216062
2e-300-15-1c.dat 2.42 6659 47 4135.19 4219.51 216136
2e-300-15-2a.dat 3.18 6177 49 3591.91 3671.50 215823
2e-300-15-2b.dat – – – – – –
2e-300-15-2c.dat ∞ 5902 57 3497.77 ∞ 215991
2e-300-15-3a.dat 3.98 6459 51 3410.43 3522.31 216034
2e-300-15-3b.dat 3.39 8563 19 2113.98 2175.68 215959
2e-300-15-3c.dat – – – – – –
2e-300-15-4a.dat ∞ 5571 47 3738.63 ∞ 215869
2e-300-15-4b.dat ∞ 10773 23 2173.11 ∞ 215818
2e-300-15-4c.dat 1.30 6976 201 3575.95 3600.79 215821

We cannot provide any result for instances 2e-300-15-2b.dat and 2e-300-15-3c.dat because
the LP solver could not solve the LP relaxation of the restricted master during the first column
generation convergence.
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