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When a rigid rough solid slides on a rigid rough surface, it experiences a random motion in
the direction normal to the average contact plane. Here, through simulations of the separation at
single-point contact between self-affine topographies, we characterize the statistical and spectral
properties of this normal motion. In particular, its rms amplitude is much smaller than that of
the equivalent roughness of the two topographies, and depends on the ratio of the slider’s lateral
size over a characteristic wavelength of the topography. In addition, due to the non-linearity of
the sliding contact process, the normal motion’s spectrum contains wavelengths smaller than the
smallest wavelength present in the underlying topographies. We show that the statistical properties
of the normal motion’s amplitude are well captured by a simple analytic model based on the extreme
value theory framework, extending its applicability to sliding-contact-related topics.

I. INTRODUCTION

The interfacial separation d between the surfaces of two
solids brought close to one another is central to many in-
terfacial processes. Those include attractive forces when
the distance is small but finite (Van der Waals [1], elec-
trostatic [2], Casimir forces [3]), repulsive elastic forces
when the distance vanishes [4, 5], heat transfer and non-
contact friction [6], electric conductivity [7] and perme-
ability [7, 8]. The evaluation of d becomes difficult when
the typical separation becomes of the order of the surface
roughness, because the separation is now a random vari-
able of the position along the interface. In this case, d
often refers to the average separation, between the mean
planes of the two rough surfaces.

In the particular case when the two rough surfaces
come into contact, most of the literature has treated their
normal approach (see e.g. [9, 10], and [11] for shear load-
ing). For elastic bodies under sufficient compressive pres-
sure, a so-called multi-contact is formed, made of myr-
iad individual micro-contacts where mainly the highest
antagonist asperities are involved in the actual contact.
This situation is typical of elastomer contacts [11]. The
average separation between the two bodies is found to de-
pend in particular on the ratio p/E⋆ of the applied pres-
sure p to composite elastic modulus E⋆ and the spectral
properties of the topography [5, 12]. When p/E⋆ tends
towards zero, i.e. when the pressure becomes very low
compared to the material stiffness, and when the two sur-
faces are brought in contact through a pure normal trans-
lation, those two surfaces touch on only one point, which
is the first to come into contact. Such single-point con-
tact situations, which are the focus of the present study,
have previously been investigated in the context of the
precise measurement of dispersion forces [13, 14] or of the
contact of metallic surfaces under light load [15]. In such

cases the measurable quantity is the separation of the
two mean planes for single-point contact, d0 (see Fig. 1).
Note that if the two solids are shifted one with respect
to the other parallel to the contact plane, the measured
value of d0 will likely vary, because the single-point con-
tact will involve a different couple of antagonist asper-
ities. Such a sensitivity to details of the measurement
procedure is responsible for significant uncertainties in
the evaluation of d0 [13, 14]. d0 is also expected to vary
as soon as the solids are slid one on another, because the
point of contact will continuously change, and this is the
phenomenon of interest in the following.

FIG. 1. (a): Illustration of single-point contact, on the ex-
ample of two 1D centered Gaussian white noises, Z1 and Z2.
The separation at single-point contact, d0, is measured be-
tween the mean heights of the two processes. (b) Probability
density functions (pdf) of both processes.

From now on, we will consider that, in such a weakly-
loaded, single-point contact situation, one body (the
slider, with a finite-sized area) is set to slide on the other
(the track, having a larger area). Due to the random
nature of the antagonist topographies, the slider will ex-
perience a roughness-induced motion in the direction nor-
mal to the average contact plane (z-displacement), d0(u),
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with u the tangential displacement (x-displacement) of
the slider, as shown on Fig. 1. In the following, d0(u)
is referred to as the normal motion. If the sliding veloc-
ity was high enough, the slider could loose contact with
the track and enter a bouncing regime ([15–18]). In the
following, we only consider slow sliding, in which such
inertia effects can be neglected. In those quasi-static
conditions, the time dependence of the normal motion
is irrelevant and the quantity of interest is d0(u). To
characterize this quantity, we perform direct numerical
simulations of the single-point contact between sliding
rigid rough surfaces, as described in section II.
From the illustration of Fig. 1, it is natural to inter-

pret the single-point contact sliding process as a geomet-
rical filtering in which the input signals are the two an-
tagonist topographies, Z1 and Z2, and the output sig-
nal is the roughness-induced normal motion, d0(u). In
particular, one expects that the broader the probability
density function of the topographies, the larger the aver-
age single-point contact separation. One also expects the
spectral properties of d0(u) to be dependent on in-plane
features of the topographies, like their spectral contents.
This is why our simulations explore a variety of power
spectrum densities (PSD) of the contacting topographies
(section II). In section III, we characterize in details the
relationship between the properties of the topographies
and that of the resulting normal motion d0(u).
The height of single-point contact being directly re-

lated to the altitude of the highest asperities of the an-
tagonist surfaces, it is tempting to use the concepts of
extreme value theory (EVT) [19–21] to estimate the sta-
tistical properties of d0. EVT has been extensively used
in various fields [22], including rupture in disordered me-
dia [23], risk in finance or insurance [20], or catastrophic
natural events (preface of [21]). EVT predicts the proba-
bility distribution of rare events, and is used in section IV
to predict the distribution of the maximum height of the
topographies and thus of d0. Those predictions are quan-
titatively compared to the simulation results and used
to discuss the applicability of EVT to sliding-contact-
related topics.

II. DIRECT SIMULATIONS: METHODS

A. Properties of the topographies

To characterize the properties of the separation at
single-point contact between sliding surfaces, d0(u), we
performed direct simulations of a rough square slider
(surface L × L) moving quasi-statically along a rough
track (surface L1 × L, L1 > 2L), and touching it in a
single point for each of the successive positions u of the
slider. The two rotations of the slider around the in-
plane axis are forbidden and its translation along the
track is imposed. Its only free motion is that along the
out-of-plane, z-axis. The slider and track have the same
statistical roughness properties.

Two-dimensional (2D) Gaussian topographies, z, with
various spectral properties have been generated, from
their 2D power spectrum density (PSD). Assuming that
the topographies are isotropic, they are fully character-
ized by the radial profile of their PSD, Szz(kr), with kr
the radial wave number. Knowledge of the PSD allows
one to calculate a variety of useful estimators of the to-
pographies’ properties, among which its rms roughness,
Rq, from:

R2
q =M0, (1)

and its central wavelength, λ0, from:

λ0 =
1

2

√

M0

M2
, (2)

with the radial spectral momentsMi defined by [24]Mi =

2π
∫ +∞
0

ki+1
r Szz(kr)dkr .

FIG. 2. Sketch of the radial profiles Szz(kr) of the 2D PSDs
considered for the antagonist topographies and definition of
the corresponding parameters.

We used realistic PSDs corresponding to self-similar
topographies such as the one shown on Fig. 2. Such PSD
can be fully described using 4 parameters: S0 sets the am-
plitude of the surface; kl, the low cut-off wave number,
and ks, the high cut-off wave number, set the wave num-
ber range over which the topographies are self-similar;
−α is the slope of the self-similar part and is linked to
the fractal dimension. Indeed, α relates to the Hurst ex-
ponent H through [25–27]: α = 2(H + 1). Note that,
for a slider of size L, the lowest accessible wave number
is kL = 2π

L . With this choice of PSD profile, the three
first radial spectral moments Mi can be calculated an-
alytically (appendix A). Once injected in Eqs. 1 and 2,
appendix A provides the explicit expressions of Rq and
λ0.
In summary, a given simulation corresponds to a given

set of 5 parameters: S0, kl, ks, α and L. In practice,
we will use the following equivalent set of 5 parameters
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with a more intuitive physical meaning: Rq, λ0 and L

as three characteristic length scales and α and b = kl
ks

as
two shape descriptors of the PSD radial profile.

B. Numerical topography generation

The surfaces are represented numerically by a (2Θ +
1)×(2Ψ+1) height matrix z. The location along a surface
is identified by the vector xij = (xi, yj) with i varying
from −Θ to Θ and j from −Ψ to Ψ such that xi = i∆x
and yj = j∆y. Thus z(xij) defines the altitude of the
topography at each point. The Fourier transform of z is
F [z](kθψ) = A(kθψ) exp(iφ(kθψ)) with A, the amplitude,
and φ, the phase, two real functions. The wave vector is
kθψ = (kθ = θ

(2Θ+1)∆x , kψ = ψ
(2Ψ+1)∆y ), with θ varying

from −Θ to Θ and ψ from −Ψ to Ψ. By setting:

A(n,m) = A(−n,−m), (3)

φ(n,m) = −φ(−n,−m), (4)

we ensure that z is real, and reads (after inverse Fourier
transform of A(kθψ) exp(iφ(kθψ))):

z(xij) =
1

2Θ + 1

1

2Ψ + 1
∑

θ

∑

ψ

A(kθψ) cos(φ(kθψ) + kθψ · xij) (5)

The amplitude A(kθψ) can be expressed as a function of
the continuous PSD profile, Szz(kr), as:

A(kθψ) =

√

(2Θ + 1)(2Ψ + 1)Szz(|kθψ|)
∆x∆y

. (6)

In order to produce numerical topographies obeying
the PSDs described in section IIA, we use Eq. 5 in which
we insert both Eq. 6 and phases φ randomly drawn from a
uniform law over [0 2π[, yielding a Gaussian distribution
of heights.
Figure 3 represents four typical topographies obtained

for various values of α and b, the lateral length of all pan-
els corresponding to the same number of central wave-
length, λ0. One can see that the smaller b and α, the
richer the spectral contents of the topography, with b
having the strongest effect. The spectral bandwidth can

be quantified by a spreading parameter δz =
√

1− M2

1

M0M2

inspired by [28–32]. δz can vary between 0 and 1, with δz
being close to 0 for a narrow-band topography. Figure 4,
which shows the evolution of δ as a function of α, for
various b, confirms the trends illustrated in Fig. 3.

C. Simulation parameters

The in-plane discretization ∆x = ∆y of the surface
is chosen such that 2π

2∆x = 6ks. This ensures that the
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FIG. 3. Typical topographies generated, for various values
of α and b. In-plane size in units of λ0. Out-of-plane size
(grayscale bar) in units of Rq.

FIG. 4. Spectral bandwidth δz as a function of the shape-
descriptors of the PSD considered here (Fig. 2), α and b.

sinus corresponding to the largest wave number is well-
resolved, with twelve points per wavelength in the spatial
domain. Sliding motion is simulated by moving the slider
along x with respect to the track, by one grid size at each
step.

For each dimension of the topographies (out-of- and in-
plane) a reference length is chosen. For the out-of-plane
dimension, the rms roughness, Rq, is chosen, while for
the in-plane dimension, we chose the central wavelength,
λ0. Note that, in our case of normal approach of rigid
bodies, the in- and out-of-plane dimensions are uncou-
pled. In particular, dilating only the in-plane dimension
does not affect the value of the normal separation, while
dilating only the out-of-plane dimension does not affect
the index of the topography points that are involved in
the single-contact. Simulations are thus defined by three
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dimensionless parameters: two for the PSD shape, b and
α, and one for the slider size L̃ = L/λ0. The output
quantity is thus the dimensionless separation at single-
point contact, d̃0 = d0/

√
2Rq, as a function of the di-

mensionless sliding distance, ũ = u/λ0. Note that, for
the contact between two statistically identical topogra-
phies, each with an rms roughness Rq, as is the case
in the present study, the normalizing quantity for d0,√
2Rq = R∗

q , represents the equivalent rms roughness of
the sum topography.
The value of b is varied from 0.05 to 1. Notice that

b = 1 is the case of a rectangular-shaped radial PSD,
while for b=0, the topography would be purely self-
similar. α is varied from 3 to 4, corresponding to a Hurst
exponent varying from 0.5 to 1. To investigate the effect
of the slider size, L̃ is varied from 43 to 760. The track
size is then L̃1 × L̃. Note that we have limited the range
of variations of L̃ to values such that (i) kL < kl so that
there is a white noise part in the PSD and (ii) L1 = 5L
and L/∆x is smaller than 17000, to keep topography
matrices computationally tractable. Our computational
resources allowed simulation of topographies with any
combination of parameters within the above-mentioned
ranges. An additional set of simulations has been per-
formed with α = 4 and b = 0.46, which allowed us to
vary L̃ from 1.5 to 1389, and thus to explore more widely
the effect of the slider size on the roughness-induced nor-
mal motion.
For each random draw of phases, a different topogra-

phy is generated, with the specified PSD. For each set of
parameters (α, b and L̃), several draws of topographies
are performed in order to get converged statistical results
for the separation at single-point contact, d̃0. Tests have
shown that with 15 draws, the expected value of each of
the three first statistical moments (mean, standard devi-

ation and skewness) of d̃0 is measured to better than 5%
accuracy.
Finally, let us define the parameter N , which will be

useful in the following sections:

N =
4

π
L̃2. (7)

N represents the number of circular patches of diameter
λ0 along the slider’s surface. For a narrow band process,
it is close to the number of asperities on the slider’s sur-
face. Here and in the following, the term asperity refers
to any convex portion of the topography.

III. DIRECT SIMULATIONS: RESULTS

On Fig. 5, an example of simulated separation at
single-point contact, d̃0(ũ), is plotted. On Fig. 6, typ-

ical probability density functions (pdf) of d̃0 are shown.

One can notice that 〈d̃0〉, the mean value of d̃0, is larger
than 0 by several R∗

q (typically 2 to 5, depending of the
simulated topogaphies). Note that d0(u) (the distance
between the two mean planes (see Fig. 1)) can be equal

FIG. 5. Typical example of separation at single-point contact,
d̃0(ũ). α = 4, b = 0.46, L̃ = 327. Inset: zoom showing cusp-
like features.

to 0 only if one topography would be the exact comple-
mentary of the other at position u. Also, the standard de-
viation of d̃0, σd̃0 , is always found smaller than 1. Finally,
the skewness of the distribution, skd̃0 , is positive, due to
the fatter right tail of the pdf, implying that, unlike the
underlying topographies, the separation at single-point
contact, d0, is not a Gaussian process.

FIG. 6. Typical pdf of the separation at single-point contact
for two different slider sizes, L̃ = 327 (N = 136118) and

L̃ = 44 (N = 2423). α = 3.2, b = 0.46. Dashed lines: EVT
model discussed in section IV.

More quantitatively, Fig. 7 shows the normalized mean
value, standard deviation, and skewness, respectively
〈d̃0〉, σd̃0 and skd̃0 , for all simulations parameters used, as
a function of the slider area, represented by the number
N . Figure 7 clearly shows that the statistical moments of
the dimensionless separation d̃0 only depend on N . Both
〈d̃0〉 and skd̃0 are increasing functions of N whereas σd̃0
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FIG. 7. (a) Mean value, (b) standard deviation and (c) skew-

ness of the pdfs of d̃0, for all simulations performed (circles).
Error bars represent the standard deviation over 15 statisti-
cally identical simulations. For clarity, not all error bars are
plotted. Lines: various models discussed in section IV. The
marker size increases when b decreases. Lighter gray is for
lower α. •, N, �, � are for L = 100, 250, 500 and 750, respec-
tively. The two values of δz used in Figs. 7a and 7b are the
maximum and minimum values used in our simulations

is a decreasing function. Note that the N -axis is logarith-
mic, indicating that the variations with N are relatively
slow.
We now describe the spectral contents of the

roughness-induced normal motion of the slider. They
are described by the power spectrum density of d̃0(ũ),
Sd̃0d̃0 (see Fig. 8 for a typical example). We find that the
resulting PSDs are of the self-affine type, with a white
noise part at low frequencies, and a power law decay of
exponent −α⋆ at high frequencies. The crossover wave
number is denoted k̃⋆l .

FIG. 8. Typical PSD of the separation at single-point contact
and its empirical approximation (Eq. 8). α = 3.6, b = 0.1,

L̃ = 337.

As can be seen on Fig. 8, d̃0 has non-vanishing spectral
contents for wave numbers higher than k̃s, the topogra-
phies’ largest wave number. We measured the exponent
−α⋆ of the power-law decay of the PSD, for wave num-
bers larger than k̃s, and found that it is always roughly
equal to -4. Then, to estimate the value of k̃⋆l , we propose
the following empirical model for the PSD (see black line
in Fig. 8):







S⋆0 if k̃ < k̃⋆l ,

S⋆0
(

k̃⋆l
k̃

)4

if k̃ > k̃⋆l .
(8)

We then fit the value k̃⋆l with the constraint that the
moment of order 0 of the model PSD (which is the rms

value of the signal) is equal to that of the simulated one,

which amounts to impose that S⋆0 = 3
4

√

σ2

d̃0
+〈d̃0〉2

k̃⋆
l

. Anal-

ysis of the dependence of k̃⋆l with the simulation param-

eters, α, b and L̃, for all the simulations performed, al-
lowed us to find the following empirical expression:

k̃⋆l ≈ f1(b, L̃) =

(

5.18 · 10−5

b1.54
+ 0.0584

)

L̃0.0892. (9)

Figure 9 shows that Eq. 9 nicely predicts the value of k̃⋆l
obtained from the simulations.
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FIG. 9. Simulated k̃⋆
l versus its approximated expression,

f1(b, L̃) (Eq. 9). Solid line: equality line. The marker size
increases when b decreases. Lighter gray is for lower α. •, N,
�, � are for L = 100, 250, 500 and 750, respectively.

It is interesting to reformulate those results in terms of
the central wavelength and the spectral bandwidth of the
process d̃0, which are generic estimators of a PSD, also
valid in particular for non-self-affine PSDs. They are de-

fined as λ̃⋆0 = 1
2

√

m̃0

m̃2

and δ⋆ =
√

1− m̃2

1

m̃0m̃2

, respectively,

with moments m̃i =
∫ +∞
−∞ |k̃|iSd̃0d̃0(k̃)dk̃. Note that with

such a definition [28–32], odd moments do not vanish.
We investigated the relationship between the spectral

parameters of d̃0 and those of the contacting topogra-
phies and found the results shown in Fig. 10. First, δ⋆ is
a function of δz only, through (Fig. 10a):

δ⋆ ≈ 0.38δ2z + 0.58. (10)

Second, λ̃⋆0 depends on both δz and L̃, through:

λ̃⋆0 ≈ f2(δz, L̃) = −0.178δz +
1.50

L̃0.0685
. (11)

Figure 10b shows that this expression is a good approxi-
mation of λ̃⋆0, for all the simulations performed. Finding
explanations for Eqs. 9, 10 and 11 would be the subject
of an interesting future work.

IV. DISCUSSION

A. Single-point contact as a geometrical filtering

The shape observed for the probability density func-
tion of the interfacial separation (Fig. 6) can be under-
stood as a geometrical filtering of the antagonist topogra-
phies. This filtering process is expected to strongly de-
pend on the size of the slider. In the limit of a point-
like slider (L vanishes), it will be able to follow exactly
the track’s topography, so that its normal motion will be

FIG. 10. Spectral parameters of the normal motion d̃0(ũ) as a
function of those of the contacting surfaces. (a) δ⋆ vs δz. (b)

λ̃⋆
0 vs f2(δz, L̃) (Eq. 11). Solid line: equality line. The marker

size increases when b decreases. Lighter gray denotes lower
α. •, N, �, � are for L = 100, 250, 500 and 750, respectively.

equal to that topography. In the case of a finite-sized
slider, the slider will not be able to penetrate into the
valleys of the track’s topography but will mainly slide
on the highest asperities. Hence, the slider is expected
to successively explore the shape of different asperities:
the ones with the smallest distance to the slider’s to-
pography. The switching between asperities in contact
is expected to be abrupt because the slider will intanta-
neously stop following the shape of the previous asperity
and start following the new one. This scenario is in per-
fect agreement with the typical normal motion shown in
Fig. 5 (inset), in which one can identify cusp-like features
at the local minima (when the slider switches asperities)
and smooth maxima (when the slider follows the summit
of one asperity).

Those features of the normal motion are fully consis-
tent with the observations made on the pdf and PSD of
d̃0. The asymmetry between minima and maxima in the
normal motion explains the fatter tail of the pdf for large
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altitudes, which are more probable than the small ampli-
tudes (at the cusps), and thus explains why skd̃0 > 0

(Fig. 7c). It is interesting to note that the PSD of a
cusp-containing signal like |sin(x)| is a Dirac comb with
amplitude decreasing asymptotically as 1/k4, i.e. with
an exponent close to the measured −α⋆ ≃ −4. We sug-
gest that the presence of the cusps is the origin of the ob-
served spectral enrichment (beyond ks) of the roughness-
induced normal motion. The observation that the stan-
dard deviation of d0 is always smaller than that of the
sum topography (Fig. 7b) is related to the fact that the
slider cannot explore the lowest parts of the track’s to-
pography, due to its finite size. Finally, the non-vanishing
values of the mean of d̃0 are fully consistent with the fact
that the slider only touches the highest asperities of the
track (Fig. 7a).
As noted above, the slider’s normal motion only dif-

fers from the track’s topography if the slider has a non-
vanishing size, which indicates that the geometrical fil-
tering is intrinsically a finite-size effect. And indeed, the
various statistical properties of the normalized normal
motion’s pdf only depend on N (Fig. 7). Larger slid-
ers have a larger probability to touch a high asperity, so
that 〈d̃0〉 is larger (Fig. 7a). Similarly, larger sliders pen-
etrate less into the tracks’ valleys, so that σd̃0 is smaller

(Fig. 7b).

B. Extreme value theory approach

Due to the large number of points used to represent the
topographies, the numerical simulations presented above
are computationally expensive and require large Random
Access Memory for the reverse Fourier transform opera-
tion (for the largest simulations, we used 512Gb of RAM
for 3h30 on Bi-Xeon E5-2640v3 (16 core 2.6GHz)). Thus
being able to predict the statistical properties of the sepa-
ration at single-point contact, d0, directly from the prop-
erties of the topographies is highly desirable. Remember-
ing that the slider, due to its finite size, can only get into
contact with the highest asperities of the track’s topog-
raphy, it is tempting to investigate how the framework
of extreme value theory (EVT, see e.g. [19–21]) can be
applied to the present single-point contact problem.
We represent rough surfaces through N points which

are independent realizations of a centered Gaussian pro-
cess. Consider two antagonist such topographies, z1 and
z2, with identical rms roughnessRq, as sketched in Fig. 1.
Their separation at single-point contact, d0, is given by
d0 = −min(xi,yj) (z1(xi, yj)− z2(xi, yj)). z1 and z2 hav-
ing symmetric distributions, (i) the distribution of their
difference is then statistically equal to the distribution of
their sum and (ii) the opposite of the minimum is statis-
tically equivalent to the maximum. We can thus work on
the sum of the two topographies, z = z1+z2, which has a
centered Gaussian distribution with a standard deviation
equal to R∗

q =
√
2Rq, and examine d0 = max(z).

Let P be the cumulative density function (cdf) of z

and p the associated probability density function (pdf).
In our case:

p(z) =
1

R∗
q

√
2π

exp

(

− z2

2R∗
q
2

)

, (12)

P(z) =
1

2

(

1 + erf
z

R∗
q

√
2

)

. (13)

We will now follow the EVT approach described e.g.

in [19]. The probability that the altitude at one point
of z is smaller than a value Y is given by P(Y ). The
probability that all N altitudes of z are smaller than Y ,
meaning that Y is greater or equal to the highest point of
z, is the cdf G(Y ) = P(Y )N . Thus, the pdf correspond-
ing to the fact that Y is the largest of the N altitudes,
which is precisely the pdf of the sliders’ height, reads:

g(Y ) = G′(Y ) = Np(Y )P(Y )N−1. (14)

Typical distributions g are shown in dashed lines on
Fig. 6 for two values of N , which is analogous to two
different sizes of the slider. It appears that those EVT-
predicted distributions present similar qualitative fea-
tures as the simulated distributions. In particular, the
mean height of the slider also increases with N , while the
standard deviation of the slider’s height also decreases
with N . As in simulations, g is not a symmetric distri-
bution, but has a fatter tail for large values of Y (positive
skewness), which is typical of extreme value statistics. As
shown in [19, 33], when N is increased, the distribution
of the maximum of a variable tends toward either the
Frechet, Gumbel or Weibull distribution depending on
the pdf of this variable. In particular, for a pdf with a
right tail decaying faster than a power law, as is the case
for Gaussian distributions, the pdf of the maximum will
tend toward the Gumbel distribution. As a consequence,
we expect the Gumbel distribution to be the limiting case
of g for very large sliders (N ≫ 1). Yet the convergence
toward these limiting distributions is slow [34] and thus
they will not be reached here.

C. Comparison between methods

Once the topography’s pdf has been chosen to be Gaus-
sian, the EVT prediction (Eq. 14) only depends on the
parameter N . So, quantitative comparison between the
predictions of EVT and the numerical simulations only
relies on a relevant choice of N . Remembering that in
EVT, we represent the topographies as a collection of N
discrete, statistically independent values, one looks for
a number related to the number of asperities present on
the simulated slider’s surface. For a 1D process, this
number can be given [29] by dividing the length of ob-
servation, L, by the central wavelength, λ0 (Eq. 2), so
that N = L

λ0
. For the two-dimensional processes ob-

served here, the same path of thought can be followed
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with areas of diameter λ0:

N =
L2

π
λ2

0

4

=
4

π

(

L

λ0

)2

=
4

π
L̃2, (15)

which justifies the prefactor used in Eq. 7. Note that in
[13], a correlation length is used instead of λ0 to define
N .

Using this choice of N in the EVT approach, we over-
plotted the analytical results of Eq. 14 on all panels of
Fig. 7. This comparison shows a rather good quantita-
tive agreement with our simulation results, confirming
that the good match observed on Fig. 6 is actually true
for all the explored simulation parameters. Yet, an offset
exists on 〈d̃0〉 between the EVT prediction and the nu-
merical results. We interpret this offset as a side effect
of the approximation of a continuous topography by a
set of discrete points: while the mean plane of a single,
continuous asperity always lies below its summit, in the
case of a point-like asperity, the mean plane has the ex-
act same altitude as the summit itself. Hence, the mean
planes of two continuous topographies in contact are al-
ways separated by a larger distance than those of two
sets of discrete asperity summits. The exact offset be-
tween the two situations depends on both the amplitude
and shape of the asperity. In our case, an empirical cor-

rection of
R∗

q

2 seems to correctly capture our simulation
data. Note that in Fig. 6, the analytical pdfs shown in-
clude this correction, while the solid line in Fig. 7a does
not.

We emphasize that such an agreement is a priori non-
trivial. First, the agreement quality significantly depends
on the definition of N , suggesting that the arbitrary def-
inition used (Eq. 15) is adequate. Second, the predic-
tion is based on the EVT framework, which considers
topographies made of independent realizations of a Gaus-
sian process. In constrast, the topographies used in the
simulations incorporate a finite correlation length, due
to the shape of the PSD used to generate them. We be-
lieve that this difference is the main reason for the slight
discrepancies observed in Fig. 7 between simulations and
EVT predictions. To improve the agreement, one would
need to account for the deviations from EVT induced by
a finite correlation length.

This is what Preumont attempted in [29], on the prob-
lem of finding the maximum value reached during a cer-
tain time window by a correlated 1D Gaussian signal.
Assuming that the successive extrema of the signal form
a Markovian process, he was able to find an exact, but
intricate expression for the pdf of this maximum value.
By fitting this pdf with a Gumbel distribution, he was
able to identify semi-empirical expressions of its mean
value and standard deviation, as a function of N and the

spectral bandwidth δ of the process:

〈d̃0〉Preumont =
√

2 lnκuN +
γ√

2 lnκαN
, (16)

σd̃0Preumont =
π√
6

1√
2 lnκαN

, (17)

κu =

{

1.5(1− e−1.8δ) if δ < 0.5

0.94 if δ ≥ 0.5,
(18)

κα =

{

7δ if δ < 0.5

4.05 if δ ≥ 0.5,
(19)

with γ = 0.5772 being Euler’s constant. Note that
the skewness of the Gumbel distribution is equal to
12

√
6ζ(3)
π3 ∼ 1.14 (ζ is Riemann’s zeta function), indepen-

dently of N (see Fig. 7c).
Those semi-empirical expressions are overplotted on

Fig. 7 using the value of δz for δ in Eqs. 18 - 19. Those ex-
pressions appear to provide an excellent agreement with
our simulation data, in particular they capture the cor-
rect amplitude of 〈d̃0〉. Such an improvement of the
agreement confirms that the discrepancies observed be-
tween EVT and simulations are mainly due to the fi-
nite correlation of the simulated topographies. Yet, here
again, such a good agreement was not expected, since
Eqs. 16- 19 were obtained for 1D processes, while our sim-
ulations use correlated 2D processes (the topographies).

D. Relation to experiments

There are very few experimental works in the literature
reporting measurements of the roughness-induced normal
motion of macroscopic sliding solids. A notable exception
can however be found in [35, 36], where the authors mon-
itor the normal acceleration of mild-steel slider-buttons
of centimetric radius of curvature, during sliding on a
rough mild steel disk. In particular, they report large
wave number tails of the normal displacement PSDs of
the type k−4, in close agreement with our numerical find-
ings (see Eq. 8).
An interesting comparison can also be made with the

literature about stylus measurements of rough surfaces.
All wavelengths of the topography that are smaller than
the tip size will be filtered-out through a geometrical fil-
tering process analogous to the one studied here, leading
to erroneous topography measurements (see e.g. [37]).
Indeed, in [38], it is shown that while the amplitude of
large wavelengths is accurately measured, that of small
wavelengths is underestimated. Thus, the rms value of
the measurement is smaller than that of the topography,
consistently with our results of Fig.7b. They also show
that the crossover wavelength separating both regimes
scales as R1/(2−H), with R the curvature radius of a
parabolic tip and H the Hurst exponent. This result in-
dicates a size-dependence of the filtering process, which
is analogous to the L- (or N -) dependence that we ob-
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served. In [39], the authors further showed that geomet-
rical filtering induces cusps in stylus measurement, and
that those cusps are responsible for a k−4 behaviour of
the large wave number tail of the PSD. Again, this is
fully consistent with our results (see Eq. 8).

V. CONCLUSION

We addressed the question of the roughness-induced
normal motion during sliding of two solids in the limit of
vanishing normal load, i.e. when the contacting asper-
ities do not deform. We considered the simplified case
of the quasi-static evolution of the separation at single-
point contact, when the slider has no rotational degree
of freedom. Systematic numerical simulations assum-
ing Gaussian self-affine topographies with various power
spectrum densities, and sliders with various sizes have
been performed. We found that the normal motion re-
lates to the topographies through a geometrical filtering
process which depends on the size of the slider. We also
found that the resulting normal motion (i) has enriched
spectral contents in the high wave number range, (ii)
is non-Gaussian and (iii) has standard deviation much
smaller than that of the sum topography. We provided
empirical expressions relating the characteristics of the
topography to that of the roughness-induced normal mo-
tion. We demonstrated that the distribution of the am-
plitude of the normal motion can be well predicted within
the framework of extreme value theory (EVT) as soon as
the number of points representing the topography of the
slider is taken equal (to a prefactor close to 1) to the
surface of the slider divided by the square of the central
wavelength of the topography.
These results are relevant whenever rough surfaces are

brought into light contact, that is, when there is no signif-
icant deformation of the bodies. They can be useful not

only for sliding surfaces, but also to assess the variability
of static measurements made on statistically equivalent
contacts [13, 14]. In particular, such a variability is ex-
pected to be much smaller than the characteristic am-
plitude of the two antagonist topographies. Our results
are limited to single-point contacts, when the two solids
are brought into contact through normal translation. In
the case where a slider would be free to tilt, it would,
under gravity, settle on three contact points to satisfy
isostatic equilibrium. Accounting for such an effect is an
interesting topic for a future work.

The fact that EVT nicely predicts the simulation re-
sults indicate that computationally expensive simulations
like those decribed here may not be necessary in the fu-
ture. Indeed, simple analytical formula (Eqs. 14- 15) or
semi-empirical expressions (Eqs. 16- 19) are sufficient to
evaluate most of the relevant statistical descriptors of the
roughness-induced normal motion. Our results thus fur-
ther extend the already large range of applicability of
EVT to rough contact situations.
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Appendix A: Surfaces parameter

For surfaces described with radial power spectrum den-
sities as shown in Fig. 2, the three first radial moments
M0, M1, and M2 have the following expressions:

M0 = 2πS0

(

k2l − k2L
2

− kαl (k
2−α
s − k2−αl )

α− 2

)

(A1)

M1 =







2πS0
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3 − kαl (k3−α

s −k3−α

l
)

α−3

)

if α 6= 3

2πS0
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3 + k3l (ln(ks)− ln(kl))

)

if α = 3
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M2 =
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s −k4−α
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if α 6= 4

2πS0
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k4l −k4L
4 + k4l (ln(ks)− ln(kl))

)

if α = 4

(A3)
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