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Condition monitoring and prediction of solution quality
during a copper electroplating process

Gerardo Emanuel Granados1 · Loïc Lacroix1 · Kamal Medjaher1

Abstract
This paper presents a method for the monitoring and prediction of the electrolyte quality during the process of copper 
electroplating. This is important in industry, as any deviation in the solution quality leads to a deterioration of the quality of 
the processed products. The aim of the study is to identify some physical parameters that are representative of the quality 
variation during the deposition process. These parameters are then tracked online to continuously assess the solution quality 
and predict its remaining useful life. To do this, the process behavior is first characterized to derive a nominal model and to 
identify the physical parameters that can be used to describe the aging variation in the electrolyte quality. The aging model 
is then explored to assess the current level of the solution quality and to predict its remaining useful life. The proposed 
method is verified using real data acquired from a specifically designed test bench. The obtained results reveal the efficiency 
of the method.

Keywords Condition monitoring · Fault prognostics · Prognostics and health management (PHM) · Remaining useful life · 
Copper electroplating process

Introduction

Electrochemical processes have been studied for a long time
since they are applied in several industries. Among them,
electroplating has played an important role in the material
development and surface treatment industries. Electroplat-
ing as a surface treatment method facilitates the provision of
functional properties such as corrosion resistance, changed
electrical properties, or weldability, to bulk materials using
coatings. The application fields of this process include per-
sonal electronic devices, hard disks, and mechanical parts.
For example, in the aeronautics industry, thinmultilayer plat-
ings of zinc, copper, nickel, and gold are used. In this case,
the copper facilitates the absorption of the internal forces
producedby the differences in the thermal coefficients.More-
over, copper plating is usually used as a preparatory layer to
ensure the adhesion of following layers. Copper deposition
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is a technology undergoing a contemporary resurgence due
to its application to integrated circuits (IC) and microfabri-
cation in the microelectromechanical system industry (Tsai
2014; Poon et al. 2000; Ming et al. 2010; Vaezi et al. 2013).

Most of the current works in the field of electroplating are
aimed at improving the microstructure and properties of the
deposit by changing the initial properties of the solution and
the electrochemical parameters (Paunovic and Schlesinger
2006) in accordance with nominal models. Recent studies
seek a better understanding of the processes involved dur-
ing plating in a solution (Yu et al. 2015). Some works aim to
describe aspects of the aging of chemical solutions, changing
the research focus not only to the resulting plating, but also
to the solution quality (Gabrielli et al. 2006, 2004, 2008). For
this purpose, and in order to guarantee acceptable solution
quality, it is necessary to continuously monitor the electro-
plating process to detect potential drifts, identify the causes,
predict the solution quality variation, and take appropriate
decisions accordingly. This can be achieved by implement-
ing Prognostics andHealthManagement (PHM) approaches.
PHM aims at developing tools, methods, and algorithms to
ensure the monitoring of system conditions, fault detection,
fault diagnostics, fault prognostics, and decision support.
In this field, several works are reported in the literature
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acterize the aging of those processes. Those aging models
can be combined with the nominal model presented in Pira-
toba Morales et al. (2010). For the present work, constant
values and known behaviors of the process were taken from
Schuldiner and Rosen (1972) and Takahashi (2000) in order
to present an aging model strongly supported by mathemat-
ical models. Beside the electrochemical process, the aging
process has been taken into consideration in the recent lit-
erature due to its complexity and criticality. The impedance
studies are considered relevant to future work but are not
within the scope of the current work.

This paper presents amethod that combines physicochem-
ical modeling and some steps of the PHM paradigm to define
and monitor various aging parameters relevant to solution
quality variation during an electroplating process. The pro-
posed method, merging both PHM and chemistry, creates a
new tool for tracking physicochemical process aging.

The paper is organized as follows. After the introduction,
“Proposed method” section presents the general overview
of the proposed method and describes its main steps. Sec-
tion “Application and results” presents the application of the
method to real data acquired froman experimental test bench,
and discusses the obtained results. Finally, Conclusions and
future work section concludes the paper.

Proposedmethod

The method presented in this paper deals with monitoring
and prediction of the solution quality of an electroplating
process. Indeed, knowing the solution quality at any partic-
ular moment in time is important because any deterioration
of the solution will result in a drift in the quality of the final
processed product. For this purpose, the authors propose to
combine both electrochemical knowledge and expertise, and
PHM. The main steps of the method are presented in Fig. 1.
First, the electrochemical process is studied and analyzed to
understand both its nominal and aging behaviors. This study
allows the identification of the physical parameters that are
worthy to monitor during the realization of the process, and
also enables the design of the experimental test bench that
can be used to verify and validate the method. The subsec-
tions in the following process diagram outline the steps and
their relationship to one another (Fig. 1).

Physicochemical process

The electrochemical process consists of the deposition of
copper on metal. It involves the adhesion of copper dissolved
in a copper sulfate bathwith the help ofH2SO4 (sulfuric acid)
to dissolve sulfate and obtain Cu2+. The SO4

2− enables the
production of a ductile copper coating.

(Gouriveau et al. 2016; Mosallam et al. 2013, 2016; Ragab 
et al. 2016a, b; Sikorskaa et al. 2011; Vogl et al. 2016). How-
ever, the majority of these works concern physical systems 
(rotating machines, wind turbines, batteries, cracks caused 
by fatigue, etc.) and only a few of the them focus on electro-
chemical processes (Imai and Kitabata 2009; Imai et al.  2009; 
Jaworski et al. 2011, 2013). This paper aims to fill this gap 
by proposing a method that uses the PHM paradigm to mon-
itor the quality of the solution in an electroplating process, 
detect potential drifts, and predict its Remaining Useful Life 
(RUL). In this case, the RUL corresponds to the time inter-
val during which the solution properties remain acceptable 
to accomplish the electrodeposition, without deterioration or 
degradation in the final product.

PHM works can be grouped into three main approaches: 
model-based, data-driven, and hybrid approaches. The 
model-based approach requires a thorough physical under-
standing of the system (or process) to derive analytical 
models that closely describe its dynamic behavior. The data-
driven approach is based on the utilization of the monitoring 
data provided by the sensors to extract relevant features 
and build health indicators that are then exploited to track 
the health state of the system and predict its RUL. Finally, 
the hybrid approach merges both previous approaches to 
take advantage of their respective benefits. Although the 
model-based approach gives more precise results than the 
data-driven approach, its implementation is difficult in prac-
tice due to the complexity of the systems and the difficulty 
involved in obtaining precise and exploitable physical mod-
els.

This paper deals with condition monitoring and RUL pre-
diction in an electroplating process. The proposed method 
combines electrodeposition expertise with experimental data 
obtained from a test bench specifically designed and realized 
for this work. The aim is to monitor and track the parameters 
which correlate with the solution quality variation and the 
degradation during the electroplating process. These param-
eters are defined from the nominal and aging models of the 
process.

The first analytical aging models of electrodeposition were 
proposed around 1899 (Paunovic and Schlesinger 2006), 
based on Butler–Volmer kinetics, Faraday’s law, and Tafel’s 
law. The reported models were used later in general pro-
cesses, and in particular those that are of interest for this 
work. As far as the authors can determine, the aging process 
seems to be a new purpose field with recent progress in mod-
els for electrolytic cells, and with new approaches to their 
study such as frequency domain characterization (Yu et al. 
2015; Macdonald et al. 1998; Gabrielli et al. 2007). The IC 
industry has led a few studies about solution aging produced 
by organic components. Gabrielli et al. 2004, 2006, 2008 
proposed different models to calculate the aging process, 
including some parameters that would quantitatively char-



Fig. 1 Main steps of the proposed method

Fig. 2 Electrochemical deposition principle

Table 1 Process parameters

CuSO4, 5H2O concentration 250 g/L

H2SO4 concentration 75 g/L

Temperature Controlled

Cathodic current density 1–10 A/dm2 (galvanostatic)

Agitation Mechanical

Anodes Inert metal

Faraday efficiency (Fe) 0.95–1

pH Lower than 3

The nominal process is illustrated by Fig. 2 and the cor-
responding parameters are listed in Table 1.

Note that surface preparation is a key step in the coating
processes to obtain the best conditions for the electrochem-
ical reactions and optimal and reproducible deposits. For
example, aluminumsubstrates need specific scouring to elim-
inate the oxide layer. To avoid any artefacts due to the surface
preparation, the authors have chosen copper as a substrate
compatible with the study of only physicochemical coating
process parameters.

Nominal model

When an electrode is part of an electrochemical cell through
which a current is flowing, its potential will differ from the
equilibrium potential (Eq. 1):

η � �φ(i) − �φeq (1)

where �φ(i) is the potential resulting from the external cur-
rent flow, and�φeq is the equilibriumpotential in the absence
of external current.

The overpotential η is composed of partial potential
reactions: charge transfer, diffusion, chemical reaction, and
crystallization. In this case, charge transfer will be consid-
ered the slowest reaction and will therefore determine the
overall reaction rate.

Given the above consideration, it is possible to demon-
strate the Butler–Volmer equation (Paunovic and Schlesinger
2006) (Fig. 3) that gives the relationship between current den-
sity and charge transfer potential in terms of two parameters
(Eq. 2):

i � i0
[
e

(1−α)nF
RT η − e− αnF

RT η
]

(2)

where i0 is the equilibrium current density, α is the transfer
coefficient (its value is between 0 and 1), n is the number
of electrons transferred, F is the Faraday constant, R is the
perfect gas constant, and T is the temperature in Kelvin.

Two approximations of Eq. 2 can be used in the case of
low overpotential (less than 10 mV) and high overpotential.
The low-overpotential equation takes the form i(η) � aebη,
and the high-overpotential equation takes the form of a linear
function, η(i) � a log i .

The equilibrium potential in Eq. 1 is determined by the
Nernst equation:

�φeq � �φ0 +
RT

zF
ln

aOx

aRed
(3)



∶ number of electrons transferred across the electrode-
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Fig. 3 Variation of partial redox current densities (dashed lines) and net current density (solid line) versus overpotential (Paunovic and Schlesinger
2006)

where aOx and aRed are the chemical activity of the oxidized
and the reduced species respectively (equal to the concentra-
tion of the oxidized species, and to 1 for the metal).

The following equation describes the relationship between
the exchange current and the concentration:

i0 � zFk0[Ox][Red] (4)

where k0 is the kinetic constant of the reaction, and [Ox] and
[Red] are the concentration of the oxidized and the reduced
species respectively. In the case of acid copper plating, k0 is
equal to 1.10−4 cm/s (Takahashi 2000).

Finally, considering that a current–potential curve can be
approximated by a linear law in low over-potential and using
the Tafel relation for the transfer coefficient, α can be deter-
mined experimentally as follows:

b � 2.303RT

(1 − α)zF
� �η

� log|i | (5)

parameters within a defined frequency (preventive mainte-
nance). Generally, the factors that indicate the electrolytic
bath is in a poor state are: excess H2SO4, missing H2SO4,
overly high bath temperature, lack of copper in solution,
anodes turned to passives, inorganic contamination, and the
presence of organic products. In practice, the last three
parameters cannot be monitored.

Coating factors

Coating properties depend on many parameters, such as
the distribution of current lines in the electrolyte, cathodic
current density, bath agitation and temperature, saline con-
centration, pH, hydrogen concentration, bath composition
and concentration, scouring, water ohmic resistance, lack of
filtering, and bath contamination.

Coating defects can lead to product failure during service,
due to the fact that the product’s properties do not corre-
spond to the expected ones. These defects can be detected
by observing the surface aspect, and determining if there is
poor adherence, thinness, or corrosion of the coated product.

In practice, each factormentioned above requires the coat-
ing process to be halted. As such, it is important to monitor
both the bath and the coating results. Several methods can
be employed to do this. In this study, the proposed method
aims to identify parameters to which the process is suitably
sensitive and that are sufficiently representative of the aging
process of the solution and the quality of the coating surface.

Parameter variationmodels

Aparameter variationmodel is proposed to select oneormore
parameters to monitor and study its variation and relation
to the aging process. This model is derived from the nom-
inal model and the failure studies documented in previous
research (Paunovic and Schlesinger 2006). In this section, a
short overview of previous research is presented. Two possi-
ble solutions are presented as an analytical model and as an

The value of i0 (Eq. 4) can be determined from the graph in 
Fig. 3 by extrapolating the curves to η � 0, when log i � 
log i0. The constant is obtained by fitting the log(i) versus  η 
curve.

Aging model

The aging process is complex and there are many factors that 
can affect it. A poor-quality coating may reduce the useful 
life of the processed product, due, for example, to corrosion, 
or fatigue rupture.

Solution factors

Solution aging can occur due to parameters variation dur-
ing service or by secondary reactions that may lead to the 
degradation of products, as it directly affects the final coat-
ing properties (Dini and Snyder 2010). The quality services 
in industries perform maintenance control checks of these



Fig. 4 Analytical and experimental parameter variation models

experimental parameter variation model (Fig. 4). The ana-
lytical model is close to the nominal model described above.
Conversely, the experimental parameter variation model,
based on electrochemical impedance and the equivalent elec-
trical circuit theory, shows a complete characterization of the
aging process but with a complex relation to the nominal
model (Gabrielli et al. 2004, 2006, 2008).

The analytical model presented in Eqs. 3 and 4 provides
a way to monitor the Cu2+ concentration in the solution. In
this model, it is possible to describe the current or potential
variation related to the concentration. This work focuses on
the most sensitive aging process rather than any others men-
tioned in the literature (Dini and Snyder 2010). In this study,
the pH dependency is not considered high if it falls between
the acceptable upper and lower limits. Also, the temperature
is not considered to be a factor because its range variation
during the process will be small. Finally, the acid copper
solution is more tolerant of ionic impurities than many other
plating solutions.

Drawing on the works outlined above, the authors present
a method to reveal the solution aging and thus the process
quality status.

TheButler–Volmer equation,Nernst equation, and density
current to concentration dependency are used to track the
Cu2+ concentration (Fig. 5).

The constants in the equation can be experimentally found
or obtained from tables. The parameters that would change
with the concentration are marked with an arrow, and their
corresponding laws are shown. This model represents the
expected response of the process to different copper concen-
tration values.

The second method that can be used to model electro-
chemical interfaces considers the process that occurs in the
interface between the metal and the electrolyte as a compo-
nent of an electrical circuit. The Electrochemical Impedance
Spectroscopy (EIS) method considers the electrochemical
impedance of the electrode (voltage/current ratio) as a trans-
fer function (Gabrielli et al. 2006), and uses the frequency
domain. This is an experimental model that requires valida-
tionwith respect to the process, aswell as correlation between
the components of the model and the real physicochemical
behavior (Gabrielli et al. 2006; Macdonald et al. 1998). The
theory of the reactions and their effects on the process is
complex. Some publications have worked on the relation of
the electrochemical impedance output and the actual degra-
dation with complex mathematical models (Gabrielli et al.
2006) or by using experimental correlation (Yu et al. 2015).

Models based onEIS require full knowledge of the process
and its reactions, and as such, none of these methods were
used here to investigate the parameter monitoring.

In this work, the analytical aging model is chosen as
the final aging model. The experimental model, based on
electrochemical impedance, is discarded because it lacks a
validation method linked with the nominal model.

Application and results

Experimental platform

An electrochemical platform is designed to measure and
impose the current and the potential. This experimental plat-

Fig. 5 Equations used to monitor the parameters’ variation



Fig. 6 Test bench

form is composed of an electrochemical cell, connectors for
electrodes, an acquisition software EC-Lab with the capacity
to create experiments to be performed online, and a bipoten-
tiostat (Fig. 6).

The cell temperature is controlled by an automatic water
thermostat table. The deposition process is monitored by a
potentiostat, connected to a PC to acquire the data. The poten-
tiostat can impose the current for the deposition and also
measure the potential during the experience. All potential
values are measured in reference to a calomel electrode.

The EC-Lab acquisition software is used to interact with
the electrochemical process and measure the parameters of
interest. EC-Lab can run any MATLAB script in between
the experiments in order to perform the analysis of the data
and show the output via a Graphical User Interface (GUI),
presenting acquired data information and analysis such as
current values and predictions.

Working hypotheses

In this work, the authors investigate the following statements.

• The cooper concentration level is a risk for the plating pro-
cess. The process is based on the copper reduction on the
surface of the cathode. This converts the copper to a solid
state and thereby creates a thick film of copper coating. In
case of absence of copper(II) on the surface, the process
becomes impossible and the plating fails. The tendency of
this parameter should be a negative exponential, for which

the order is unknown, related to the Faraday law of the
speed of the reaction.

• The mathematical model describes the relationship
between the concentration and the measurable parame-
ters. The potential measured between the cathode (coat
surface) and the reference electrode is dependent on a vari-
ety of parameters. One of those is the copper concentration
on the surface during the process. This parameter can be
isolated by keeping all the other parameters (geometry,
surface reactive additives, pH, chloride presence, passivity
of the anode, and changes in temperature) constant. This
also means that, during the process, any control or regen-
eration is performed only in order to see the variation of
the monitored parameter.

• Contaminants are not considered. Contamination causes
changes in the parameters of the equation used in this
parameter variation model. The process is independent of
this kind of aging and the parameter considered here is
only the copper concentration. Moreover, some contami-
nants can cause secondary reactions that lower the copper
concentration.

Measured parameters

In the nominal process, the concentration values are mea-
sured in order to find the relation between the chosen
parameter to bemeasured and the process parameter which is
representative of the aging. As shown in Fig. 7, the potential
is the monitored parameter and the copper concentration at
the cathode surface is the aging parameter.



Fig. 7 Comparison between the monitored parameter (top) and the
aging parameter (bottom)

The nominal model presented in “Nominal model” and
“Parameter variation models” sections is used to calculate
the nominal and aged values.

By adding the overpotential η, shown in Fig. 8, and the
potential E0, it is possible to obtain a third parameter that
facilitates monitoring (E). Concluding this section, it is evi-
dent that the variation of themonitored value is small (around
300–400 mV). This means that any noise (generally tens of
millivolts) higher than this value should be filtered during
the data acquisition stage. It is also necessary to select a low
voltage working point to make the variation relevant given
the nominal voltage value.

The selected model is valid for η values higher than
100 mV, which means that the variation of the monitored
value can represent as much as 400% or lower of the nomi-
nal value (see the working point in Fig. 9).

Fig. 8 Variation of the parameters in the Tafel curve and effect of the copper concentration on the transfer current and potential E



Fig. 9 Working point in Tafel equation

Agingmodel and RUL estimation

The prediction model consists of an exponential regression
updated for each new point acquired. Its coefficients are
calculated for best fit to the last recorded data. Once the
regression model is obtained, the monitored parameter val-

ues are calculated in order to obtain the RUL value (Fig. 10).
This is achieved using the fit function inMATLAB. The kind
of function selected to fit the aging model formula is related
to the physical Faraday formula that describes the speed of
reactions. The variation of the monitored parameter is linked
to the reaction speed, and so the aging model that can best
represent this variation is in fact the same model that rep-
resents the concentration variation. The implication of this
aging model is that the concentration law is also a double
exponential.

Experiments

Conducting experiments allowed the validation of the theory
framework and the evaluation of the hypotheses presented
in this work. The ultimate goal was the validation of the
parameter variation model and the calculation of RUL values
(Fig. 11). The following subsections present the validation
of the double exponential model.

Fig. 10 RUL estimation using the supervised value
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Fig. 12 Tafel fit to obtain the parameters for the parameter variation model

Fig. 13 Chronovoltammetry to characterize the process

Fig. 14 Copper deposit: surface
approximately 10 mm2, and
approximately 5 mm thick

Procedure description

The cell is prepared for every experiment with the same
concentration of CuSO4 and H2SO4. The working electrode
surface is polished to avoid adherence problems. The pH is
always kept lower than 3.

During the process, a Tafel fit (provided by the EC-Lab
software) is performed to obtain the initial conditions: i0, E°,

C2+ concentration, and α (Fig. 5). After this, and with the
initial values, the model is run in MathCAD to determine
the potential limit at which the concentration variation drops
down to zero. The threshold for the RUL calculation (the
results of which are presented in “Application and results:
RULcalculation” section) is established as 50%of this poten-
tial variation. This threshold is applied to themonitored value
(potential between the reference electrode and the working



Table 2 List of experiments Experiment File name Duration (min) Temperature (°C) RUL calculation

1.1 Constantcurrent10 6697 20 –

1.2 Constantcurrent11 7708 20 See Fig. 18a

1.3 Constantcurrent12 4202 20 –

2.1 Constantcurrent13 3667 22.5 See Fig. 18b

2.2 Constantcurrent14 7583 22.5 –

2.3 Constantcurrent15 5000 22.5 –

3.1 Constantcurrent16 25 See Fig. 18c

3.2 Constantcurrent17 25 –

3.3 Constantcurrent18 25 –

Fig. 15 Experimental campaign 1—T: 20 °C

three times per temperature condition, to detect variability
in the results. In total, nine experiments are conducted. To
reduce the run time of the experiment (and thereby get a result
faster), the initial concentration of the solution is kept low:
only 6.6% of the nominal value (“Physicochemical process”
section).

The first experiment is used to corroborate the parameters
of the process and for comparison with the nominal model.
After the Tafel fit (Fig. 12), the parameters for the parameter

Fig. 16 Experimental campaign 2—T: 22.5 °C

electrode). Chronopotentiometry is performed to record the 
potential every 1 s and the data are written to a text file created 
on the hard disk of the computer connected to the potentio-
stat. The experiment stops after the potential limit calculated 
by the parameter variation model is achieved. The current 
density is fixed at around 100 A/m2 in all the experiments, 
so as to be in the Tafel area of the I versus E curve.

Three experimental campaigns are carried out, each using 
a different working temperature, and all the steps are repeated



Fig. 17 Data and model with R-squared coefficient for experiments 1.2 (a), 2.1 (b) and 3.1 (c). The raw and the filtered data are shown on the top.
Two fitting options are shown in the bottom for each subfigure: simple exponential fitting and double exponential fitting



Table 3 Prediction model for each experiment. The threshold is the value to reset to the initial potential of the experiment

Experiment Prediction model Coefficients R-squared Threshold for RUL
calculation

1.1 f (t) � aebt + cedt [V ] a�−0.12 c�−4.2e−06 0.953 −170 mV

b�−2.2e−06 d�2.8e−05

1.2 a�−0.063 c�−2.8e−07 0.998 –

b�−8.2e−07 d�3.1e−05

1.3 a�−0.19 c�−8.3e−06 0.971 –

b�−2.7e−06 d�4.1e−05

2.1 f (t) � aebt + cedt [V ] a�−0.20 c�−4.6e−07 0.975 −270 mV

b�−4.6e−06 d�3.5e−05

2.2 a�−0.10 c�−4.6e−07 0.981 –

b�−2.1e−06 d�3.5e−05

2.3 a�−0.11 c�−5.3e−04 0.985 –

b�−1.2e−06 d�2.4e−05

3.1 f (t) � aebt + cedt [V ] a�−0.11 c�−5.3e−04 0.990 −198 mV

b�−1.2e−06 d�2.4e−05

3.2

3.3

As outlined in “Experimental platform” section, a MAT-
LAB program (or script) is developed for the data processing
and analysis, and is responsible for a number of functions
outlined here. The original frequency is set to 1 point per
second and the script analyses the data at a frequency equal
to 1 point perminute. Signal clipping is performed, removing
the first 5 h of experimental data to exclude any initial noise
when calculating the prediction model. The script clips the
end data where the signal is stable, as these are of no use to
the prediction model. It is also responsible for filtering the
data, using a media filter with an order of 500 (meaning that
each filtered data point is calculated using the average of its
500 neighbor points, representing around 20% of the total
points). The last task performed by the script is obtaining
the prediction model with its parameters. Goodness of fit is
evaluated by the R-squared parameter, which is always kept
higher than 0.95 when the complete data per experiment are
used. The derived model is similar to that shown in the pre-
vious section. Figure 17 presents the results obtained after
running the script with the whole data series.

The R-squared fitting parameter is mostly stable and
is always over 0.91 during the calculations, which indi-
cates a good fit for the data and a representative prediction
model. These results show how the selected predictionmodel
updates its coefficients to best fit the online measurements.
As expected, the model represents an exponential decrement
showing a second-order reaction speed.

Finally, the analysis of the parameter values of the predic-
tion function, which are close to each other, confirms that the

variation model shown in “Parameter variation models” sec-
tion are set, and a threshold is obtained for each experiment.

Firstly, the correctness of the average value of the expected 
voltage limit is corroborated using the chronovoltammetry 
curve in the reduction stage. Figure 13 presents the chrono-
voltammetry data that facilitated the characterization of the 
process. It reveals a 392 mV diminution that can be com-
pared with the 380.16 mV of the parameter variation model 
analysis. The time elapsed from the starting concentration of 
100% to the ending concentration of 0% is 80 h.

Figure 14 presents the electrode surface after the electro-
plating process, revealing the copper deposit.

Application and results: RUL calculation

After model verification, the test bed is run for approximately 
200 h per experiment to obtain a degradation variation of the 
solution quality. At the end of each experiment (Table 2), we 
can verify the parameter tendency and correlate this to the 
expected values of the monitored parameter. The solution is 
transparent at the end of each experiment, which verifies the 
absence of Cu2+.

During the experiments (Figs. 15, 16), the plating changes 
the surface, making it bigger and providing more active areas 
to reduce the copper ions. This effect creates a positive ten-
dency of the monitored parameter that was not taken into 
account. Furthermore, variation of the aging parameter is 
expected at the end of the experiment, but with a different 
starting value.



Fig. 18 RUL calculation with parameter variation during the calculation for experiments 1.2 (a), 2.1 (b), and 3.1 (c)



cause these problems and starts RUL calculation again at the
next unproblematic point. To do this, derivative values are
continuously calculated and analyzed to confirm the data ten-
dency at the beginning and during all the calculation. Indeed,
the RUL estimation is launched only after observing that the
solution quality is decreasing, which is verified by a negative
tendency in the curve representing its time evolution. These
security measures avoid the script crashing and allow it to
decide where to continue. At the end of the calculation, the
RUL and the variation of the prediction model coefficients’
tendency are obtained (Figs. 18, 19).

The first (top) graphs in Figs. 18a–c show the result of
the RUL calculation for the experiments 1.2, 2.1, and 3.1.
These figures show that the RUL calculation does not start
from time zero, but after a negative tendency is observed
in the experimental data. This corresponds to 2.4×105 s,
1.55×105 s, and 1.6×105 s for experiments 1.2, 2.1, and
3.1, respectively. The results in Fig. 18 also show fluctua-
tions in the estimated RUL, especially at the beginning of
the estimation. This is normal as the behavior of the solu-
tion, and consequently its quality, changes over time. Finally,
among the three estimated RULs, the first two are shown to
be the most stable over time, and more particularly when the
experiment approaches its end.

Fig. 18 continued

double exponential model represents the aging of the elec-
trochemical process well (Table 3).

Another script is run to calculate the RUL of each experi-
ment per campaign. This script creates a GUI output during 
the calculation that allows to monitor the experiment and see 
the data together with the prediction function and the thresh-
old position. The goal is to simulate an online acquisition 
by showing the RUL versus time graph. After the experi-
ments, this script is run with the clipped and filtered data 
obtained from the previously described script. Alternatively, 
the online acquisition data can be read directly from EC-Lab 
with this script by filtering the online data. An estimation of 
the RUL is made every 60 s and calculated to a 60 s preci-
sion. Due to the fitting script limitations, the first 10 points 
are not predicted but are used to start the fitting and seed 
the subsequent predictions. A part of the script controls the 
constant analysis of the acquired data to avoid two poten-
tial prediction failures that could halt the program. The first 
such failure is where a large RUL value is obtained due to 
the low negative tendency of the prediction model. This is 
a computing time limitation because the prediction function 
is calculated versus time until it reaches the threshold. The 
second such failure is where the prediction model develops a 
positive tendency and hence the function can never reach the 
lower threshold. The script jumps past any points that might



Fig. 19 R-squared variation during the calculation for experiments 1.2, 2.1 and 3.1 (from top to bottom)

It is noteworthy that the obtained data and results show a
weak impact of temperature increase on the total duration of
the experiments and consequently on the RUL. The param-
eters of the prediction function, a, b, c, and d are variable
during the calculation as shown in Fig. 18. Nevertheless, the
RUL calculation seems more stable at the end than at the
beginning. This classic behavior indicates that the prediction
becomes more reliable with time.

Conclusions and future work

The present work has shown the effectiveness of monitoring
and predicting the solution quality in an electroplating pro-
cess, with a RUL assessment. This was achieved by selecting
a set of parameters, to represent the aging process, and mon-
itoring the potential variation during the plating to assess the
concentration variation in the solution (the selected aging
parameter). The monitored parameter variation with time
is low, and the data acquisition platform must be accurate
enough to capture small changes, which was achieved in
this study. The proposed method was verified and validated
offline on acquired experimental data, but it can also work

online during the process operation. One approach to achiev-
ing this is to use prediction tools that can estimate online the
model parameters, such as Particle Filter. This tool uses the
online observations to update the model parameters, repeat-
ing the process continuously and using the obtained updated
model to assess the current state of health and predict the
RUL.

The aging model requires knowledge of the process con-
stants before starting to monitor them. This means that
monitoringmust be continuous, otherwise the process should
be recharacterized when restarted. In our case, the charac-
terization is enabled by the Tafel curves calculated at the
beginning of each experiment.

The plating surface morphology is another aging parame-
ter. If the surface changes, such as occurrence of micrometric
porosity or specific surface variation, then the measured
potential could change. In such cases, if consequent variation
of the surface area occurs, the model should be corrected by
using the Faraday equation.

Other parameters can be added and modelled, such as
secondary reactions produced by additives or contaminants
at the surface appearing when the aging duration is long.
As presented in the introduction, EIS and equivalent elec-



trical circuit theory could be another way to monitor with
new PHM methods, since it allows the integration of more
aging parameters at once (such as polarization resistance,
electrolyte resistance, and kinetic constants of each of the
electrochemical reactions considered).

In conclusion, in this study a PHM method was applied
successfully to global copper electroplating, which offers
possibilities for manufacturing using local electroplating as
a micro-additive layer and using the proposed method for
monitoring.
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