Dual control of Kinesin-1 recruitment to microtubules by Ensconsin in Drosophila neuroblasts and oocytes - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Development (Cambridge, England) Année : 2019

Dual control of Kinesin-1 recruitment to microtubules by Ensconsin in Drosophila neuroblasts and oocytes

Résumé

Drosophila Ensconsin (also known as MAP7) controls spindle length, centrosome separation in brain neuroblasts (NBs) and asymmetric transport in oocytes. The control of spindle length by Ensconsin is Kinesin-1 independent but centrosome separation and oocyte transport require targeting of Kinesin-1 to microtubules by Ensconsin. However, the molecular mechanism used for this targeting remains unclear. Ensconsin contains a microtubule (MT)-binding domain (MBD) and a Kinesin-binding domain (KBD). Rescue experiments show that only full-length Ensconsin restores the spindle length phenotype. KBD expression rescues ensc centrosome separation defects in NBs, but not the fast oocyte streaming and the localization of Staufen and Gurken. Interestingly, the KBD can stimulate Kinesin-1 targeting to MTs in vivo and in vitro We propose that a KBD and Kinesin-1 complex is a minimal activation module that increases Kinesin-1 affinity for MTs. Addition of the MBD present in full-length Ensconsin allows this process to occur directly on the MT and triggers higher Kinesin-1 targeting. This dual regulation by Ensconsin is essential for optimal Kinesin-1 targeting to MTs in oocytes, but not in NBs, illustrating the importance of adapting Kinesin-1 recruitment to different biological contexts.
Fichier principal
Vignette du fichier
Métivier-2019-Dual control of Kinesin-1 recruitment to microtubules by Ensconsin.pdf (19.04 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02110975 , version 1 (18-07-2019)

Identifiants

Citer

Mathieu Métivier, Brigette Monroy, Emmanuel Gallaud, Renaud Caous, Aude Pascal, et al.. Dual control of Kinesin-1 recruitment to microtubules by Ensconsin in Drosophila neuroblasts and oocytes. Development (Cambridge, England), 2019, 146 (8), pp.dev171579. ⟨10.1242/dev.171579⟩. ⟨hal-02110975⟩
122 Consultations
11 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More