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Equilibrium fluctuations of dislocations are central to the plastic response of metals and alloys because
they control the attempt frequency of thermally activated events. We analyze here atomic-scale simulations
of thermally vibrating dislocations with the help of an analytical model and show that thermal fluctuations
intimately involve both long-range elasticity and short-range core effects. In addition, equilibrium fluctuations
of edge and screw dislocations in aluminum are used to derive quantitative parameters that characterize
their energetics and dynamics and we discuss how large-scale models such as dislocation dynamics can be
parametrized based on these results. In particular, we show that the core parameters found here through
fluctuations are transferable and can be used to predict dislocation bow-out under an applied stress.

DOI: 10.1103/PhysRevB.98.174115

I. INTRODUCTION

Dislocations are linear defects responsible for the plastic
flow of metals and alloys. While an important body of work
has focused on their athermal properties (core energy, lattice
friction, elastic interactions, stress-induced curvature, etc.)
[1-4], their behavior at finite temperatures remains only par-
tially explored. While recent progress was obtained on the free
energy barrier against dislocation motion [5,6], dislocation
thermal vibrations remain poorly understood despite their
importance in setting the attempt frequency of thermally acti-
vated dislocation processes such as dislocation movement in
solution-strengthened alloys, kink-pair nucleation, and cross
slip [7,8].

Dislocation vibrations were the subject of the seminal
works of Friedel [9] and Granato and Liicke [10], who
modeled a dislocation based on the simplifying assumption
that it behaves like a vibrating string characterized by a line
tension I' and an energy E = I'¢, with £ the dislocation
length. At thermal equilibrium, the mean square amplitude of
a vibrational mode is then inversely proportional to the square
of its wave vector k (see, e.g., Ref. [11]), a consequence of the
equipartition theorem. Such dependence was measured using
molecular dynamics (MD) on fluctuating solid/liquid inter-
faces [12]. Using this so-called capillary fluctuation method,
the analysis of solid/liquid interfacial fluctuations has been
used to assess the solid/liquid anisotropy [12,13] and the
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kinetics coefficient [14], necessary to parametrize quantita-
tively phase-field models of solidification [15]. In contrast,
it was shown that thermal fluctuations of grain boundaries
follow a different scaling because of the long-range elastic
interactions induced by their fluctuations [16,17].

As for dislocations, a line tension model accounts only
for short-range effects and ignores their long-range elastic
interactions. The latter may affect the vibrational spectrum
and hence the attempt frequency of thermally activated events
[18]. In this paper, we use face centered cubic (FCC) alu-
minum as a benchmark and study from the atomic scale the
vibrational spectrum of edge and screw dislocations. We find
a 1/k* dependence but only at short wavelengths where core
effects dominate, while a different scaling in 1/ (k2 log(ko/ k)]
is obtained at long wavelengths due to long-range elasticity, in
accordance with previous works [19,20]. The spectra can be
fully explained by modeling core effects with a line tension
and elasticity with the nonsingular theory of dislocations of
Cai et al. [21]. This theory avoids the core singularity by
spreading the Burgers vector over a finite distance called
the core parameter. Fitting the vibrational spectra against
our analytical model allows us to extract character-dependent
core parameters and line tension coefficients. The reliabil-
ity and transferability of these parameters are demonstrated
by reproducing dislocation bow-out under an applied shear
stress. Moreover, analyzing the time-correlations of the vi-
brations, we obtain wavelength-dependent mass and damp-
ing coefficient for both dislocation characters. Use of these
parameters in mesoscale dislocation dynamics (DD) mod-
els [22-24] as well as in recent attempts to model thermal
fluctuations of crystalline defects as Langevin forces [25] is
discussed.

©2018 American Physical Society
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FIG. 1. Normalized elastic energy of a sinusoidal perturbation on
screw and edge dislocations compared to numerical calculations (thin
lines with symbols). The total energy E,; + E., is shown as dashed
lines for values of the line tension reported in Table II.

II. ENERGY OF A PERTURBED DISLOCATION

We consider an infinite dislocation line of Burgers vector
[bs, be, 0] (see Fig. 1) and a core parameter a that represents
the core spreading distance in the nonsingular dislocation
theory [21]. We assume a perturbation h(x), L periodic
in the x direction, expressed as a Fourier series h(x) =
Zﬁ“‘ijax Cpe’™* where k, = 27n/L and C_, = C* [h(x)
is real]. We do not consider fluctuations out of the glide
plane because at large wavelengths, they would involve climb
[26] and at small wavelengths, they would correspond to
line tension terms independent of the in-plane fluctuations.
Within isotropic elasticity, and assuming that the perturbation
varies slowly [i.e., Vx, h'(x) < 1], the excess self-energy due
to the perturbation can be expressed analytically within the
nonsingular theory of dislocations as

Nimax

_ & 2
Ea(h) = 3 X_]jicel(kmcu e
with /C,; an elastic stiffness expressed as:

Kei(k) = ﬁ{ — (2631 = v) + b))

+a*k*Ko(ak)(2b] — vb) + ak

20201 _
x Kl(ak)[(3 — V)b — b§<1 - WH

2
- azszz(ak)<w - b§> } 2

where p and v denote the shear modulus and Poisson
ratio, and K; (i =0, 1, 2) are modified Bessel functions of
the second kind (see Sec. 1 of Ref. [27] for details of the

calculations). We note that this analytical solution assumes
isotropic elasticity. Generalizing our approach to anisotropic
elasticity would require the use of a numerical approach (see,
e.g., Refs. [24,28]).

In addition to the elastic contribution, we account for the
core energy of the perturbation using a line tension model.
As shown previously [2,29,30], this contribution allows us
to account for the additional energy due to the nonlinearities
in the core region that cannot be accounted for with linear
elasticity. The energy E.,(h) has the same form as Eq. (1) and
a stiffness (see Sec. 2 of Ref. [27])

Keo(k) = 2Tk, A3)

To assess the domain of validity of Eqs. (1)—(2), we con-
sider a sinusoidal perturbation 4(x) = A sin(kx). We compute
the elastic energy in Eq. (1) and compare with a numerical
estimate obtained from the interaction energy between straight
segments of the discretized dislocation line [21]. We consider
here a dislocation length L = 400 A with elastic parameters
of aluminum (v = 0.34, u = 29.8 GPa). As shown in Fig. 1,
the numerical solutions converge towards the prediction of
Egs. (1)~(2) in the limit of small amplitude A or small wave
vector k. It is worth mentioning that the elastic energy of
a screw dislocation grows faster with k than for an edge
dislocation due the different nature of elastic interactions.
We also note that for large wave vectors, the elastic energy
becomes negative. This occurs for ka 2 1, which is when the
wavelength of the fluctuations becomes of the order of the
core parameter, i.e. in a region where spreading the Burgers
vector may lead to artifacts [31]. The potential instability
associated with a negative elastic energy is, however, coun-
terbalanced by the core energy in Eq. (3) (see dashed lines
in Fig. 1), which increases as k2 and far exceeds the elastic
energy at large k.

Vibrational spectra are predicted from the dislocation en-
ergy using the equipartition theorem. Adding both the core
and elastic contributions yields the total energy of a perturbed
dislocation, expressed in the same form as in Eq. (1) but with
the total stiffness IC = C,; + K., Since the energy is the sum
of quadratic contributions of independent degrees of freedom
(two terms per Fourier mode because C, is complex), the
equipartition theorem ensures that at thermal equilibrium:

2kpT

2y
(ICul7) = K

“

III. MOLECULAR DYNAMICS SIMULATIONS
AND POWER SPECTRA

In this section, we compare the prediction of Eq. (4)
with MD simulations. We chose FCC aluminum because of
its near isotropic elasticity and the availability of a reliable
interatomic potential [32]. For both screw and edge characters,
adislocation dipole is initially introduced in a large simulation
cell through its displacement field [2,29,33,34]. The position
of the dislocations in the cell was chosen such that the interac-
tions between the dislocations of the dipole and their periodic
images is reduced to a minimum (see Fig. 2). The dimensions
of the periodic cells reported in Table I were selected to keep
comparable dislocation lengths and interdislocation distances
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(b)

FIG. 2. Visualization of the simulation cell used for the (a) screw
and (b) edge dislocations (only the atoms having a HCP stacking that
belong to the stacking fault are shown).

for both characters. We then performed long MD simulations
with LAMMPS [35] in the microcanonical (NVE) ensemble to
generate a large number of dislocation configurations.

The dislocation position was estimated using the common
neighbor analysis (CNA) implemented in LAMMPS: the atoms
belonging to the stacking fault between the two partials are
detected as having a hexagonal (HCP) stacking. To improve
the estimate of the dislocation position, we also include the
atoms of the partial dislocation core defined as defective FCC
atoms, nearest neighbors of the stacking fault atoms. The
position of the dislocation is then obtained by averaging the
positions of the stacking fault and core atoms in equispaced
bins along the dislocation line.

We discuss here results obtained at 300 K, but we checked
that our methodology also applies at other temperatures (see
Sec. 5 of Ref. [27]). From ten independent 0.2 ns long simula-
tions, we extract about 20000 dislocation configurations, and
compute the vibrational spectra from their Fourier transform.
Figure 3 displays the resulting spectra for edge and screw
characters.

We first note that the power spectrum of the edge dis-
location is significantly higher than that of the screw, as
expected from the lower energy of a perturbation on an edge

than on a screw dislocation seen in Fig. 1. Two regimes can

e . . ¢ —1
be distinguished with a transition at around k ~ 0.5 A

(i.e., a wavelength ~13 A): large k fluctuations are domi-
nated by the core contribution and scale approximately as
1/ k2, while small k fluctuations show a different scaling
and are dominated by the elastic energy. As expected from
previous works [19,20], an expansion of Eq. (2) in the
limit ak < 1 shows a 1/[k?log(ko/k)] scaling displayed in
Fig. 3.

Furthermore, fitting the power spectra with Eq. (4) allows
us to determine the best choice of core parameter a and line
tension I" for both orientations. The fits were performed in the
central part of the spectra (full lines in Fig. 3) because the long

TABLE I. Dimensions of the molecular dynamics simulation cells.

character Nty Nuim N Naoms  Ly[A]l Lap[A]
SCrew 173 50 70 3633000 4954 245.5
edge 120 100 48 3441600 496.0 240.6

0
10°F g%

10—1 L o™

(ICuI?)A?]
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O o0 edge
103 Lo o screw

102

FIG. 3. Vibrational spectra obtained at 300 K for screw and edge
dislocations (symbols) and corresponding fits (lines) from Eq. (4).
Fluctuation amplitudes are averaged over a large number of configu-
rations such that uncertainties are smaller than the symbol size. The
dashed lines are guides for the eye representing asymptotic behaviors
in the limit of small and large wave vectors.

and short wavelength fluctuations are affected, respectively,
by long-range interactions with periodic images and the dis-
crete nature of the crystalline structure. The fits are of high
quality, showing that dislocation fluctuations can be faithfully
reproduced using the analytical model of Eq. (4).

Table II lists the parameters a and I" obtained from fitting
the power spectra obtained at 300 K. We also report here the
line tension computed at 0 K from static energy calculations
on straight dislocations (see Ref. [24] and Sec. 4 of Ref. [27]).
For straight dislocations, the choice of a is arbitrary [4,24] and
the 0 K line tensions in Table II were computed for the same
a value as found at 300 K. By way of contrast, the present
calculations yield a unique pair (a, I') for each orientation
because for fluctuating curved dislocations, a defines uniquely
the wavelength where long-range elasticity ceases to dominate
over core effects. We added in Table II the dissociation
distance d of edge and screw dislocations to highlight that
a increases with dy. The values of a obtained here therefore
capture the larger physical spreading of the edge dislocation
core compared to the screw. In addition, the line tensions
deduced from the fluctuation spectra are in good agreement
with the ones obtained at 0 K.

TABLE II. Fitted values of the core parameters and line tension
obtained at 300 K and comparison with dissociation distances and
line tensions obtained from molecular static simulations.

character screw edge
a (from fit) [A] 3.34 5.60
do (0 K) [A] (from [24]) 6.34 12.19
[ (from fit) [eV/A] 0.114 0.053
[, (0K) [eV/A] 0.134 0.085
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FIG. 4. Comparison between bow-out obtained from atomistic
calculations (atoms belonging to the stacking fault are shown) and
from the elastic model (continuous red line).

IV. TRANSFERABILITY TO DISLOCATION BOW-OUT

To check the reliability of our results and in analogy
with the fluctuation-dissipation theorem, we investigated the
bow-out of periodically pinned dislocations under a small
external stress, as considered in the past by Szajewski et al.
[4]. We considered as above dipoles of either edge or screw
dislocations but with a smaller length L &~ 130 A. A resolved
shear stress was applied by straining the simulation cells. The
dislocations are pinned by freezing the atoms located within a
distance d = b of the sides of simulation cell and belonging to
the dislocation core. Reasonable stresses below 110 MPa are
considered to remain in the limit of a small bow-out.

Figure 4 displays the averaged atomistic configurations
obtained for both screw and edge dislocations at 300 K.

To compare these atomistic results with our analytical
approach, we use the energy of a deformed dislocation dis-
cussed in Sec. II. We use the fact that the dislocation shape
is symmetric with respect to L/2 (see Fig. 4) to express the
dislocation shape as a sum of cosine functions:

Nrmax
hio(x) = Ao + Y Ay cos(kyx), )
n=1

where A is the average height of the dislocation. To en-
force the fact that the dislocation is pinned, we impose
h(x = 0) = 0 by the condition Ag = — Y™ A,,. The energy
related to the bow-out is given by Eqgs. (1)-(3) with C_, =
C, = A, /2 and an extra term to account for the work of the
Peach-Koehler force:

Epk = —AoL[(GabAlH)-ll]

= _AOprk
Nmax

=Lfp Y An, (6)
n=1

where I and I, are unit vectors lying in the slip plane of
the dislocation, respectively, parallel and perpendicular to the
straight dislocation line (see Fig. 4). In addition, to enforce the

fact that the dislocation position remains fixed on a length d
close to the sides of the cell, we add a Lagrangian multiplier
L{A,}) to the total energy to enforce h(d) = h(L — d) = 0.
Therefore, the energy of the dislocation is expressed as a
function of the coefficients A,;:

Etot({An}) = Eel({An}) + Ecn({An})
+ Ep({An}) + L({ALD). )

The equilibrium configuration of the dislocation is obtained
by minimizing this total energy with respect to the amplitudes
A, using a conjugate gradient algorithm.

Figure 4 shows the comparison between atomistic results
and elastic calculations for both screw and edge characters
with parameters taken from Table II. We first notice the very
good agreement between the molecular dynamics results and
elastic calculations for both characters. Slight differences can
be seen near the obstacles, due to the difficulty to impose
perfectly equivalent boundary conditions in atomistic and the
elastic models. On the other hand, the curvature of the dis-
locations is practically identical far from the blocked atoms.
Therefore, the parameters deduced from the analysis of fluc-
tuations at finite temperature can be directly used to predict
quantitatively bow-out configurations under finite stresses.

V. TIME-DEPENDENT BEHAVIOR

The dynamical behavior of the dislocations can be fur-
ther investigated by computing the time correlation of the
vibrational modes, (C, (0)C;(¢)) in connection with Langevin
models of defect dynamics [25]. In this case, the time correla-
tions should decrease following underdamped dynamics:

(CA(0)C(1)) = (ICul?) cos(wyt)e ™™, ®)

where the coefficients w, and t, are related to the effective
mass M, and drag coefficient B, of the Langevin equation
[36] (see Sec. 3 of Ref. [27] for details). Figures 5(a) and
5(b) confirm that the time correlations exhibit the expected
underdamped behavior for the screw and edge characters.
Using nonlinear fits, we obtained the drag coefficient and
effective mass displayed in Figs. 5(c) and 5(d). We note that
the fits are of better quality for the edge than for the screw
dislocation. We attribute this to the larger Peierls stress of the
screw (not accounted for in the present approach), that slows
down its dynamics and affects the fluctuation kinetics.

As expected from dislocation theory [1], the drag coef-
ficient of the screw dislocation is larger than the edge for
any wave vector. Figures 5(c) and 5(d) also demonstrate that
the drag coefficient and effective mass depend significantly
on the wave vector, showing that perturbations are dumped
more quickly for small wavelengths due to the increase of B
and decrease of M with k. In particular, the drag coefficient
of the edge dislocation depends linearly on the wave vector
and extrapolates to By = 13.4 uPa/s in the limit of infinite
wavelengths, close to the value obtained by Bitzek [37,38] for
straight dislocations. By way of contrast, the effective mass
does not depend significantly on the dislocation character and
decreases roughly exponentially with the wave vector [see
dashed line in Fig. 5(d)]. Using this crude fit, the extrapolation
to a straight line yields M, = 48 fg/m, again close to the
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FIG. 5. Examples of time correlation functions for the (a) screw
and (b) edge dislocation. (c) Drag coefficient and (d) effective mass
are shown as a function of wave vector and compared with data
obtained for a straight edge dislocation [37].

value reported by Bitzek (with a different method and at 30 K)
[37.,38].

VI. EXTRACTING PARAMETERS
FOR HIGHER-SCALE MODELS

In Sec. III, we have shown that reproducing accurately the
power spectra obtained from atomistic simulations requires
different core parameters for the edge and screw characters
(see Table II). This character dependence reflects the change
of core structure with dislocation orientation and the particular
difficulty to represent dissociated dislocations with perfect,
albeit spread, dislocations. However, the nonsingular theory
and its numerical implementation in DD codes require a single
character-independent value of a [21,22,39,40].

To obtain parameters compatible with the DD formalism,
the power spectra can also be fitted at long wavelengths by
enforcing a single value of a as shown in Fig. 6(a). We
then obtain a core parameter ¢ = 3.50 A and line tensions

1 1
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edge dislocation at 300 K and 74 MPa

20 40 60 80 100 120
screw dislocation at 300 K and 108 M Pa

FIG. 6. (a) Fit of the power spectra obtained at 300 K by enforc-
ing the same core parameter for the screw and edge characters. The
fit is only performed for intermediate wave vectors in between the
vertical dashed lines. (b)—(c) Comparison of bowing-out dislocation
shape between atomistic simulations at 300 K and two sets of
parameters: listed in Table II (red) obtained from the fit shown in
(a) (dashed blue).

coefficients I'y = 0.119 and I", = 0.0297 eV/A for the screw
and edge characters, respectively. While this fit does not
reproduce accurately the details of the fluctuations at small
wavelengths (<10 A), it reproduces satisfactorily the large
wavelength regime. In addition, as shown in Figs. 6(b) and
6(c), the bow-out obtained with this set of parameters (shown
with dashed blue lines) is essentially identical to the bow-out
obtained with character-dependent core parameters (shown in
red) because of the long wavelength involved in this bow-out.

Moreover, the k dependence of the mass and drag coef-
ficient pointed out in Sec. V cannot be accounted for in real
space implementations of DD. Because DD is often used to in-
vestigate mesoscale dislocation microstructures, much larger
than the dislocation lengths investigated here, this k depen-
dence could in principle be neglected. Then, limiting values
at large wavelengths can be used (M and By mentioned
previously) to investigate these large dislocation assemblies.
However, it is worth keeping in mind that these M, and
By parameters would not reproduce faithfully the dislocation
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dynamics when using DD to investigate mechanisms occur-
ring on nanometric scales [4,24,41-43].

VII. CONCLUSION

In conclusion, we propose here a method to analyze dislo-
cation fluctuations by means of an analytical approach. Our
analysis reveals the interplay between long-range elasticity
and short-range core effects and shows the necessity to ac-
count for both to reproduce faithfully the dislocation behavior
over a wide range of wavelengths. The reliability of the ob-
tained parameters is tested by showing that they can reproduce
very faithfully atomistic bow-out configurations. In addition,
analysis of the time correlations of the fluctuations reveals a
marked wavelength dependence of the dislocation dynamics.
Finally, we discuss how to extract reliable parameters that can
be used as input of higher-scale models such as dislocation
dynamics.

We note that we have considered here the thermal fluc-
tuations of isolated dislocations. They are not representative
of the temperature-dependent plastic behavior at the mi-
crostructural scale, which is often controlled by collective

effects [44-46]. Our work can, however, be used to
parametrized quantitatively DD simulations that are the ap-
propriate tool to study collective effects. Also, the analytical
expression derived here [Eqgs. (1)—(3)] can be used to investi-
gate quantitatively other dislocation processes: natural exten-
sions include thermally-activated processes such as kink-pair
nucleation in friction-limited dynamics, the cross slip of screw
dislocations or the thermally activated dislocation glide in
dilute or high-entropy alloys.
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