Effects of CO2-H2O dilution on the characteristics of CH4-air-O2 flames

H. Zaidaoui, T. Boushaki, J Sautet, C Chauveau, I. Gökalp

To cite this version:

HAL Id: hal-02110516
https://hal.archives-ouvertes.fr/hal-02110516
Submitted on 25 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effects of CO₂-H₂O dilution on the characteristics of CH₄-air-O₂ flames

H. Zaidaoui¹,², *, T. Boushaki¹,², J.C. Sautet³, C. Chauveau¹, I. Gök卡尔¹

¹ ICARE CNRS, 1C Avenue of scientific research, 45071 Orléans Cedex 2, France
² Orléans University, GTE, IUT, 45067 Orléans cedex 2, France
³ Normandie University, CORIA UMR 6614, 76801 Saint Etienne du Rouvray, France

* hajar.zaidaoui@cnrs-orleans.fr

Context and objectives
- Study of non-premixed turbulent flames stabilized by a swirler
 - Control of pollutant emissions / emissions standards
 - Improve performances of combustion plants
- Investigations on flame characteristics
 - Effects of oxygen enrichment
 - Effects of steam and CO₂ dilution
 - Effects of swirl intensity

The numerical computations were conducted with COSILAB software
- Freely propagating methane-air flames.
- One-dimensional premixed flame.
- GRI-mech 3.0 mechanism.
- Atmospheric pressure and 300K.
- Equivalence ratio : from 0.8 to 1.2
- Oxygen enrichment : from 21% to 30%vol.
- Dilution : (0-20%vol) for both CO₂ and H₂O.

- With O₂ : notable increase in flame temperature and laminar burning velocity.
- With dilution: significant decrease in laminar burning velocity, the effect of CO₂ is greatest.

Experimental study
- OH⁺ chemiluminescence
 OH⁺ intensity distributions of methane/air swirling flames diluted by CO₂, H₂O and EGR, in the case of 21% O₂ for S_n=0.8 and φ=0.8.
 - The flame becomes taller and unsettled with dilution.
 - CO₂ has greater effect on the flame lift-off heights.

- Laser Doppler Anemometry
 Axial velocity and RMS profiles at z=30mm with & without CO₂ and water vapor dilution for S_n=1.4 and φ=0.8.
 - With CO₂ and H₂O dilution, the maximum velocity is higher and the flow is narrower.
 - Root Mean Squares are higher in the case of dilution.

Acknowledgments: The authors are grateful for the financial support of this work provided by the French Government's Investissement d'Avenir program: LABEX CAPRYSSES, under GrantANR-11-LABX-0006-01.