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Minimum Cost Subgraph Matching Using a

Binary Linear Program

Julien Lerouge Maroua Hammami Pierre Héroux
Sébastien Adam

Abstract

This article presents a binary linear program for the Minimum Cost
Subgraph Matching (MCSM) problem. MCSM is an extension of the sub-
graph isomorphism problem where the matching tolerates substitutions of
attributes and modifications of the graph structure. The objective func-
tion proposed in the formulation can take into account rich attributes (e.g.
vectors mixing nominal and numerical values) on both vertices and edges.
Some experimental results obtained on an application-dependent dataset
concerning the spotting of symbols on technical drawings show that the
approach obtains better performance than a previous approach which is
only substitution-tolerant.

Subgraph Matching Edit Distance Error-Tolerant Binary Linear Program-
ming Symbol Spotting

1 Introduction

Solving the subgraph isomorphism problem aims at determining whether or
not a pattern graph is isomorphic to one or many subgraphs of a target graph.
This problem has been the subject of many contributions in the literature
[3, 4, 18, 20, 10, 22] since it finds many applications in various fields such as
biosciences, chemistry, knowledge management, social network analysis, image
scene analysis, etc.

In the context of structural pattern recognition, algorithms that solve sub-
graph isomorphism are particularly useful since they can be used to simul-
taneously consider the segmentation and the recognition of objects of interest,
represented as pattern graphs, in a whole image represented as the target graph.
As compensation, two drawbacks can be mentioned. The first one is the com-
putational complexity. Since it is proven that subgraph isomorphism is an
NP-complete problem [9], the processing of large graphs (as those that can be
extracted from images) is untractable. The second one is the requirement of a
strict matching (isomorphism) between the pattern graph and the subgraph of
the target graph. This requirement is a bottleneck for pattern recognition appli-
cations, where graphs to be analyzed are usually affected by distortions due to
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the intrinsic variability of patterns in image, to digitization procedure, or to the
graph construction processing steps (skeletonization, region segmentation...).

In this context, the matching must tolerate differences by relaxing some
constraints. Hence, practical algorithms must accomodate at least with substi-
tution of attributes on vertices and edges, and in a more general framework,
have to cope with structural differences. Thus, the problem of subgraph match-
ing turns from a subgraph isomorphism search (i.e. a decision problem which
states if some isomorphisms exist) into the search for the subgraph in the target
that minimizes a matching cost with the pattern graph (i.e. an optimization
problem). This search, sometimes described as error-tolerant [15, 16], is called
the Minimum Cost Subgraph Matching (MCSM) problem in this article.

Our contribution in this paper is a Binary Linear Program (BLP) that solves
the MCSM problem in the presence of both structural and attribute distortions.
It extends the formulation proposed in [13] which has been shown to be very
general and efficient but which is only substitution-tolerant. The proposed new
BLP tolerates deletions of vertices and/or edges in the pattern graph. It can
take into account rich attributes (e.g. vectors mixing nominal and numerical
values) on both vertices and edges. Its implementation can be tuned to fit the
graphs under consideration through a learning procedure.

Some experimental results obtained on an application-dependent dataset
concerning the localization of symbols on technical drawings show that the ap-
proach can handle problems that can not be solved by existing approaches. The
proposed system detects more symbols and is faster than the existing approach
which is only substitution-tolerant.

The paper is organized as follows. Section 2 introduces MCSM. Section 3
presents binary linear programming as a way to formulate the MCSM problem.
Section 4 describes the experimental protocol and discusses the obtained results.

2 Minimum cost subgraph matching

Definition 1. An attributed (or labeled) simple graph is 4-tupleG = (V, E , µ, ν)
where

• V is the finite set of vertices of G

• E ⊆ V × V is the finite set of edges of G

• µ : V → LV is the vertex labeling function with LV the vertex-label set

• ν : E → LE is the edge labeling function with LE the edge-label set.

In this case, an edge can be unambiguously identified by the couple of its
starting and ending vertices. Items of E can be denoted e = (u, v), meaning
an edge from vertex u to vertex v1. If E is a symmetric relation, (u, v) ∈ E ⇔

1For the sake of simplicity of notations, uv will also be used to represent an edge from u
to v
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(v, u) ∈ E ,∀u, v ∈ V ×V, then the graph G is said to be undirected. Conversely,
it is referred to as a directed graph.

Definition 2. Let G1 = (V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2) be two at-
tributed simple graphs. G1 is a subgraph of G2, written G1 ⊆ G2, if and only
if

• V1 ⊆ V2

• E1 ⊆ E2

• µ1(v) = µ2(v),∀v ∈ V1

• ν1(e) = ν2(e),∀e ∈ E1.

Definition 3. A graph isomorphism between two graphs G1 = (V1, E1, µ1, ν1)
and G2 = (V2, E2, µ2, ν2) is a bijection f : V1 → V2 such that ∀u, v ∈ V1 :
(u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2

Definition 4. Let G1 = (V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2) be two graphs.
An injective function f : V1 → V2 is a subgraph isomorphism from G1 to G2 if
there exists a subgraph S ⊆ G2 such that f(.) is a graph isomorphism between
G1 and S.

As previously mentionned, in the field of pattern recognition, as in many
real-world applications, the search for an occurrence of a pattern into the target
graph can not be performed through the search of a subgraph isomorphism.
Indeed, occurrences of the searched pattern in the target graph may differ from
the pattern model. These differences between the pattern graph and its occur-
rence in the target graph may affect attributes of vertices and edges, but also
the structure of the graph.

As a consequence, the search for an exact matching between the pattern and
a subgraph of the target graph is likely to be unsuccessful. In order to cope with
the noise in structural representations the matching must be error-tolerant, and
the objective turns into the search for the subgraph of the target graph whose
dissimilarity with the pattern graph is minimal. Given d : G × G → R+, a
measure of the difference between two graphs, we want to find G, the subgraph
of the target graph G2 whose distance to the pattern graph G1 is minimal.

G = argmin
Gi⊆G2

d(G1, Gi) (2.1)

The graph edit distance dGED is commonly used to evaluate the dissimilar-
ity between two graphs. Many approaches have been proposed to compute or
approximate dGED [8, 17], including linear programming [1, 12].

Definition 5. Let G1 and G2 be two graphs, the graph edit distance between
G1 and G2 is defined by :

dGED(G1, G2) = min
o=(o1,...,ok)∈O

∑
i

c(oi) (2.2)
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where O is the set of all edit paths o = (o1, . . . , ok) allowing to transform G1

into G2. An elementary edit operation oi is one of vertex substitution (v1 → v2),
edge substitution (e1 → e2), vertex deletion (v1 → ε), edge deletion (e1 → ε),
vertex insertion (ε → v2), edge insertion (ε → e2), with v1 ∈ V1, v2 ∈ V2,
e1 ∈ E1, e2 ∈ E2 and ε a dummy element.

c(.) is a cost function on elementary edit operations oi, that satisfies :

• c(v1 → v2) ≤ c(v1 → v) + c(v → v2)

• c(e1 → e2) ≤ c(e1 → e) + c(e→ e2)

• c(v1 → ε) ≤ c(v1 → v) + c(v → ε)

• c(e1 → ε) ≤ c(e1 → e) + c(e→ ε)

• c(ε→ v2) ≤ c(ε→ v) + c(v → v2)

• c(ε→ e2) ≤ c(ε→ e) + c(e→ e2)

If the cost function also satisfies the conditions of positive definiteness, sym-
metry and the triangle inequality of elementary edit operations oi, the graph
edit distance is a metric.

In equation 2.1, G is the subgraph of G2 which minimizes its distance to G1.
This distance does not need to take care about the vertex or edge insertions in
G1. Indeed, if an edit path transforms a graph G1 into a graph Gi, there exists a
subgraph of Gi which results from the same edit path but without any insertion
in G1. The cost of this edit path is lower and the corresponding subgraph is a
better candidate. Finally, our problem turns into the search for the minimum
cost edit path which transforms G1 into G2 where insertion costs are zero. In
this edit path, deletion and substitution edit operations transform G1 into the
subgraph of G2 it is matched to, while zero cost insertion operations complete
the subgraph up to G2.

3 Formulation as a binary linear program

This article proposes to solve the MCSM problem defined in the preceding sec-
tion using an optimization technique called binary linear programming, also
known as 0−1 linear programming. It is a restriction of integer linear program-
ming (ILP), where variables are binary. These techniques are part of the more
general concept of mathematical programming.

3.1 Binary linear programming

The general form of a binary linear program (BLP) is as follows :

min
x

cTx (3.1)

s.t. Ax ≤ b (3.2)
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x ∈ {0, 1}n (3.3)

where c ∈ Rn, A ∈Mm,n(R) and b ∈ Rm are data of the problem.
A solution is a vector x of n binary variables. Since A and b are used to

define linear inequality constraints in (3.2), a feasible solution for the problem
is a vector x ∈ {0, 1}n such that constraints (3.2) are respected. The objective
function cTx is a linear combination of the binary variables of x. To find an
optimal solution, the objective function (3.1) is minimized over the set of feasible
solutions.

There is no known polynomial-time algorithm to solve a BLP, since this task
is NP-hard. When n is large, one can not simply explore the entire solution tree,
since it takes an exponential time. Such problems are tackled with the help of
mathematical solvers that have been designed for solving ILP and BLP as well.
They implement a branch-and-cut algorithm, used along with heuristics, to
reduce the search space. The lower bound of the optimal objective is computed
by solving the continuous relaxation of the program with the interior point
method.

3.2 Formulation of the problem

In order to formulate the error-tolerant subgraph matching problem as a BLP,
we define four sets of binary variables:

• ∀i ∈ V1,∀k ∈ V2, xi,k ∈ {0, 1} encodes the vertex attribute substitution
(i→ k). xi,k is set to 1 if i is substituted with k and 0 otherwise ;

• ∀i ∈ V1, αi ∈ {0, 1} encodes the vertex deletion (i→ ε). αi is set to 1 if i
is deleted from G1 and 0 otherwise ;

• ∀ij ∈ E1,∀kl ∈ E2, yij,kl ∈ {0, 1} encodes the edge substitution (ij → kl).
yij,kl is set to 1 if ij is substituted with kl and 0 otherwise ;

• ∀ij ∈ E1, βij ∈ {0, 1} encodes the deletion (ij → ε). βij is set to 1 if ij is
deleted from G1 and 0 otherwise.

Let us denote x = (xi,k)i∈V1,k∈V2 , α = (αi)i∈V1 , y = (yij,kl)ij∈E1,kl∈E2 and
β = (βij)ij∈E1 . Given a cost function c(.) as defined in section 2, the objective
function of the BLP can be written as the sum of the costs of the elementary
edit operations oi that are necessary to match G1 to a subgraph S ⊆ G2 :

min
x,y,α,β

(∑
i∈V1

∑
k∈V2

xi,k · c(i→ k) +
∑
i∈V1

αi · c(i→ ε)

+
∑
ij∈E1

∑
kl∈E2

yij,kl · c(ij → kl) +
∑
ij∈E1

βij · c(ij → ε)

)
(3.4)

In order to force the 4-tuple (x,y,α,β) to describe a valid edit path o ∈ O
which transforms G1 into S ⊆ G2, the following set of constraints must be
defined :
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• A vertex of G1 can be matched to at most one vertex of G2:∑
k∈V2

xi,k ≤ 1 ∀i ∈ V1 (3.5)

If a vertex of G1 is not matched to any vertex of G2, it must be deleted:

αi = 1−
∑
k∈V2

xi,k ∀i ∈ V1 (3.6)

• A vertex of G2 can be matched to at most one vertex of G1:∑
i∈V1

xi,k ≤ 1 ∀k ∈ V2 (3.7)

• An edge of G1 can be matched to at most one edge of G2, provided that
their head vertices on the one hand, and their tail vertices on the other
hand, are respectively matched:∑

l∈V2,kl∈E2

yij,kl ≤ xi,k ∀ij ∈ E1,∀k ∈ V2 (3.8)

∑
k∈V2,kl∈E2

yij,kl ≤ xj,l ∀ij ∈ E1,∀l ∈ V2 (3.9)

If an edge of G1 is not matched to any edge of G2, it must be deleted:

βij = 1−
∑
kl∈E2

yij,kl ∀ij ∈ E1 (3.10)

Equations (3.6) and (3.10) are not needed as constraints of the BLP, since
they are implicitly respected, provided that constraints (3.5), (3.8) and (3.9)
are satisfied. In order to reduce the size of the search space (i.e. the number of
variables), we replace the deletion variables in the objective function by their
expressions.

We finally get the following BLP:

min
x,y

(∑
i∈V1

∑
k∈V2

xi,k · (c(i→ k)− c(i→ ε)) +
∑
i∈V1

c(i→ ε)

+
∑
ij∈E1

∑
kl∈E2

yij,kl · (c(ij → kl)− c(ij → ε)) +
∑
ij∈E1

c(ij → ε)

)
(3.11a)
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subject to : ∑
k∈V2

xi,k ≤ 1 ∀i ∈ V1 (3.11b)

∑
i∈V1

xi,k ≤ 1 ∀k ∈ V2 (3.11c)

∑
l∈V2,kl∈E2

yij,kl ≤ xi,k ∀ij ∈ E1,∀k ∈ V2 (3.11d)

∑
k∈V2,kl∈E2

yij,kl ≤ xj,l ∀ij ∈ E1,∀l ∈ V2 (3.11e)

xi,k ∈ {0, 1} ∀i ∈ V1,∀k ∈ V2 (3.11f)

yij,kl ∈ {0, 1} ∀ij ∈ E1,∀kl ∈ E2 (3.11g)

Figure 1 gives a didactic example showing variable values and the corre-
sponding objective function for a toy problem. In this problem, deletion costs
are set to 1 for both vertices and edges.

a b

0.9 0.3

0

1 2

0.5

0.7 0.4

0.4

GA

0.2

0.6

0.1

GB

0.8

pattern : GA pattern : GB

target : GB target : GA

xa,0 = 0 x0,a = 0
xa,1 = 1 x0,b = 0
xa,2 = 0 x1,a = 1
xb,0 = 0 x1,b = 0
xb,1 = 0 x2,a = 0
xb,2 = 1 x2,b = 1
yab,01 = 0 y01,ab = 0
yab,12 = 1 y01,ba = 0
yab,21 = 0 y12,ab = 1
yba,01 = 0 y12,ba = 0
yba,12 = 0 y21,ab = 0
yba,21 = 1 y21,ba = 1
d = 1.2 d = 3.2

Figure 1: Example of variable values and objective function obtained by MCSM
for a toy-problem

Let us emphasize that by modifying the notations, the formulation given by
equations (3.11a) to (3.11g) is also valid for multi-graphs.

3.3 Extension to induced subgraphs

An induced subgraph isomorphism is a more stringent problem, defined by :

Definition 6. Let G1 = (V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2) be two graphs.
An injective function f : V1 → V2 is an induced subgraph isomorphism from G1

to G2 if and only if ∀ (u, v) ∈ V1 × V1, (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.
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The equivalence in definition 6 requires an additional set of constraints in
the BLP : ∑

i∈V1

xi,k +
∑
j∈V1

xj,l −
∑
ij∈E1

yij,kl ≤ 1 ∀kl ∈ E2 (3.12)

These constraints ensure that all the edges of the matched subgraph of G2

have a corresponding edge in G1.

3.4 Extension to undirected graphs

The formulation given by equations (3.11a) to (3.11g) is dedicated to directed
graphs, but it can be extended to undirected graphs. In an undirected graph
G = (V, E , µ, ν), we have :

ij ∈ E ⇔ ji ∈ E ,∀i, j ∈ V × V

Thus, given two undirected edges, there are two ways of matching them. This
leads to replace the equations (3.11d) and (3.11e) by the following equation in
the BLP : ∑

l∈V2:kl∈E2

yij,kl ≤ xi,k + xj,k ∀ij ∈ E1,∀k ∈ V2 (3.13)

Please take note that the variables xi,k and xj,k are mutually exclusive (i.e.
they cannot both take the value 1), because of constraints (3.7). Therefore,
constraint (3.13) still guarantees that an edge of G1 is matched to at most on
edge of G2.

3.5 Implementation issues : the case of multiple instances

Once the MCSM formulation implemented in a mathematical ILP solver, solving
an instance for a given couple (pattern,target) with a given set of edit costs
results in the best one-to-one mapping (and its cost) between the vertices and
edges of both graphs, possibly with some deletions of vertices and edges in the
pattern graph. As defined by equations (3.11a) to (3.11g), the BLP model is
only capable of finding the optimal solution. Depending on the application
context, it may be the case that the pattern graph that is searched for has
many instances in the target graph. There are multiple ways to manage such
an issue [5]. In the context of our study, we have chosen to call iteratively the
model and to discard the successive optimal solutions after each call. Such a
solution is linear in the number of instances. There are multiple ways to discard
an optimal solution (x̄ ȳ)T . The general idea is that a new constraint cutting
the current solution is added to the model. Hence, the current optimal solution
becomes infeasible for the next run. The solver can be called again and will be
able to find another optimal solution. In the sake of our study, the following
constraint is added to the formulation :

∑
i∈V1,k∈V2

∑
j∈V1

x̄j,k

 ∗ xi,k = 0
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It discards every vertex of V2 that has been used in the current optimal
solution (x̄ ȳ)T . It means that for every vertex k of V2, if there exists a vertex
j of V1 matched to k, then xi,k equals 0 for every vertex i of V1.

4 Experiments and results

This section aims at showing the efficiency of the MCSM approach proposed in
this article for detecting pattern graphs as sub-graphs of a target graph when
both structural and attribute distortions occur. To the best of our knowledge,
no reference dataset exists for evaluating such a task. Therefore, we consider in
this article an application-oriented problem related to the spotting of distorted
symbol in graphical document images. To ensure the possibility of compar-
ing our results with future contributions on this subject, the graph dataset is
available at http://litis-ilpiso.univ-rouen.fr/ILPIso/.

4.1 Graph Dataset

Symbol spotting is a problem related to document image analysis. Its objective
is to detect the occurrences of some pattern symbols in a target document. For
this problem, structural representation are known to be useful since (i) symbols
can usually be defined as a composition of parts and (ii) graph tools are well
suited to consider the segmentation/recognition problems.

In our experiments, symbol and document images are represented using Re-
gion Adjacency Graphs (RAG) G = (V, E , µ, ν) where V denotes the regions
(the loops) of the image and E ⊆ V × V stands for adjacency relations between
the regions. µ : V → R26 describes the morphology of a region with its area and
25 Zernike moments computed using the approach described in [19]. ν : E → R2

expresses two properties of adjacency relations : the relative scale between the
two regions given by min(A(i), A(j))/max(A(i), A(j)) where A(i) is the area of
region i, and the relative euclidean distance between the gravity centers of the
two regions, with respect to their overall area given by de(gi, gj)/

√
A(i) +A(j)

where de(gi, gj) is the Euclidean distance between the gravity centers of regions
i and j.

The document images used for building the graph dataset are the 100 docu-
ments of the 5th template in the floorplan dataset2 [6]. These images represent
several symbol arrangements on empty architectural plan templates. Figure 2
shows an example of a floorplan, with the corresponding extracted graph (with-
out attribute for clarity reasons). Graphs representing documents contain 121
vertices and 525 edges on average. The task associated to this dataset is the
localization of the instances of 11 symbol models, examples of which are illus-
trated in Figure 3. From a numerical point of view, the graphs corresponding
to symbol instances contain 4 vertices and 7 edges on average.

In the original floorplan dataset, pattern symbol images and symbol occur-
rences only differ in size and orientation. Such modifications mainly impact the

2http://mathieu.delalandre.free.fr/projects/sesyd/
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Figure 2: View of the region adjacency graph extracted from an image of the
floorplan-05 dataset

attributes of vertices and edges in the corresponding RAGs, even if skeletoniza-
tion sometimes produces some artefacts in the edges for touching symbols. In
order to better evaluate the MCSM proposed in this paper, we have synthetically
deformed the pattern symbols at the image level so that the image modifications
impact the graph in its topology. Compared to a modification of the target doc-
uments, this choice of distorting pattern images ensures that the ground-truth
provided with the floorplan dataset remains valid. For performing the distor-
tions, the image is firstly vectorized using the algorithm described in [2] and
[21]. Then a vectorial noise is applied using the approach proposed in [7], with
a parameter r that controls the deformation. Finally, the result is rasterized to
get the image. Figure 3 illustrates the impact of the value of the noise parameter
r.

4.2 Experimental protocol

From the 100 documents of the dataset described in subsection 4.1, 50 docu-
ments are used for tuning the system, and 50 are used for testing it. Hence, for
the evaluation, we initially obtain for a given level of noise a set of 11×50 = 550
queries, where a query consists in a couple made of a pattern graph and a tar-
get graph. For assuring the robustness of the results, 10 repetitions of the noise
generation process are applied, resulting in 10× 550 = 5500 queries.

Solving the formulations of MCSM proposed in this article requires to define
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(r = 0)
sink4 sink3 window2

(r = 4)
sink4 sink3 window2

(r = 8)
sink4 sink3 window2

Figure 3: Examples of symbols for r = 0 (without degradations) r = 4 and
r = 8

some edit costs. For substitution costs c(i → k) and c(ij → kl), we defined a
weighted euclidean distance on vertices and edges attributes as follows:

• c(i→ k) =
√∑26

n=1 wn
2(µ(i)n − µ(j)n)2

• c(ij → kl) =
√∑2

n=1 αn
2(ν(ij)n − ν(kl)n)2

For our experiments, the wn and αn values have been set regarding the
distributions of the absolute difference of the attributes values between queries
and targets, on the training dataset. Once these values set, we have tested
different values for deletion costs C = 5, 10, 20, 40, 80.

Since a symbol can have several instances on the same document image, the
strategy described in subsection 3.5 is used in order to find multiple instances.
Such a strategy requires the definition of a stopping criterion in order to avoid
a large number of false detections. In our experiments, the strategy consists in
learning a threshold value thi (where i denotes the symbol class) of the BLP
objective function for each class of symbol, on the learning dataset. Using these
values, the search for the subgraphs is stopped as soon as the objective function
value exceeds this threshold.

For the evaluation, the matching result has to be compared with the ground-
truth information provided with the floorplan dataset at the image level. For
this comparison, a feedback is made into the image in order to check if the
vertices that compose the mapping are regions that compose real symbols (which
is given as a rectangle in the floorplan ground-truth). In our experiments, we
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consider that a symbol is detected if more than half of the matched nodes are
symbol regions. Using this criterion, the classical information retrieval metrics
(precision, recall and F1-score) can be used to characterize the performance of
the spotting system.

For all the experiments, we compare the results obtained using the new
MCSM formulation with those of the system proposed in [13] which is a Substitu-
tion Only Tolerant Subgraph Matching (SOTSM). Both approaches are included
in the GEM++ software available at http://litis-ilpiso.univ-rouen.fr/

ILPIso/ and described in [14, 11]. The same setting was used for both ap-
proaches in this evaluation.

4.3 Obtained results

Table 1 presents the results obtained on the test dataset using both MCSM and
SOTSM for r = 0, 4, 8. In the case of MCSM, five configurations of C values
are compared.

Table 1: Mean F1-score on nodes matching rate for the 5500 queries of the test
dataset

Method MCSM SOTSM

r
C

5 10 20 40 80 -

0 0.95 0.99 1.00 1.00 1.00 0.99
4 0.75 0.92 0.94 0.94 0.94 0.93
8 0.58 0.80 0.84 0.85 0.84 -

As expected, F1-scores decrease with the increasing of r for both MCSM and
SOTSM. However, if both approaches get comparable spotting performance for
r = 0 and r = 4, SOTSM reaches its limits for r = 8. At this level, some queries
do not provide any results, what explains the lack of mean value in Table 1. For
a finer analysis, Table 2 details the precision/recall results per class, for C = 40
(which is the best configuration according to Table 1) and r = 8. The results
obtained for the class sink3 illustrate the strength of the MCSM with respect to
SOTSM since vertices and edges are frequently generated by the noise on such
symbols. This aspect is illustrated by Figure 4 that shows our GUI in the case of
a sink3 query with both approaches. The noise generates spurious vertices and
edges in the pattern graph. This results in a wrong matching (with a table2)
when using SOTSM, whereas the matching proposed by MCSM tolerates these
distortions by allowing the deletion of such extra objects. Figure 5 illustrates
another search where a window2 symbol is given as query. Here, two vertices are
deleted because of a low deletion cost, what results in an error in the matching.

Table 3 compares the computation times of both approaches on the test
dataset. It shows that using MCSM with a deletion cost C = 40 speeds up
the search by a factor of 10 with respect to SOTSM, even for r = 0. It can be
explained by the fact that, considering the algorithm that is used by BLP solvers
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Table 2: Recall and precision on the test dataset detailed per class, for r = 8
and C = 40

MCSM (C = 40) SOTSM
symbol rec. prec. F1 rec. prec. F1

bed 0.90 1 0.95 0.81 1 0.89
sink1 0.90 1 0.95 0.90 1 0.95
sink3 0.74 1 0.85 0.10 1 0.18
sink4 0.10 0.02 0.03 0 — —
sofa1 0.98 0.99 0.98 0.98 0.99 0.98
sofa2 0.99 1 0.99 1 1 1
table1 0.97 1 0.98 0.79 1 0.88
table2 1 1 1 1 1 1

tub 1 1 1 1 1 1
window1 0.50 1 0.67 0.50 1 0.67
window2 0.90 1 0.95 0.90 1 0.95
overall 0.82 0.91 0.85 0.72 — —

(branch-and-cut), and particularly the lower bound they use (LP continuous
relaxation), the initialization of the solving gives a better approximation in the
case of MCSM than in the case of SOTSM, and thus reduces the solving time
of MCSM.

Table 3: Mean elapsed time by correctly found instance on the test dataset, in
seconds

Method MCSM SOTSM

r
C

5 10 20 40 80 -

0 0.11 0.13 0.17 0.41 3.21 3.09
4 0.16 0.13 0.19 0.52 4.72 4.92
8 0.22 0.18 0.27 1.14 10.05 9.26

4.4 Experiments on a synthetic dataset

In order to evaluate the scalability of the proposed formulation, some experi-
ments have been led on the synthetic dataset used in [13]. In this dataset, the
numbers of vertices in the pattern graph (nS) and in the target graphs (nG)
vary, as well as the edge density of the graphs, controlled by a parameter p.
For each configuration of {nS , nG , p}, 5 pattern graphs are searched for in 5 tar-
get graphs, leading to 25 queries. According to the graph generation protocol
(please see [13] for a more detailed description of the dataset), the target graph
contains the pattern graph only for 5 queries out of 25. Obtained processing
times are given in Table 4. In these experiments, we stop the search when time
exceeds 300 seconds.
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SOTSM

MCSM

Figure 4: Comparison of the results of a sink3 query on a given floorplan with
both MCSM and SOTSM. The query is on the left, the target is on the right. In
the query, the bottom left vertex is an extra one generated by the noise. Similar
colors between the pattern and the target correspond to matched nodes.

These results show that larger graphs can be tackled by our formulation and
also show its limits, particularly for dense graphs.

In order to compare processing time of MCSM and SOTSM, we use a subset
of the dataset described below, keeping only the 5 out of 25 queries for which
a subgraph isomorphism exists. We measured the median time taken by both
methods to find the unique solution. Obtained results are given in Table 5.
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Figure 5: Example of search result of a window2 where two deletions result in
a wrong matching.

Table 4: Median elapsed time for different graph configurations on the synthetic
dataset, in seconds

p nG = |VG |
nS = |VS |

10 25 50

0.01

50 0.02 0.04 0.21
100 0.03 0.15 0.27
250 0.13 0.31 1.23
500 0.24 0.76 5.70

0.05

50 0.04 0.95 1.24
100 0.16 6.25 -
250 0.33 - -
500 3.10 - -

0.1

50 0.36 - -
100 0.39 - -
250 10.82 - -
500 17.09 - --

These results confirm those obtained for the symbol spotting application. For
the last cell of the table, a memory failure occurs in both cases.

5 Conclusions

This article has proposed a binary linear program that finds the occurrences
of a pattern graph in a target graph when both structural and attribute dis-
tortions occur. Thanks to this new formulation, better matching performance
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Table 5: Median elapsed time for MCSM (left value) and SOTSM (right value)
on a subset of the synthetic dataset, in seconds

p nG
nS

10 25 50

0.01

50 0.02 / 0.03 0.04 / 0.07 0.17 / 0.19
100 0.03 / 0.05 0.15 / 0.15 0.25 / 0.39
250 0.12 / 0.16 0.29 / 0.29 0.93 / 1.03
500 0.23 / 0.26 0.76 / 0.75 3.61 / 3.08

0.05

50 0.04 / 0.05 0.21 / 0.24 0.84 / 0.99
100 0.16 / 0.17 0.50 / 0.56 2.88 / 3.37
250 0.31 / 0.38 3.88 / 5.21 16.69 / 21.54
500 2.93 / 3.01 24.34 / 46.12 138.1 / 276.4

0.1

50 0.17 / 0.19 0.51 / 0.65 3.43 / 5.11
100 0.25 / 0.28 1.87 / 2.42 8.96 / 13.10
250 2.74 / 3.28 15.58 / 25.56 106.8 / 157.6
500 11.89 / 14.27 171.2 / 320.1 - / -

are achieved on a pattern spotting problem, compared to those provided by an
approach which only tolerates attribute substitution. The approach is shown
to be faster than an only substitution tolerant approach and can be applied to
richly attributed graphs. Our current works concern an embedded learning of
the edit costs, in order to get a fully adaptive system.
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Poulain D’Andecy. One-shot field spotting on colored forms using sub-
graph isomorphism. In 2015 13th International Conference on Document
Analysis and Recognition, Nancy, France, 2015, 2015.

[12] Derek Justice and Alfred Hero. A binary linear programming formula-
tion of the graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell.,
28(8):1200–1214, August 2006.

[13] Pierre Le Bodic, Pierre Héroux, Sébastien Adam, and Yves Lecourtier. An
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