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The generation of internal tides in the ocean is due to the interaction of strong barotropic tidal currents

with variable topography in stratified waters, transferring energy from the external to the deep ocean.

The internal tides feed later the ocean mixing, playing a major role for the maintenance of the

stratification of the global ocean. A remarkable region in terms of tidal energy is the European

continental shelf. As a first step toward the study of internal tides in the Bay of Biscay, this paper aims at

understanding the barotropic tides and associated energy budgets. On continental shelves and in coastal

seas the use of regional models with fine grid resolution is preferred to the use of global tidal atlases

derived from altimetry. The unstructured grid T-UGOm model is used to compute the NEA-2004 tidal

solutions in the North-East Atlantic ocean, with errors greatly reduced in coastal areas compared with

global models. Energy budgets are discussed based on the inclusion of nonlinearities in the tidal

solutions. The sea surface height and depth-averaged currents are used to compute the tidal energy

conversion from barotropic to baroclinic tides, tidal dissipation and energy flux. A total amount of

energy of 250GW is found for the M2 tide. The path of M4 energy from the Southern Atlantic ocean

toward the Bay of Biscay is highlighted, advocating for nonzero boundary conditions in regional models.

The 3D coastal ocean SYMPHONIE model has been implemented to simulate the surface tides in the Bay

of Biscay. Solutions are validated by comparison with the NEA-2004 solutions and observations.

1. Introduction

The history of tidal dynamical science has recently been driven

by two major revolutions: numerical modeling and satellite

altimetry. Shallow-water barotropic models have so far been

extremely successful at simulating the barotropic tides, and until

the late 1990s the internal tides were generally seen as a marginal

process with little influence on the first order, barotropic

component. Still, the problem of energy conversion from the

barotropic mode to the baroclinic modes has drawn the attention

of several authors. Bell (1975) first estimated the conversion rate

to reach 10% of the total tidal energy in the case of the M2 tide, a

value revised upward by Cartwright (1977) who found 25%, close

to more recent estimates of 1
3 (Garrett and Kunze, 2007). From the

approximately 3.5 terawatts (TW) of tidal energy dissipated in the

ocean, Munk and Wunsch (1998) pointed out that internal tides

could provide about 1TW missing in the ocean mixing necessary

to sustain the ocean abyssal circulation and global overturning.

The examination of the tidal energy balance in global barotropic

models has repeatedly shown a lack of tidal energy dissipation

that could not be compensated by classical bottom friction.

Satellite altimetry finally demonstrated the widespread existence

of internal tides all over the global ocean. It is now admitted that

the barotropic/baroclinic energy conversion is one of the major

dissipation mechanisms of the barotropic tide. Simple parameter-

ization of this conversion allows to improve greatly the accuracy

of the global barotropic tidal models (Egbert et al., 2004; Lyard et

al., 2006). The energy converted into internal waves is thought to

be partly available for ocean mixing where the waves dissipate.

The mechanism of dissipation, either at the region of generation of

the waves or in remote regions after their propagation, is complex

and not entirely understood. Once again, a rough parameteriza-

tion based on an increase in the vertical diffusion coefficient in

regions of generation of internal tides can account partly for the

ocean mixing, and improve the overturning of the global ocean

circulation (Simmons et al., 2004). In continental shelf regions, the

increase in bottom turbulence caused by internal tides will impact

the sediment transport and more generally the exchange between

the shelf and the deep ocean. It will also impact vertical nutrient

transport with a consequence for the phytoplancton growth
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depending on the lighting. In short, ocean sciences have entered a

time when the interaction of the tides with the ocean stratifica-

tion and circulation cannot be ignored any longer, from climate

change scales to coastal ocean dynamics scales. So far, the

hydrodynamic models have mostly been specialized to the

resolution of a limited range (both in frequency and horizontal

scales) of the ocean dynamics. The comprehensive modeling of

the internal tide dynamics requires simultaneous resolution of the

full range of the ocean dynamics, and therefore remains a very

challenging task.

It is the objective of this study to precisely investigate and

improve the understanding of tidal dynamics at a regional scale.

Because of the large amplification of the tides on the Northeast

European shelf, and the tidal energy flux toward the English

Channel, the Bay of Biscay is a place of intense internal tide

production over the shelf break, as has been observed for example

by Pingree et al. (1986). In addition, altimetric and in situ data are

available for observations of barotropic and internal tides and

model validations (Lyard et al., 2006; Pichon and Correard, 2006).

For those reasons, the Bay of Biscay is an ideal location to study

the tidal dynamics, and to assess numerical model skills.

As a first step, the first part of the paper deals with the

barotropic tide modeling. From previous studies, the dominant

component of the tides is the semi-diurnal lunar M2 wave which

is responsible for the low tide–high tide cycle. Diurnal and semi-

diurnal tides are known to propagate principally as Kelvin waves

(Le Cann, 1990) in the Bay of Biscay with maximum amplitudes at

the oceanic boundaries. The surface elevation due to the tide is

typically O(0.2m) in the ocean and O(1m) near the coasts. The

principal quarter-diurnal component is the M4 wave, which does

not have an astronomical origin but is a nonlinear wave resulting

from the interaction of the M2 wave with itself. Its contribution is

negligible in the deep ocean, but the same is not true in the

coastal ocean. On the shelf of the Bay of Biscay, the amplitude of

the M4 surface elevation reaches several tens of centimeters as

seen from altimetric data (Andersen, 1999); accordingly, it has to

be modeled accurately before the quarter-diurnal internal tides

are investigated.

In the first section, the 2D North-East Atlantic tidal dynamics is

modeled using the barotropic finite-element T-UGOm model.

Validation is carried out against observations. Important tidal

features are observed, in particular the amplification of the tides

at the coast with a focus on the M2 wave and the M4 harmonic.

The present NEA-2004 tidal atlas includes the nonlinear tidal

dynamics. It is more accurate than the FES2004 atlas from Lyard et

al. (2006) over continental shelves, especially in coastal regions,

which is of particular interest for internal tide studies. The related

energy budgets give the opportunity to better understand the

tidal dynamics and the possible sources for ocean mixing.

Moreover the budget balance assesses the consistency of the

model. Attention is paid to the presence of nonlinearities, in

particular within the energy budgets, and the departure from the

spectral linear approach is discussed.

The second section is devoted to the validation of the tidal

solutions obtained with the 3D finite-difference SYMPHONIE

model (Marsaleix et al., 2008) embedded into the T-UGOm

regional model. This is the first step toward the modeling of

internal tides in the Bay of Biscay, described in Part 2 of the paper.

2. The NEA-2004 barotropic tidal atlas

Although the global tidal atlases, such as the FES2004 atlas

(Lyard et al., 2006), perform extremely well in the deep ocean,

their accuracy tends to degrade in the shelf and coastal waters,

and their spatial resolution is no longer adequate. The derivation

of the tidal currents from the satellite altimetry empirical or

assimilated global models is an uneasy task. The assimilated tidal

current solution relies directly on the model error description,

since only elevation data are assimilated. Given that such a

description remains extremely empirical and rough in the global

tidal models, the question of our confidence in such derivation

remains controversial, especially in the shelf and coastal waters.

For these reasons, and like most of the available global assimilat-

ing models, the FES2004 atlas provides only the tidal elevations,

not the tidal currents. Furthermore, the amplitude of the

compound tides is greatly amplified over the continental shelf

and cannot be disregarded from the tidal predictions. It is for

instance the case for the M4 tide, which exhibits an amplitude

larger than 10 cm. In the English Channel, the M4 amplitude is

larger than the amplitude of the main diurnal tides. Lifting the

accuracy of global models at the same level in shelf and deep

ocean regions will still require significant further developments.

At present, the best strategy consists in nesting regional and shelf

tidal models into the global models. Accordingly, the North-East

Atlantic (NEA-2004) tidal atlas has been obtained in order to

provide a regional tidal atlas with high accuracy, high resolution

and extended tidal spectrum.

2.1. Model setup

The NEA-2004 tidal atlas has been analyzed from a one year-

long tidal simulation, carried out using the Toulouse Unstructured

Grid Ocean model (T-UGOm) in a 2D barotropic shallow-water

mode. T-UGOm (which is the follow-up of MOG2D) is based on an

unstructured mesh which allows the resolution to be increased in

regions of particular interest, and allows a more realistic

description of the shorelines. In the NEA application, the T-UGOm

2D model has been run in a P1 � P1 mode solving the generalized

wave equation with a finite-element discretization. This config-

uration is identical to the MOG2D generalized wave equation

solver that has been derived from Lynch and Gray (1979). The

NEA-2004 mesh resolution (Fig. 1) has been constrained by the

typical horizontal scale of the tidal distributions (like the tidal

wavelength for elevation, and the 2pH=H0 scale for the barotropic

currents). Typically the local resolution is set to 1
15 of the shortest

horizontal scale. It ranges from 20km over the deep ocean to less

than 1km along the coastlines. Over the continental shelf, the

resolution ranges from 1 to 10km and is about 3 km over the shelf

break. The bathymetry is of course a critical parameter for the

tidal modeling, and must be set with great care. Unfortunately no

homogeneous quality database exists for the North-East Atlantic

region, and consequently the model bathymetry has been built by

merging several databases, such as DBDB, GEBCO, Etopo2, Smith

and Sandwell, and declassified French Navy’s terrain models. The

boundary conditions in elevation have been extracted from the

FES2004 global model. The model is forced by the astronomical

plus the loading and self-attraction (LSA) potentials. The LSA

potential is computed from the FES2004 atlas on a 1
8

�
resolution

structured grid (Lyard et al., 2006). As this is a depth-averaged

barotropic model, a parameterization (Lyard et al., 2006) is

employed in order to account for the internal wave drag.

2.2. Tidal solutions

Thirteen tidal constituents (i.e. the 12 major astronomic

constituents plus the M4 tide) have been used to impose the

open boundary conditions (OBC) in elevation: M4, M2, S2, N2, K2,

2N2, K1, O1, P1, Q1, Mf , Mm, Mtm. The constituent’s list taken for

the boundary conditions has been extended with the minor

astronomic constituents such as Mu2 or L2 by using the
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admittance method (Munk and Cartwright, 1966). Forty tidal

constituents, namely the forcing tides plus the major overtides

and compound tides, including the permanent terms, have been

harmonically analyzed (Schureman, 1958) from the hourly

simulated time series. Finally the tidal elevations have been fully

validated against in situ and satellite altimeter data analysis. The

NEA-2004 atlas (harmonic elevation and barotropic currents) can

be obtained by sending a request at Florent.Lyard@cnes.fr. To

avoid a tedious presentation of the model results and accuracy, we

will restrict ourselves in the following to the most representative

constituents. As an illustration, we have displayed the tidal

distribution of the M2 and M4 tidal waves, i.e. the major tidal

constituent in the North-East Atlantic ocean and its first

harmonic. The M2 cotidal charts (Figs. 2 and 3) show the

characteristic amphidromic system (described in Le Provost and

Fornerino, 1985; Davies and Kwong, 2000), in which the main

items are the Isle of Wight’s amphidrom (English Channel) and

the triple amphidroms of the North Sea. The M4 amplitude (Fig. 4)

is significantly above 2 cm only in the shelf seas, with a maximum

of 40 cm reached in the English Channel. The amphidrom

distribution (Fig. 5) illustrates the shorter wavelength of M4 (half

that of M2). The comparisons between data and model solutions

are given in Table 1 for the major tidal components, and the

overall scores in Tables 2–4. We have also reported the validation

figures of the empirical model GOT00 and assimilated model

FES2004 as an additional comparison. As should be expected, the

NEA-2004 regional model shows a slightly degraded accuracy

compared with the GOT00 and FES2004 models in the open ocean

Fig. 1. NEA-2004 finite-element mesh.
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and shelves (remember that the regional model is not constrained

with data except at the open boundaries), but shows conversely a

significantly better accuracy in most of the coastal zones. The largest

discrepancy takes place in the English Channel. Of course, this

discrepancy is amplified locally in proportion to the very high tidal

amplitudes. Nevertheless we suspect that the uncertainties over the

bathymetry of the model and their impact on the propagation of the

tidal wave in the shallow water of the Channel are responsible for a

great deal of additional error in the solutions. Despite some efforts to

compile additional data in the digital database, the accuracy of the

model bathymetry must be considered as insufficient in this area. It

is also well-known that the coefficient of bottom friction depends on

the local nature of the seabed, and its variation can have a strong

impact on the tidal amplitudes. In the case of the NEA-2004 atlas,

the model friction coefficient has been taken as uniform (equal to

2:5� 10�3) and this might also explain the relatively poor local

performances of the model in the English Channel, and more

generally in the North Sea shelf.

2.3. Barotropic energy budget

The energy budget of the barotropic tides is a highly valuable

tool for investigating and understanding the tidal dynamics. It is

also a practical test for model consistency. We will consider

in this section the tidal energy issue and again we shall focus on

the M2 and M4 waves. The instantaneous tidal energy is huge

and mostly periodic. Despite being typically at least two

orders of magnitude smaller than the instantaneous tidal

energy, the mean tidal energy (i.e. averaged over a tidal period

if considering a single constituent) is far more interesting,

since it quantifies the permanent effective characteristics of the

tidal dynamics: generation, propagation and dissipation.

The gravitational forces feed the astronomical tides mostly in

the deep ocean (Le Provost and Lyard, 1998). From there the

energy propagates in the ocean toward the energy dissipation

regions, where the bottom layer turbulence (in the shelf and

coastal seas) or the internal tide excitation (above steep
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bathymetries) will substract energy from the barotropic tides.

The energy can travel along great distances before being

damped. For instance, a great deal of the M2 energy brought to

the ocean in the South Atlantic will dissipate in the North Atlantic

and the Hudson Bay. To some extent, the tidal dynamics

reveals a world-wide network. Conversely, the compound

tides are generated by the nonlinear dynamics of the astronomical

tides where the tidal currents are substantial, i.e. in the

shallow waters. Consequently, they are generated in the vicinity

of the energy dissipation regions and experience very little

propagation away from there. The only exception known by the

authors is the M4 energy propagation from the Patagonian shelf

toward the South Atlantic open ocean, and the Amazonian and

European shelf seas (Fig. 6). The consequence of this remarkable

exception is the necessity to prescribe deep ocean boundary

conditions for the M4 wave regional modeling in the above-

mentioned seas.

2.3.1. Energy equations

The partition of the mean tidal energy between the contribu-

tions of all the constituents (spectral mean energy budget) is a

usual approach in tidal science. The mean spectral energy

derivation is straightforward when considering the linear or

quasi-linear tidal equations, and most of the tidal energy

estimates produced in literature have been obtained in this way.

As far as the main astronomical tidal constituents are concerned,

these estimates can be considered fairly accurate. In order to

compare our results with them, the mean energy budget of the

NEA-2004 simulation has been partitionned between the various

tidal constituents. However, the justification and the computation

of the spectral mean energy budget from a fully nonlinear time-

stepping model is not straightforward and some additional

derivations are necessary. In the following, we will derive the

various terms involved in the mean energy budget with the

objective to remain as consistent as possible with the linear
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approach, and to highlight the main departure from this approach.

We start from the momentum equation, namely:

qu

qt
þ u � ruþ 2X0 � u ¼ �grZþ Fþ D (1)

where

F ¼ ð1þ k2 � h2ÞgrPa þ grPLSA (2)

D ¼ r � ðAruÞ � C

H
kuku� cðrh � uÞrh (3)

and the 2D continuity equation:

qZ

qt
þ r � ðHuÞ ¼ 0 (4)

with u the total barotropic current, Z the sea surface elevation, H

the total water depth, h the mean water depth (H ¼ Zþ h), g the

gravitational acceleration, X0 the Coriolis and metrics contribu-

tion, k2 and l2 the potential and deformation Love numbers, Pa

the astronomical potential, PLSA the LSA potential, A the

horizontal momentum diffusion coefficient, C the quadratic

friction coefficient, c the internal wave drag coefficient. The last

term in Eq. (3) represents the conversion of barotropic momen-

tum into baroclinic modes. Recent studies have shown that this

energy sink represents about one-third of the globalM2 barotropic

tidal dissipation, and is made available partly for ocean mixing

increase (Lyard et al., 2006). Following the consequent renewed

interest for the internal tides, the parameterization of this

mechanism has been widely addressed in the past five years.

Our formulation is designed to account for the conversion

occurring above the main topographic slopes, such as the shelf

edges or the volcanic ridges. The coefficient c is proportional to a

typical horizontal tidal excursion and to a typical first mode-

related buoyancy frequency. It must also account for the lack of

resolution in the model topography gradient, and has been tuned

empirically (with respect to error misfits minimization and/or

energy budget consistency). We can derive the kinetic energy
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equation by multiplying Eq. (1) by rHu and using Eq. (4):

qek
qt

þ r � eku ¼ � rgHu � rZ

þ rHu � Fþ rHu � D (5)

where ek is the kinetic energy per surface unit

ek ¼ 1
2rHu � u (6)

Terms in Eq. (5) are periodic and the permanent component of

the energy budget is obtained by averaging over a tidal period. In

fact, because of the multi-periodic nature of the tides, one would

consider the time-averaged energy budget over a large time

interval. When the simulation is stabilized (i.e. nondivergent), the

kinetic energy content remains bounded and therefore:

lim
T!1

1

T

Z T

0

qek
qt

dt ¼ lim
T!1

1

T
½ek�T0 ¼ 0 (7)

and the time-averaged energy budget is given by

lim
T!1

1

T

Z T

0
r � ðekuÞdt ¼ wp þwF þwD (8)

where

wp ¼ � lim
T!1

1

T
rg

Z T

0
Hu � rZdt

wF ¼ lim
T!1

1

T
r

Z T

0
Hu � Fdt

wD ¼ lim
T!1

1

T
r

Z T

0
Hu �Ddt (9)

The energy advection term can usually be considered negligible,

at least for the main astronomical constituents, implying that to

the first order, the time-averaged local production and dissipation

of energy are balanced by the time-averaged rate of work (RoW) of
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the pressure (all quantities given per surface unit). The latter is

associated with the propagation of tidal energy in the ocean.

When considering the mean energy budget integrated over a

given domain, this contribution is often transformed so as to

emphasize the so-called energy flux. Using Green’s formula to

transform the pressure gradient RoW, we get

Hu � rZ ¼ r � ðZHuÞ � Zr � ðHuÞ

¼ r � ðZHuÞ þ Z
qZ

qt

¼ r � ðZHuÞ þ 1

2

qZ2

qt
(10)

When integrating the pressure gradient RoW over a given

domain, the divergence term in Eq. (10) is transformed into a flux

integral:

�rg

Z

O

Hu � rZds ¼ �rg
1

2

Z

O

qZ2

qt
dsþ

Z

G

ZHu � ndl

� �
(11)

where rgZHu � n is the so-called energy flux. By averaging in time,

it is easy to see that the mean energy flux budget matches the

pressure gradient budget:

� rg lim
T!1

1

T

Z T

0

Z

O

Hu � rZds

¼ �rg lim
T!1

1

T

Z

O

Z2 ds

� �T

0

� rg lim
T!1

1

T

Z T

0

Z

G

ZHu � ndl

¼ �rg lim
T!1

1

T

Z T

0

Z

G

ZHu � ndl (12)

Finally, the time-averaged domain-integrated energy equation

can be expressed as follows:

lim
T!1

1

T

Z T

0

Z

G

ðek þ rgZHÞu � ndl ¼ WF þWD (13)

where WF ¼
R
O
wF ds and WD ¼

R
O
wD ds. We can notice that the

instantaneous kinetic energy equation (5) can be reformulated as

a sort of total energy equation:

q

qt
ðek þ epÞ þ r � ðekuÞ þ rgr � ðZHuÞ ¼ rHu � Fþ rHu � D (14)

where ep ¼ 1
2rgZ

2 is the barotropic potential energy. At any

moment, the derivative of the total barotropic energy and the

energy divergence are balanced by the RoW of the forces applied

to the fluid per surface units. When averaging in time and

integrating over a given domain, the mean energy flux at the open

boundaries is balanced by the mean RoW of the forces applied to

the fluid.

2.3.2. Spectral energy

The above equations allow the computation of global energy

estimates, not distinguishing between the specific contributions

of each tidal constituent (Fig. 7). In fact, because of the nonlinear

physics of the tides (due to the divergence transport, advection

and nonlinear bottom friction), and of the ensuing wave-to-wave

interactions, such a distinction can only be approximative. For

example, the M2 tide is only the overwhelming part of a physical

wave which includes all M2 harmonics. Still, it makes sense to

attempt to separate the contribution of each constituent when

Table 2

Error budget: comparison with the coastal tide gauges data set

Wave Model Da DG e

Mean RMS Mean RMS Mean RMS RMS�

M2 NEA-2004 4 13 �1 8 2 15 15

FES2004 4 24 �1 8 5 26 27

GOT00 5 23 2 10 3 24 24

S2 NEA-2004 3 6 5 16 1 6 6

FES2004 3 11 �5 14 1 12 12

GOT00 3 11 1 13 1 11 11

N2 NEA-2004 1 3 0 7 1 6 6

FES2004 1 6 �1 13 1 6 7

GOT00 1 5 0 9 1 5 5

M4 NEA-2004 0 4 �14 63 1 5 5

FES2004 3 4 �39 65 1 7 7

GOT00 – – – – – – 8

Unit in cm. The GOT00 atlas does not include a M4 constituent, the 8 cm RMS is

given with reference to a zero-valued solution, and thus indicates the subsequent

additional error when this constituent is omitted in the tidal predictions.

Table 3

Error budget: comparison with the shelf and deep ocean tide gauges data set

Wave Model da dG e

Mean RMS Mean RMS Mean RMS RMS�

M2 NEA-2004 1 3 0 3 2 4 4

FES2004 0 2 0 1 0 1 2

GOT00 0 2 0 1 0 2 2

S2 NEA-2004 2 2 3 6 1 3 3

FES2004 0 1 3 6 1 2 2

GOT00 0 1 1 5 1 2 2

N2 NEA-2004 0 1 1 2 0 1 1

FES2004 0 1 0 2 0 1 1

GOT00 0 1 0 4 0 1 1

M4 NEA-2004 0 1 �24 54 1 2 2

FES2004 1 1 �14 57 1 2 2

GOT00 – – – – – – 2

Unit in cm. Same remark as in Table 2 about GOT00 M4 figure.

Table 4

Error budget: comparison with the T/P cross-over analysis data set

Wave Model da dG e

Mean RMS Mean RMS Mean RMS RMS�

M2 NEA-2004 0 3 0 10 1 5 5

FES2004 0 2 1 3 1 2 2

GOT00 0 1 0 1 0 1 1

S2 NEA-2004 0 1 2 9 1 2 2

FES2004 �1 1 �1 6 1 2 2

GOT00 �1 1 �1 5 0 2 2

N2 NEA-2004 0 1 1 5 0 1 1

FES2004 0 1 1 6 0 1 1

GOT00 0 1 0 4 0 1 1

M4 NEA-2004 0 1 �9 81 0 1 1

FES2004 0 1 �21 76 0 1 1

GOT00 – – – – – – 1

Unit in cm. Same remark as in Table 2 about GOT00 M4 figure.
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considering the mean energy budget. The mean kinetic energy

(MKE) per surface unit is defined as

ek ¼ lim
T!1

1

T

Z T

0
ek dt ¼ lim

T!1
rh

1

T

Z T

0
ðu � uÞdt

þ lim
T!1

r
1

T

Z T

0
ðZu � uÞdt (15)

If we assume that the model elevation and barotropic currents

are purely harmonic, i.e. that elevation and both velocity

components take the following form:

aðl;f; tÞ ¼
X

i

âiðl;fÞ cosðoit þ V0 � Ga;iðl;fÞÞ (16)

where the subscript i stands for the tidal component index, then,

owing to the orthogonality of the harmonic functions, Eq. (15) can

be reduced to

ek ¼
X

i

lim
T!1

rh
1

T

Z T

0
ðui � uiÞdt þ

X

i;j;l

lim
T!1

r
1

T

Z T

0
ðZiuj � ulÞdt (17)

Nonzero terms in the second summation on the righthand side

are those that satisfy oi 	 oj 	 ok ¼ 0. To first order (i.e. replacing

the total depth H by the mean depth h), the mean kinetic energy

simplifies in

ek ’ lim
T!1

rh
1

T

Z T

0
ðu � uÞdt

¼ rh
X

i

1

T i

Z T i

0
ðui � uiÞdt

¼ rh
1

4

X

i

ðûi � ûiÞ (18)

where ûi is the amplitude of the complex velocity.

Accordingly, the total MKE can be approximated by the

summation of the MKEs specific to each tidal constituent. Similar

considerations can be applied to the various contributions to the

mean energy budget. Multiplying Eq. (1) by rghui and averaging
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in time lead to the spectral energy equation:

rh lim
T!1

1

T

Z T

0
ðu � ruÞ � ui dt ¼ rh

1

T i

Z T i

0
ðu � ruÞi � ui dt ¼ wa;i (19)

Applying a similar treatment to all terms in Eq. (1) yields the

time-averaged spectral energy equation:

wa;i ¼ wp;i þwF;i þwD;i (20)

where

wp;i ¼ �rgh
1

T i

Z T i

0
ui � rZi dt

wF;i ¼ rh
1

T i

Z T i

0
ui � Fi dt

wD;i ¼ rh
1

T i

Z T i

0
ui � Di dt (21)

Expanding further, we obtain

wF;i ¼ wast;i þwLSA;i ¼ rgh
1

T i

Z T i

0
ui � rPi dt

wD;i ¼ ww;i þwd;i þwb;i (22)

where

ww;i ¼ �rch
1

T i

Z T i

0
ðrh � uiÞ2 dt (23)

wd;i ¼ rh
1

T i

Z T i

0
ui � ðr � ðAruÞÞi dt (24)

wb;i ¼ �rCh
1

T i

Z T i

0
ui �

kuku
H

� �

i

dt (25)

Here wp;i, wF;i, ww;i, wd;i and wb;i are the surface pressure, tidal

forcing, wave drag, horizontal diffusivity and bottom friction

contributions. The computation, for each harmonic component, of

their spectral RoW per surface unit is straightforward from their

tidal constants, for the linear terms in Eq. (1). The same is true of

the surface pressure gradient, tidal forcing and wave drag. The

same is not true, however, of the bottom friction and horizontal

momentum diffusivity; for the latter, the nonlinearities come

from the Smagorinsky scheme used to establish the diffusion

coefficient. The quantities in Eqs. (24) and (25) can be computed

by harmonic analysis of the terms ðr � ðAruÞÞ and ðkukuÞ at

simulation time. It can also be analyzed off-line by using a tidal

current prediction (actually this method was used to produce the

estimates shown in this paper). For the bottom friction, a more

efficient procedure consists in using the quasi-linearization

technique of the bottom friction coefficient (Le Provost et al.,

1981). This approach is used in the CEFMO spectral numerical

model (Le Provost et al., 1994), from which the (prior) hydro-

dynamic tidal solutions were derived to produce the FES

assimilated tidal atlases. It requires the assumption that the

currents of a given dominant constituent are significantly larger

than those of any other tidal constituent. This assumption, called

the dominant wave assumption, is generally reasonable in regions

where friction is significant, i.e. in the shelf seas. The amplitude of

the tides in these regions is controlled by a local resonance

dependent on the shelf geometry, and such resonance will affect

the different tidal species differently. In other words, either

diurnal or semi-diurnal tides will be greatly amplified, but rarely

both together. In such conditions, the existence of a dominant

wave is generally observed, mostly M2. Based on this assumption,

and by applying a perturbation method in complex space, the

friction coefficients are linearized; one set is related to the

dominant wave, and the other set is related to all the other tidal

constituents together. In the Bay of Biscay, M2 is clearly the

dominant wave, and its tidal friction can be approximated by the

following expression:

~ai ¼ âie
�jGa;i (26)

where j ¼
ffiffiffiffiffiffiffi
�1

p
and

gkuku
H

� �

M2


1

h

r r0

r00 r000

� �
~uM2

(27)

where the complex coefficients are defined as

r ¼ r000 ¼ C

h
R1; r0 ¼ r00 ¼ �C

h
jR0

1 (28)

For any other tidal component, the tidal friction can be

approximated by a similar expression, of coefficients:

r ¼ C

h
ðRk þ R0

kÞ; r0 ¼ r00 ¼ C

h
R00
k

r000 ¼ C

h
ðRk � R0

kÞ (29)

The coefficients R1;R
0
1;Rk;R

0
k and R00

k are real and depend only on

the dominant wave currents, M2 in our application. Their

computation is straightforward and cost-effective, and the loss

in accuracy when computing the RoW of the bottom friction does

not usually exceed 5–10%. This loss is regarded as reasonable,

especially compared to the other uncertainties of the model. It

shows that the linearization technique can be used efficiently

when linearized equations are needed (for instance to derive

adequate spectral barotropic tidal currents from tidal elevation at

the open boundaries of the model). The space integral of the mean

RoW per surface unit leads to the energy budget over the model

domain.

As a final step, the spectral mean energy flux of a given tidal

constituent is defined by the usual expression:

Fi ¼ rg
1

T i

Z T i

0

Z

G

Zihui � ndl (30)

Table 5

Mean barotropic energy budget, spatially domain-integrated global and spectral mean rate of work for: 1, flux; 2, pressure; 3, potential; 4, LSA; 5, linearized bottom friction;

6, full bottom friction; 7, viscosity; 8, wave drag; 9, energy advection

Wave Model 1 2 3 4 5 6 7 8 9

Global NEA-2004 – 300.0 �0.6 �20.0 – �221.0 �14.0 �44.0 0.0

NEA-2004 265 248.5 �0.5 �16.5 �175.0 �182.5 �10.0 �36.5 1.5

FES99 – – – – �270 – – – –

M2 Miller 180 – – – – – – – –

Cartwright et al. 360 – – – – – – – –

S2 NEA-2004 36.5 34.5 �1.0 �2.5 �23.0 �25.0 �1.5 �4.5 0.0

K1 NEA-2004 2.8 1.9 0.3 �0.2 �0.8 �1.0 �0.1 �0.8 0.0

M4 NEA-2004 0.0 0.7 0.0 0.0 �0.8 �0.9 �0.1 0.0 �0.3

Unit in GW.
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The mean energy flux can be written as the sum of the spectral

mean energy fluxes plus cross terms as follows:

F ¼ rg lim
T!1

1

T

Z T

0

Z

G

ZHu � ndl

¼
X

i

Fi þ rg
X

i;j;k

lim
T!1

1

T

Z T

0

Z

G

ZiZjuk � ndl (31)

Nonzero terms in the second summation at the righthand side

are those that satisfy oi 	 oj 	 ok ¼ 0. This summation involves

triple wave interactions (hence at least one order smaller or more

than the double wave interactions) and also major triplets, i.e.

triplets including a major tidal constituent, and will necessarily

include a nonlinear or low-frequency constituent which magni-

tude is extremely small in the deep ocean (such asM2 �M2 �M4).

As a consequence, this summation can be neglected in our case

where the open ocean boundaries are located in the deep ocean.

Then the total mean energy flux can be approximated by the

summation of the spectral energy fluxes.

Unfortunately, when using the linearized energy budget,

Eq. (11) is no longer verified and Eq. (30) is no longer consistent

with the estimate of the pressure gradient RoW. As reported in

Table 5, the inconsistency reaches less than 10% of the total RoW

for the M2 constituent. To understand it, let us start from the core

of the RoW of pressure forces:

Hu � rZ ¼ hu � rZþ Zu � rZ
¼ hu � rZþ r � ðZ2uÞ � rgZr � ðZuÞ (32)

Substituting Eq. (32) in Eq. (10), we get

r � ðZhuÞ þ 1

2

qZ2

qt
¼ hu � rZ� rgZr � ðZuÞ (33)

Integrating over the domain and averaging in time, we obtain

X

i

Fi ¼ �
X

i

wp;i � rg lim
T!1

1

T

Z T

0

Z

O

Zr � ðZuÞdsdt

¼ �
X

i

wp;i � rg
X

i;j;k

lim
T!1

1

T

Z T

0

Z

O

Zir � Zjuk

� �
dsdt (34)

Again, nonzero terms in the second summation on the right-

hand side are those that satisfy oi 	 oj 	 ok ¼ 0. They represent

the discrepancy between the spectral estimate of the pressure

RoW and the spectral mean energy flux. Since the sum of the

spectral mean energy fluxes is close to the total mean energy flux,

and hence to the mean RoW of pressure forces, it quantifies the

limit of the spectral approach for the tidal energy estimation. This

point deserves mention, as the mean spectral energy flux is used

by some authors to infer the mean spectral RoW of the pressure

forces in regions of interest, in order to estimate the local balance

between tidal generation and dissipation. In the case of astro-

nomical tides, the generation term can be considered as

negligible, and the energy fluxes are used as a dissipation

estimate. The omission of the coupled terms is of small

importance for the main tidal constituents, but conversely it

may be significant for the minor tidal constituents.

From the global and spectral energy budget (Table 5), it can be

seen that M2 represents more than 80% of the total energy in the

European shelf seas. The figure of 250GW budget in this region is

more or less within the range of previous estimates. It is also to be

compared with the 2.45 TW energy budget for the global ocean.

The wave drag dissipation is about 18% of the total dissipation (i.e.

wave drag plus bottom friction) instead of 25–30% on average in

the global ocean. The energy figures decrease rapidly with S2 and

even further with K1. The energy involved in M4 dynamics is only

1GW, which is very small indeed but still larger than any other

nonlinear tidal budget. As mentioned in the previous section, the

tidal amplitude is damped excessively in NEA-2004. Further

adjustments of the parameters are probably necessary (regarding

in particular the wave drag and bottom friction coefficients),

which will impact the energy budget.

3. Barotropic tides in the Bay of Biscay

As a first step toward the modeling of internal tides of the Bay

of Biscay, the 3D coastal ocean model SYMPHONIE is embedded

inside the T-UGOm model. The initial solution and the forcing

solution imposed at the boundaries in the SYMPHONIE modeling

are provided by T-UGOm (velocities and surface elevations). Some

comparisons between model solutions and observations are

shown in order to validate the surface forcing of internal tides.

3.1. The SYMPHONIE model configuration

The SYMPHONIE 3D coastal ocean model is based on primitive

equations and classical simplifications, principally the Boussinesq

and hydrostatic pressure assumptions (Marsaleix et al., 2008). The

model is used in a 2D barotropic shallow-water mode, in order to

analyze the tides over two months and a half. The components of

the current and the sea surface elevation are computed on a C grid

using a classical finite-difference method (Arakawa and Suarez,

1983). High-frequency barotropic processes and fast moving

surface waves are explicitly solved with a strong CFL constraint

on the time step. Bottom friction is computed through a

logarithmic parameterization of the bottom boundary layer.

Viscosity coefficients related to the momentum horizontal fluxes

are taken to be constant in time but dependent on the size of

horizontal grid meshes (namely 15m2 s�1 for a horizontal grid

mesh of 1.5 km) following the formulation by Smagorinsky (1993).

3.1.1. Model forcing

Special attention has been paid to the OBC since spurious

reflections of outgoing waves at open boundaries can have a

significant and negative impact on the inner domain solution. The

order of magnitude of time scales associated with the propagation of

waves through the Bay of Biscay area (about 1.1h for a barotropic

semi-diurnal wave) is much shorter than the duration of our

simulations. The choice of OBC has led to the use of the radiative

boundary conditions by Flather (1976) for the tidal external field i.e.:

ðZ� ZtideÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
hþ Z

g

s
ðu� utideÞ � n (35)

Table 6

Characteristics of principal tidal constituents considered in our study

Tidal species Name T (h) a (m) f u (rad) V0 (rad)

Semi-diurnal

Principal lunar M2 12.421 0.242334 1.024 0.0283441 2.57347

Principal solar S2 12.000 0.112841 1 0 0

Lunar elliptic N2 12.658 0.046398 1.024 0.0283441 5.49138

Lunisolar K2 11.967 0.030704 0.835 0.130586 3.82885

Diurnal

Lunisolar K1 23.935 0.141565 0.934 0.1305859 3.82885

Principal lunar O1 25.819 0.100514 0.892 6.11445 5.02782

Principal solar P1 24.066 0.046843 1 0 2.45433

Elliptic lunar Q1 26.868 0.019256 0.892 6.11445 1.66255

The period of the tide is T , a is the equilibrium amplitude for the tide, u and f are

the nodal factors (corrective terms, respectively, for the amplitude and phase) and

V0 is the phase computed for t0 taken at the origin time in our modeling, that is 1st

of August 1994.
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where Z and Ztide are the computed sea surface elevation and its

external forcing counterpart, respectively, u and utide the computed

depth-averaged current and its external forcing counterpart,

respectively, and n a unit outward vector normal to the open

boundary. Details on the numerical implementation of the OBC are

given in Marsaleix et al. (2006).

Barotropic tidal forcing: OBC have also the purpose of forcing

the inner solution with external fields, which in our case are those

of the NEA-2004 atlas. The major tidal constituents for the Bay of

Biscay are considered. With regard to the Rayleigh criterion (Pugh,

1989) or the synoptic period, over which two tidal constituents

are separated by a cycle, the duration of the recorded or modeled

time series necessary to separate two frequencies f 1 and f 2 must

be of tX1=jf 1 � f 2j. Accordingly, the present study may not

separate all the tidal components as the separation of S2 and K2

requires 182 days, even if Davies and Kwong (2000) have shown

that the error with a 60 days runwas comparable with the error in

the current meter data (	2cms�1) in this case. The forcing only

includes tidal elevations and barotropic currents for five consti-

tuents: M2, S2, N2, K1 and M4 (see Appendix A and Table 6). In

addition, tidal forcing includes the tidal potential due to

astronomical effects, LSA effects (Appendix A).

Modeling domain: The Bay of Biscay is located in the North-East

Atlantic ocean (20–50N). It is made of a wide continental shelf

(with depths lower than 200m) separated from the abyssal plain

(with depths reaching more than 4500m) by an abrupt slope. The

modeling domain extends from the Iberic peninsula to the English

Channel entrance and covers more than 700km from East to West

and from North to South (Fig. 8).

3.2. Description of the major tidal component M2 and its first

harmonic M4

The amplitudes and phase lags of the surface elevation and

current ellipses are plotted in Fig. 9 for M2 and M4. Tidal

amplitudes are maximum near the coasts and in the Mont

Saint-Michel bay (Figs. 9(a) and (d)) and currents are maximum

over the shelf (Figs. 9(c) and (f)).

3.2.1. The semi-diurnal M2 tide

The M2 surface elevation amplitude (Fig. 9(a)) goes up from

1m above the abyssal plain to 1.7m at the Atlantic coasts with a

fast increase on the shelf. Moreover it reaches 4.3m in the Mont

Saint-Michel bay. This last increase is due to a resonance

phenomenon following Clarke (1991), as the shelf width is

approximately 135km and nearly equal to one quarter of the

wavelength l=4 (l ¼ cT ¼
ffiffiffiffiffiffi
gH

p
T ¼ 541:5km for a depth of

H ¼ 15m). Interferences arise between the waves going in and

out of the bay: semi-diurnal waves are Poincaré stationnary waves

in the Mont Saint-Michel bay (cotidal lines are parallel to the

coast in Fig. 9(b)). Maximum tidal amplitudes are observed during

the equinox spring tide when it can reach 14m.

The map of the cotidal lines (Fig. 9(b)) indicates that phases are

increasing Northward going from 90� in the Bay of Biscay to 280�

in the English Channel entrance where the cotidal lines become

closer to one another. The Northward propagation in the Bay of

Biscay is affected by an acceleration toward the English Channel

where the waves propagate Eastward. At the English Channel
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entrance the tide propagates mostly as progressive Kelvin waves

parallel to the coast (Fang et al., 1991). Over the abyssal plain

waves are propagating as Kelvin waves in the Bay of Biscay (Le

Cann, 1990). As far as the continental shelf is concerned, two kinds

of waves can be found following the results by Le Cann (1990) and

Jezequel and Maze (2001) based on the theory developed by

Clarke and Battisti (1981, 1982a, b). As the shelf break is crossed, a

Poincaré wave is generated and tidal elevations become in

quadrature with tidal currents. The orientation of M2 tidal current

ellipses (Fig. 9(c)) changes and the influence of a Poincaré wave

dominates. On the contrary, closer to the coast the Kelvin

character can be dominant again.

From Fig. 9(c) the current ellipses are oriented toward the shelf

break above the plain with values ranging from 1 to 5cms�1 at

the Southern boundary. As time elapses the current turns to a

cyclonic direction describing an ellipse. Ellipses are nearly circular

over the plain; when the shelf break is crossed they become more

rectilinear and aligned with the English Channel entrance. More-

over, at the crossing the polarization of the ellipse changes and

currents increase rapidly. Above the continental slope the currents

are nearly perpendicular to the slope, that is perpendicular to

large bathymetry gradients, a favorable condition for internal

tides generation (Baines, 1982). Over the shelf, the amplitude of

the current is about 20 cms�1 with local accelerations at the coast

where the amplitude can be as large as 1ms�1 (in the Gironde

estuary for example). The highest values for the currents are

reached in the English Channel entrance and in the Mont Saint-

Michel bay, with amplitudes of 1:5ms�1. Ellipses can be distorted

near the coast under the influence of friction.

3.2.2. The quarter-diurnal M4 harmonic

The quarter-diurnal component of the tide (Figs. 9(d)–(f)) is

generated by nonlinearity from M2. It is therefore not surprising

that the amplitudes in Fig. 9(d) are larger near the coast than over

the plain, as is the case for M2. They reach 25 cm on the East of

Oleron island, a lower value than for M2 by a factor 7. The

amplitude maxima of the modeled surface elevation are localized

inside the Mont Saint-Michel bay, with values ranging from 5 to

75 cm eventually even if the amplification is localized in a smaller

area than for M2. Two amphidromic points can be seen in Fig. 9(e)

near the Guernesey island (49.5N, 2.7W) and South of Brittany

(48N, 4.7W). This is very different from the M2 phase map and the

propagation is cyclonic around those points. Currents associated

with the propagation of the higher harmonic M4 are plotted in

Fig. 9(f). They are maximum in shallow areas as for M2 but the

orientation differs over the shelf between 45N and 47.5N where

the currents are oriented alongshore. Therefore the M4 harmonic

does not follow its mother tide M2 and possesses its own

dynamics in shallow areas.
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3.2.3. M4 amplification at the coast: sensitivity to boundary forcing

The case of M4 is very interesting because the first M2 harmonic

is very difficult to model and its forcing at the boundary is not

straightforward as previously mentioned in Section 2.3. In particular,

the English Channel located at the Eastern boundary of the modeling

domain is a major generation region for M4 (Le Provost, 1991).

Following Le Cann (1990) and Alvarez et al. (1997) the energy

entering the domain by the North-Eastern boundary should be

responsible for the amplification at the coast in the Bay of Biscay.

A sensitivity study is thus carried out in order to study influence

of the forcing over the modeled amplitudes. The difference between

the cases with and without initialization and forcing by M4 at the

boundary is illustrated in Figs. 10(a) and (b). The most important

differences appear at the Atlantic coast (in the circled areas). Surface

elevation amplitudes in the forced case are 3 times higher than those

without forcing by M4 at the boundary in the ‘‘Pethuis Charentais’’,

with values of 33 and 11cm, respectively. This means that local

generation is not sufficient to explain the coastal amplification and

that it is important to take the forcing into account. The question of

the importance of the M4 forcing was raised 20 years ago, and Le

Cann (1990) wrote that theM4 wave propagating outside the English

Channel into the deep ocean was thought to co-oscillate with the

Bay of Biscay explaining the great amplitudes observed nearshore

(due to resonance), with small amplitudes at the shelf break (due to

the absence of resonance).

The energy flux computed for M4 using T-UGOm presented in

Figs. 6 and 7 shows a different pattern. In the Northern part of the

domain, the incoming energy flux is directed mainly Westward. If

the English Channel is a strong area for M4 generation, another

important generation region is located in the Southern Atlantic off

South America (i.e. the Argentina margin and the Malvine shelf).

The energy flux is directed Northward after this generation in the

Southern Atlantic ocean and reaches the Bay of Biscay. This energy

flux is then directed cross-shore over the shelf of the Bay of Biscay

toward the coastal areas of strong dissipation for M4 as shown in

Fig. 10. As a consequence there is a high sensitivity to the Southern

boundary condition for the M4 solution.

3.3. Comparisons with observations

In order to validate the model tidal solutions, the amplitudes

and phase lags of both tidal surface elevations and currents of the

forcing T-UGOm solution and the SYMPHONIE solution are

compared with in situ measurements.

3.3.1. Tidal elevations

Comparisons have been made with tidal gauges of the Bay of

Biscay. The observation network is mostly made of more than 100

years of coastal numerical recording tide gauges. The time series

0.05

0
.0

5

0
.0

5

0.05

0
.0
5

0
.0

5
0
.0

5

0.1

0
.1

0.1 0
.1

0
.3

5

4
4

°
4

5
°

4
6

°
4

7
°

4
8

°
4

9
°

4
4

°
4

5
°

4
6

°
4

7
°

4
8

°
4

9
°

− 10° −9° −6° −5° −4° −3° −2° −1°

− 10° −9° −8° −7° −6° −5° −4° −3° −2° −1°

0
.1

0
.0

5

0
.0

5

0
.3

4
4

°
4

5
°

4
6

°
4

7
°

4
8

°
4

9
°

4
4

°
4

5
°

4
6

°
4

7
°

4
8

°
4

9
°

− 10° −9° −6° −5° −4° −3° −2° −1°

− 10° −9° −8° −7° −6° −5° −4° −3° −2° −1°
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The circle indicates the region where the forcing has the stronger impact.

Table 7

RMS comparison for SYMPHONIE and T-UGOm (interpolated over a 1.5 km grid) tidal solutions with 53 tide gauges for M2 and 50 for M4 in terms of sea surface elevation

Wave SYMPHONIE T-UGOm 1.5 km

Moderr (cm) Gerr (deg) RMS mean (cm) RMS (cm) Moderr (cm) Gerr (deg) RMS mean (cm) RMS (cm)

M2 3.9 130.6 10.9 11.3 1.0 175.9 7.6 7.6

M4 0.7 68.7 3.1 3.1 0.7 180.9 2.3 2.3

From left to right in the table: mean complex error modulus, mean complex error phase, RMS (root mean square) for the complex error relatively to the mean, RMS for the

complex error relatively to zero.
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analysis is summarized for M2 and M4 in Table 7. This table is

dedicated to a statistical comparison between solutions from

SYMPHONIE, T-UGOm and tide gauges. Details on the SYMPHONIE

and tide gauges solutions at each location are available in Table 8

and in Fig. 11.

Let Zisym be the surface elevation of a partial tide modeled by

SYMPHONIE, with i the subscript for the comparison position (Ziobs
stands for the corresponding observation).

The complex mean error is e ¼ ð1=nÞ
Pn

i¼1 Z
i
obs � Zisym ¼

ð1=nÞ
Pn

i¼1 ei. It is split into a real part and a complex part with

amplitude Aerr and phase Gerr . The complex mean error modulus

Moderr in the table corresponds to ð1=
ffiffiffi
2

p
ÞAerr and the RMS (root

mean square) error is also given. The RMS of the complex error

relatively to the mean value is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i jei � ej2
2n

s

(36)

From Table 7 it appears that the solutions of the two models

differ from the observations in the same way. For the semi-diurnal

Table 8

Comparison of the tidal components M2 and M4 between the SYMPHONIE solution and the solution from 53 tide gauges

Station Lat (N) Lon (W) M2 M4

A G dtot A G dtot

Basse des chats 47.58 3.38 150/149.9 97.2/98.0 1.4 7.7/6.5 26.2/20.0 1.0

Basse Royale 48.3 4.83 194.5/196.8 104.9/105.0 1.7 3.2/1.7 135.3/234.3 2.7

Bilbao 43.34 3.04 132.3/130.3 92.6/92.7 1.4 2.8/3.0 324.4/321.6 0.2

Birvideaux 47.48 3.28 124.0/151.0 95.5/97.7 1.5 8.0/7.1 21.6/18.6 0.7

Boucau 45.51 1.52 124.0/129.2 95.5/92.2 6.3 1.8/2.8 314.7/313.1 0.7

Bouée Castouillet 47.32 2.57 156.9/159.7 99.2/98.4 2.5 15.6/14.0 25.5/21.8 1.3

Bouée Fromentine 46.88 2.20 155.9/155.6 98.0/95.5 4.8 15.0/14.6 16.9/8.6 1.5

Cherbourg 49.65 1.63 186.84/194.5 228.8/237.7 21.9 14.2/8.9 355.2/54.4 8.7

Concarneau 47.87 3.92 147.9/148.7 99.0/97.7 2.6 6.3/4.7 36.6/23.1 1.4

Gatseau 45.80 1.22 150.9/159.4 98.1/97.4 6.2 14.6/15.9 343.5/21.7 7.1

Gijon 43.56 5.70 131.3/125.6 91.1/91.6 4.1 2.1/2.1 316.1/308.3 0.2

Glénan 47.73 3.95 149.5/148.2 98.4/97.6 1.7 6.0/4.5 34.5/21.3 1.4

Grand Trou 47.05 2.63 159.4/155.6 97.8/96.5 3.7 12.8/11.8 22.9/12.5 1.7

Herbaudière 47.03 2.3 167.7/163.6 99.7/96.8 6.6 18.1/16.3 30.0/20.9 2.3

Hoedic 47.33 2.87 158.1/155.9 98.0/98.8 2.1 13.6/11.2 25.2/21.9 1.7

Houat 47.4 2.95 155.1/157.7 101.5/99.6 4.1 13.8/11.6 33.0/26.5 1.9

La Banche 47.17 2.47 158.9/160.5 100.0/97.9 4.3 16.0/14.9 27.1/20.3 1.5

La Pallice 46.17 1.22 175.9/68.7 98.3/99.3 5.6 24.8/23.6 9.6/22.6 4.0

Le Conquet 48.37 4.78 202.5/203.7 110.6/112.2 4.1 7.0/6.9 134.3/200.6 5.4

Le Croisic 47.30 2.51 161.8/160.0 102.1/98.3 7.5 16.8/14.3 33.3/21.8 2.8

Le Palais 47.35 3.15 155.1/156.0 98.6/98.4 0.7 10.9/9.7 24.9/20.9 1.0

Sables d’olonnes 46.5 1.82 156.3/151.2 97.3/95.8 4.6 15.2/12.8 4.9/359.6 2.0

Loctudy 47.83 4.17 147.6/148.4 95.0/97.7 4.9 4.9/3.8 23.0/23.5 0.8

Pornichet 47.25 2.33 163.4/163.2 99.0/99.4 0.8 18.0/16.9 29.4/26.3 1.0

Port-Louis 47.7 3.35 146.5/150.6 100.8/98.6 5.0 7.6/7.0 26.0/23.2 0.5

Port Jointville 46.73 2.35 153.4/152.2 98.7/94.9 7.4 12.9/11.4 12.2/1.5 1.9

Port-Tudy 47.65 3.45 149.8/150.0 98.9/98.0 1.5 7.3/6.2 29.4/20.2 1.1

Royan 45.6 1.02 148.2/152.2 108.8/105.6 6.5 7.6/2.7 359.7/26.5 3.8

Saint-Hélier Jersey 49.18 2.11 333.2/349.2 182.2/198.8 70.6 19.1/24.7 300.5/356.1 14.8

Saint-Gildas 47.13 2.25 168.4/165.5 100.6/98.9 4.0 19.0/18.5 30.8/26.5 1.0

Saint-Guenole 47.82 4.37 150.6/151.0 96.5/95.7 1.4 3.9/1.9 47.0/29.9 1.5

Saint-Nazaire 47.27 2.2 175.0/169.1 104.1/100.7 8.2 20.0/20.5 44.7/35.0 2.4

Santander 43.46 3.79 133.7/128.8 97.5/92.3 9.0 2.4/2.5 335.5/316.0 0.6

Vilaine-P1 47.43 3.18 150.3/153.2 100.3/97.9 4.8 8.7/8.2 28.8/19.2 1.1

Vilaine-P2 47.23 2.93 151.4/153.6 100.3/97.9 4.7 10.4/10.0 26.1/17.7 1.1

COURIR1 47.85 5.97 147.7/149.4 105.8/105.7 1.3 1.4/1.8 196.4/257.3 1.2

COURIR3 84-3 48.02 6.22 150.9/150.2 107.1/108.5 2.5 0.6/2.1 196.3/251.4 1.3

COURIR5 2 47.83 5.78 141.0/139.0 99.4/100.8 2.8 0.6/1.5 283.5/276.8 0.7

COURIR5 3 47.27 6.0 130.7/129.6 97.7/98.9 2.0 1.0/1.4 320.8/309.9 0.3

G 49.62 8.62 137.8/133.4 121.6/124.6 5.9 2.7/2.7 231.0/235.3 0.2

Gaillouneys 44.57 1.23 125.8/131.2 102.2/92.1 16.5 1.5/3.7 29.0/313.8 2.6

Gastom-M1P1 47.52 6.8 126.8/127.5 101.4/100.8 1.0 1.4/1.4 310.3/301.9 0.1

H 48.92 9.35 123.2/120.2 112.4/113.0 2.3 1.5/1.7 267.1/275.4 0.2

I 47.85 10.38 108.7/109.1 106.7/103.9 3.8 0.8/1.0 304.8/301.1 0.1

IAPSO.1.1.7 47.45 8.43 122.0/118.6 102.0/101.5 2.4 0.7/1.1 210.0/303.5 1.0

IAPSO.1.1.11 48.62 9.7 114.8/114.5 107.0/108.0 1.4

IAPSO.1.1.85 48.13 8.08 124.3/124.1 106.0/105.8 0.4

IAPSO.1.1.59 48.8 7.02 149.9/150.2 117.0/119.5 4.7

M10 45.08 2.43 136.0/131.2 93.2/93.3 3.4 2.8/2.8 338.2/319.8 0.6

M20 45.52 3.42 134.2/129.9 94.8/94.2 3.2 2.6/2.3 339.8/320.8 0.6

M30 46.51 4.52 135.8/131.3 97.4/96.0 3.9 1.6/1.9 348.3/327.7 0.5

Manmod-P2 49.12 5.68 185.4/180.3 127.1/131.6 10.6 6.4/5.6 149.2/190.2 3.0

MGFCOR large 46.32 5.4 130.2/127.6 96.8/96.2 2.0 1.8/1.7 334.7/318.0 0.4

The name of the stations is given together with their location (latitude and longitude). The amplitudes A (cm) and phase lags G (deg) are given for the M2 tide and the M4

harmonic (observations/model solutions). The comparison between the observed sea surface elevation and the modeled one is given by the complex discrepancy dtot (cm)

that is the complex error norm times 1ffiffi
2

p . The horizontal line separates the coastal locations and the deep ocean locations.
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tide M2, that is the major constituent of the global tidal signal, the

complex RMS error is 11.3 cm for the SYMPHONIE solution against

7.6 cm for the T-UGOm solution interpolated on the SYMPHONIE

run grid (that is about 30% less). The SYMPHONIE solution is

therefore not as good as the T-UGOm solution in terms of surface

elevation. The mean complex error modulus is 3.9 cm for the

SYMPHONIE solution, much more than the 1.0 cm obtained for the

T-UGOm solution. This implies a RMS error relative to the origin

bigger than the RMS error spreading relative to the mean (10.9 cm

for the SYMPHONIE solution). However, Fig. 11 shows that errors

are due to phase differences more than differences in amplitudes

between the model and the tide gauges solutions.

For the M4 harmonic, the solutions from both models have

globally the same behavior. The error is nearly the same for the

SYMPHONIE solution and the T-UGOm solution, with an equal

modulus of 0.7 cm. But errors are more spread over with the

SYMPHONIE simulation.

The explanations for the differences between the model and

the forcing solutions depend upon the region of interest. They are

largely due to differences in grids (namely the finite-difference

structured grids, with a horizontal resolution of 1.5 km, versus the

finite-element unstructured grids that are locally refined, with a

horizontal resolution spaning from 20km in the deep ocean to

less than 1km at the coast) with the associated bathymetry

resolution and also to the analysis duration and forcing of the

model. For the T-UGOm solution 40 tidal constituents are

analyzed over one year against five components during two

months for the SYMPHONIE solution.

The errors associated with the sea surface elevation modeled

by SYMPHONIE are spread over a large range of values. They reach

their maximum for the tide gauges located near the coasts (see

Table 8). The difference in amplitude is 0.7 cm at station GASTOM-

M1P1 located above the shelf break, but it reaches 16 cm at Saint-

Hélier for M2. In order to take the phase lag into account, a look at

the associated complex discrepancy shows a greater difference

with values ranging from 1cm at GASTOM-M1P1 to 70 cm at

Saint-Hélier. Locally, at station Manmod-P2, the complex dis-

crepancy is more than 10 cm even over the shelf break. This is

probably due to a poor resolution and bathymetry representation

in the model in this region of rapidly varying depth.

The poor quality of the modeled solution at Saint-Hélier can

have several origins. First, the station is located in a harbor, with

rapidly varying depth. Then, the version of the SYMPHONIE model

used here was barotropic. It does not take into account the 3D

effects on the modeled tide whereas the T-UGOm model includes

the dissipation process of barotropic to baroclinic energy transfer

due to internal wave generation over topographic features

(Carrere and Lyard, 2003). Moreover, a comparison with the T-

UGOm solution at Saint-Hélier has shown that the grid mesh of

the model does not allow it to be as accurate as T-UGOm in

various areas (mostly near the coasts) because of the use of a

regular grid instead of a finite-element one.
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The SYMPHONIE model is thus able to correctly represent the

tides in the Bay of Biscay and to follow the initial and forcing

solutions, with a tendency to over-amplification of the tides near

the coast. This solution is a little poorer than that found with

T-UGOm, with problems of resolutions and local topography

errors in models enhanced in SYMPHONIE. But the comparison
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Table 9

Comparison of current ellipses parameters for models and observations at locations DP94-1 and DP94-2 from Pichon and Correard (2006)

Location Data Tidal constituent Semi-major axis ðcms�1Þ Semi-minor axis ðcms�1Þ Orientation (deg) Situation (deg)

DP94-1 Observations M2 19.6 �9.5 42.3 76.9

S2 7.9 �4.3 47.4 124.2

N2 3.4 �1.9 52.5 71.7

SYMPHONIE M2 17.5 �8.2 49.8 74.7

S2 5.9 �2.7 51.7 115.0

N2 3.6 �1.7 49.2 53.3

T-UGOm M2 16.5 �7.5 54.6 72.5

S2 5.6 �2.4 56.6 113.3

N2 3.3 �1.5 54.2 51.6

DP94-2 Observations M2 30.6 �22.0 38.4 89.9

S2 12.3 �7.5 29.1 139.4

N2 7.7 �5.6 36.0 64.4

SYMPHONIE M2 22.9 �16.2 49.2 42.6

S2 7.7 �5.6 48.7 84.5

N2 4.6 �3.3 40.5 27.0

T-UGOm M2 24.5 �16.4 55.7 38.2

S2 8.5 �5.5 56.3 78.6

N2 5.0 �3.4 53.5 17.0

Semi-major axis (maximum value of the current during the tidal cycle, in cms�1), semi-minor axis (minimum value, in cms�1 , with the sign giving the polarization),

orientation (deg) and situation (deg). The major axis orientation is counted clockwise from 0� in the Northward direction. The situation is the phase lag referenced to

UTþ 0.
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above the shelf break is very satisfying, hence this model is well

suited to the present problem, because this is where internal tide

generation takes place.

3.3.2. Tidal currents

Because mean currents (on a vertical plane) are obtained with

a barotropic model, the comparison with observations is not

obvious. Actually computing the mean currents from in situ

measurements that include baroclinicity is very difficult, and the

comparison presented hereafter has to be regarded as essentially

qualitative.

The current ellipse parameters for the modeled solutions and

for the MINT94 observed solutions are compared for the

semi-diurnal components M2, S2 and N2 of the tidal spectrum.

Two moorings are considered, at stations DP94-1 (48.109N,

8.485W) and DP94-2 (47.239N, 5.942W) (see Fig. 8), with current

meters (ADCP) at 300m depth (and 30 layers on the vertical).

They were active in 1994 during one month when the seasonal

thermocline was formed, under conditions of weak stratification,

frommid-April to mid-May for DP94-1 and frommid-May to mid-

June for DP94-2 (Perenne and Pichon, 1999). The observed

barotropic current is defined as the vertical average of the

measured current at each level and the tidal constituents are

extracted with harmonic analysis. At station DP94-2, the slope is

very steep (about 10%) and the horizontal variability of the

currents is maximum (Huet, 1999). Therefore, a quantitative

comparison with model solutions at that location seems particu-

larly difficult.

The comparison has been carried out by choosing a depth

criterion of 300m for the model locations. Results are summar-

ized in Fig. 12 and in Table 9.

The first comparison is made between the SYMPHONIE

solution and the T-UGOm interpolated solution. As for the surface

elevation, the two solutions are very close to each other, at both

DP94-1 and DP94-2 locations (Fig. 12). The SYMPHONIE model

tends to overestimate the amplitude of the current for the three

waves M2, S2 and N2 at DP94-1 compared with the forcing

solution, with a mean of 0:5 cms�1 for the semi-major axis and

0:4 cms�1 for the semi-minor axis; by contrast, at DP94-2 it tends

to underestimate this amplitude. As the SYMPHONIE solutions

globally follow the forcing, errors from the observations may

originate from errors in the forcing.

At DP94-1, the SYMPHONIE modeling correctly describes the

observed currents for M2, S2 and N2, with an underestimation of

2 cms�1 for the M2 and S2 semi-major axes and an overestimation

of 0:2cms�1 for the N2 axis. The same tendency appears for the

semi-minor axis. Locally, the bathymetry gradient is oriented

North–South and the current ellipse makes an angle of nearly 45�

with this direction, the difference going from 1 to 8�. The phase

lag bias is only 5min for M2 at DP94-1. Thus the comparison at

DP94-1 location is satisfying, with the SYMPHONIE solution fitting

better the observation than the T-UGOm interpolated solution.

At DP94-2, on the contrary, the T-UGOm interpolated solution

fits better the data from the mooring. Both the solutions from

SYMPHONIE and T-UGOm show larger errors than at DP94-1. The

bias in amplitude is 7:68 cms�1 for the SYMPHONIE solution

(6 cms�1 for the T-UGOm one) for the M2 semi-major axis. The

orientations of the modeled ellipses are close to the observed

ones, but the observed phase lag is twice the modeled one.

It is important to keep in mind the resolution and bathymetry

limitations of the models, so that poor bathymetry representation

could explain the differences at DP94-2 station. Another point to

consider is the analysis. We took only five waves in order to

separate the components well, but the observations are sampled

over one month only, meaning that the treatment must be an

admittance method in order to get all the waves (M2, S2, N2 and

K2). The differences in post-treatment may also induce bias. But

from this localized comparison, the SYMPHONIE modeling is

competitive with a regional T-UGOm modeling dedicated to tidal

studies (with bias from observations of the same order of

magnitude). This is of primary importance as the tidal current is

a forcing for internal tide generation at the shelf break in the Bay

of Biscay.

4. Discussion

Significant progress has been made during the last 15 years in

our knowledge of deep ocean and coastal tides with the

emergence of altimetry. But as highlighted by Lyard et al. (2006)

the spectral approach has reached its limits with the FES2004

atlas. The regional hydrodynamic model T-UGOm is a new

generation model that solves the nonlinear dynamics and the

related NEA-2004 tidal atlas shows a great improvement of the

tidal solution in coastal areas. This yields an improvement of the

embedded SYMPHONIE solution at a regional/coastal scale.

The comparisons between the NEA-2004 atlas, the SYMPHO-

NIE solution and measurements show a good agreement between

the model solutions and observations. They demonstrate the

ability for the models to accurately represent the barotropic tides

in the Bay of Biscay, with bathymetry and boundary conditions as

the major sources of error. This study also illustrates the need to

take the M4 harmonic forcing into account at the regional model

boundary, with errors of more than 100% observed near the coasts

of the Bay of Biscay depending on this forcing. For a realistic

representation of the harmonic, forcing at both the Northern and

the Southern boundaries of the Bay of Biscay model is a

prerequisite, as a great part of energy at the M4 frequency

propagates from the Southern Atlantic ocean before entering the

bay.

Barotropic tides in the Bay of Biscay are very strong and a large

amount of energy is dissipated over the continental shelf,

especially at the English Channel entrance. The most energetic

component is theM2 wave which represents more than 80% of the

total energy in the European shelf seas. As this work deals with

the coastal zone, a special attention is paid to nonlinearities

affecting the tidal spectrum. The energy budget is addressed in

terms of a spectral energy decomposition, including spectral

mean energy fluxes plus cross terms. This yields to 250GW for M2

and 1GW for M4. This last value may be underestimated due to a

damped tidal amplitude for the M4 NEA-2004 solution.

Finally, this validation of the barotropic tides is of primary

importance for the modeling of internal tides. Indeed, internal

tides are generated at the vicinity of the shelf break and arise from

the interaction of tidal currents with bathymetry as will be

described in the next part of the paper (Pairaud et al., 2008),

dedicated to internal tides in the Bay of Biscay.
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Appendix A. Tidal forcing in the SYMPHONIE modeling

Tidal forcing consists first of tidal surface elevations and

currents introduced as forcing terms in the boundary conditions

(35), and secondly of astronomical and loading potentials

providing, through the horizontal components of their gradients,

a barotropic force added to the momentum equation. Tidal sea

surface elevations and currents have the following forms:

Zðl;j; tÞ ¼
X

k

f kZ0;kðl;jÞ cosðokðt � t0Þ

þ V0;k þ uk � GZ;kðl;jÞÞ (A.1)

uðl;j; tÞ ¼
X

k

f ku0;kðl;jÞ cosðokðt � t0Þ

þ V0;k þ uk � Gu;kðl;jÞÞ (A.2)

vðl;j; tÞ ¼
X

k

f kv0;kðl;jÞ cosðokðt � t0Þ

þ V0;k þ uk � Gv;kðl;jÞÞ (A.3)

where the subscript k stands for the partial tides taken into

account. ðZ0;u0; v0Þ and ðGZ;Gu;GvÞ are, respectively, the ampli-

tudes and phase lags for sea surface elevations and currents given

by the NEA-2004 atlas (this issue) and depending on the longitude

l and the latitude j. The nodal factors f k and uk (Doodson, 1927)

are taken as constant (although they are in fact slowly varying

with time), V0 is a constant related to the reference time t0 and o

is the considered tidal frequency. Practically, we have added five

of the most significant tidal waves in the Bay of Biscay (M2, S2, N2,

K1 and M4). The tidal potential due to astronomical effects

(Hendershott, 1972; Apel, 1987) is given by

PA ¼ ð1þ k2 þ h2Þfa

� n0
1� 3 sin2ðjÞ

2
þ n1 sinð2jÞ þ n2 cos

2ðjÞ
!

� cosðoðt � t0Þ þ ulþ V0 þ uÞ (A.4)

where a stands for the equilibrium amplitude of the tide and k2
and h2 are the Love numbers. The values for u and ðn0; n1; n2Þ
depend on the nature of the tide. For the long period tide, u ¼ 0

and n0 ¼ 1, for the diurnal tide u ¼ 1 and n1 ¼ 1 and for the semi-

diurnal tide u ¼ 2 and n2 ¼ 1.

We also take into account a LSA potential PL, which can be

seen as a retroaction effect of tides on themselves and are

provided by the FES99 solution (Lefevre et al., 2002):

PL ¼ fP0ðl;jÞ cosðoðt � t0Þ þ GPðl;jÞ þ V0 þ uÞ (A.5)

Frequencies and associated constants in Eqs. (4)–(6) are summar-

ized in Table 6 following computations from Schureman (1958).

Finally the hydrostatic pressure force appearing in the

horizontal momentum equation is given by

�rp
r0

¼ � g

r0
r
Z Z

z
ðr� r0Þdz0 � grðZ�PA �PLÞ (A.6)

where r and r0 are, respectively, the density and a constant

density associated to the Boussinesq approximation.
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