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Abstract

The finite-element time-domain method for elastic band-structure calculations is presented in this paper. The

method is based on discretizing the appropriate equations of motion by finite elements, applying Bloch

boundary conditions to reduce the analysis to a single unit cell, and conducting a simulation using a standard

time-integration scheme. The unit cell is excited by a wide-band frequency signal designed to allow for an

effective frequency-content analysis of the time-history data. By spanning the desired wave-vector space

within the Brillouin zone, the band structure is then robustly generated. Bloch mode shapes are computed

using the well-known concept of modal analysis, especially as implemented in an experimental setting. The

performance of the method is analyzed in terms of accuracy, convergence, and computation time, and

compared to a direct solution of the corresponding eigenvalue problem−also using finite elements. The

proposed method is advantageous when a large number of degrees of freedom is needed to describe the

geometry of the unit cell, which might be the case for complex geometries, or in situations where the

formulation of an eigenvalue problem is not straightforward. The new method also makes it possible to solve

a time-dependent Bloch problem, such as the case of a unit cell incorporating internal fluid flow or other

models geared towards topological insulation.

Keywords: band structure, dispersion curves, phononic crystals, elastic metamaterials, finite-element

time-domain, finite-difference time-domain

I. Introduction

Photonic and phononic crystals emerged in the late 1980’s and early 1990’s as effective artificial material

systems to control electromagnetic [? ? ] and mechanical [? ? ] wave propagation, respectively, and have
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attracted intensive research investigations ever since. The band structure is a key diagram for describing the

wave dispersion characteristics of these periodic materials as it represents the relationship between wave-

vector and frequency. Band structures are obtained utilizing the Bloch’s theorem [? ? ] , which allows the

calculations to be performed over only a single unit cell. A significant effort has been made over the last

few decades on the development of techniques for band-structure calculations. These include plane wave

expansion (PWE) [? ? ? ? ? ? ? ? ], the transfer matrix (TM) method [? ], multiple scattering theory

(MST) [? ? ? ? ? ], the finite-element (FE) method [? ? ? ? ], the finite-difference (FD) method [? ? ? ],

and the finite-difference time-domain (FDTD) method [? ? ? ? ? ? ], among others [? ? ? ? ? ]. Reviews

of periodic materials and band-structure calculations methods can be found in Ref. [? ] and Ref. [? ] for

photonic and phononic crystals, respectively.

Most of these methods are based on steady-state analysis (i.e., harmonic time dependence). The disper-

sion relation of a periodic system is obtained after solving an eigenvalue problem for wave vectors in the

Brillouin zone (BZ) [? ]. Among these methods, PWE has been extensively used for acoustic and elastic

composites [? ? ? ] and it is appropriate for solid-solid and fluid-fluid compositions, while FD methods are

more suited for phononic material systems composed of multiple states (e.g., solid-fluid) [? ]. However, both

methods are not suitable when dealing with irregularly shaped scatterers. Other approaches, such as MST,

reported in [? ? ? ] and numerous subsequent studies for phononic systems, are applicable to media com-

posed usually of cylindrical/spherical scatterers in a host medium. The MST method can handle multiple

media states, such as elastic scatterers in a fluid or air holes in an elastic solid medium, and can accurately

analyze high-contrast problems where other methods (PWE, FD, FE) may exhibit slow convergence. Nev-

ertheless, the geometry of the scatterer is highly restricted to simple shapes and/or topologies. Ultimately,

FE has been employed as an efficient method for band-structure calculations for phononic material systems

by formulating an eigenvalue problem constrained by the application of Bloch boundary conditions. In the

context of FE methods, an alternative approach to the usual implementation of Bloch boundary conditions

(see Ref. [? ] for implementation details) is based on considering a Bloch operator transformation of the

governing differential equations to obtain the strong form of the Bloch eigenvalue problem [? ]. A major

advantage of FE over the previous methods is its ease in handling complex unit-cell geometries, e.g., a unit

cell with an irregular distribution of two material phases.

While the PWE, MST, FD, and FE methods assume harmonic time dependence to solve the governing

elastic wave equation, some authors have implemented band-structure calculations by computing the time-

domain response. Specifically, the FDTD method, where the governing equation is discretized in both space

and time, falls into this category. In an earlier version of the method, the computational domain has to

include numerous unit cells with an appropriate choice of boundary conditions [? ]. By varying the source’s

excitation frequency, the dependence of attenuation (due to evanescence) with the frequency is obtained and

used to identify the band gaps. Following this approach (i.e., using several unit cells) the band structure is
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computed by analyzing phase differences at the input and the output of a finite-size structure [? ? ]. In

contrast, Tanaka et al. [? ] presented an FDTD approach for phononic material systems in which Bloch

boundary conditions are imposed−thus reducing the simulation domain to only a single unit cell−and the

band structure is hence computed by varying the wave vector through the BZ using a series of Fourier

transforms of the time-history data.

The computational effort associated with band-structure calculations is usually high because it involves

solving an eigenvalue problem, in the case of harmonic time dependence, or integrating over a large number

of time steps, in the case of time-domain methods. Moreover, this process is done numerous times as the

value of the wave vector k is varied along the BZ [or the Irreducible BZ (IBZ)]. The size of the problem,

and hence the computational load, is particularly high when the unit-cell configuration requires a large

number of degrees of freedom (DOF) to be properly represented. This could be due to a complex unit-cell

material phase topology requiring a finely resolved description. Another case is when the presence of defects

is incorporated in the calculations. Defects are known to have a physical influence extending over long ranges

in space. This, in turn, necessitates choosing correspondingly large unit cells, known as supercells, for the

band structure calculations. Consequently, large cells imply large numbers of DOF. Solution of eigenvalue

problems using iterative solvers exhibit leading-order complexity between O(n2) and O(n3) for full matrices

and O(n) for sparse matrices, where n is the matrix size. In time-domain algorithms, matrix inversion

represents the bottle-neck in terms of the computational effort. The computational complexity of eigenvalue

problems is usually higher than matrix inversion. For a small-to-moderate number of DOF, solving the

eigenvalue problem is far more efficient but, as it will be demonstrated here, for a certain number of DOF

a time-domain technique involving matrix inversion becomes more efficient.

In this paper, we combine the spatial discretization employing finite elements, a standard time-integration

scheme and Bloch boundary conditions to propose a new technique for elastic band-structure calculations

based on the finite-element time-domain (FETD) method, which may be applied to phononic crystals or

periodic elastic materials in general. The methodology of the proposed technique is analogous to the FDTD

method for band structure calculations although both numerical methods are inherently different, with

important implications regarding accuracy and convergence, as shown in this work. The proposed method

is implemented on a one-dimensional (1D) model for longitudinal wave propagation and a two-dimensional

(2D) plane-strain model of a phononic crystal that accounts for coupled in-plane longitudinal and shear-

vertical wave propagation modes. Band-structure calculations are performed incorporating Bloch boundary

conditions so that the spatial discretization of the domain is reduced to a single unit cell. For the 2D problem,

a slight but highly efficient modification of the method is incorporated and analyzed. This modification

involves a diagonalization of the mass matrix (i.e., rendering a lumped-mass matrix structure), as the

computational efficiency of time-domain integration methods is greatly improved if the process of matrix

inversion is done using highly sparse matrices. The performance of the method is analyzed by computing the
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elastic band structures for 1D and 2D examples and Bloch mode shapes for the 2D case. The 1D example

is a periodic beam formed by an alternation of layers of aluminum and an ABS thermoplastic polymer. In

2D, two contrasting geometries are presented, both composed of an ABS matrix with an aluminum inclusion

located at the center of the unit cell. The first geometry comprises a simple square inclusion and the second

has an inclusion featuring a complex shape with varying surface curvatures. Results are compared to those

obtained by solving the corresponding standard eigenvalue problem using the FE method as well as a FDTD

method that follows the technique proposed in [? ]. The FE method is chosen as the reference method for

evaluating the accuracy, convergence, and computational efficiency of the proposed FETD method.

The FETD method represents an alternative to a similar time-domain method based on FD, reducing

profoundly the errors and providing a much faster convergence rate. Moreover, due to the meshing procedure

of FE-based formulations, FETD offers a more precise way to dealing with complex geometries and is

therefore more amenable to handling, for example, multiphysical couplings where the boundary conditions

constitute a crucial aspect of the problem.

The paper is organized as follows. Section ?? overviews the governing equations and the finite-element

modeling framework for Bloch analysis of a unit cell representing the periodic medium. Section ?? covers

all the details pertaining to the time simulations aspect of the proposed method. Numerical examples and

an examination of the performance of the method are provided in Sections ?? and ??, respectively. Finally,

the conclusions are summarized in Section ??.

II. Unit-cell finite-element model

The continuum equation of motion for a heterogeneous medium is

∇ · σ = ρü, (1)

where σ is the stress tensor, u is a vector representing the displacement field, ρ is the density and the dot

indicates differentiation with respect to time. For an elastic medium,

σ = C : ∇Su, (2)

where C is the elasticity tensor, the double dot represents the double-dot product of two tensors, and ∇S

denotes the symmetric gradient operator,

∇Su =
1

2

(
∇u + (∇u)

T
)
. (3)

All parameters and field variables are in general space dependent. Substituting Eq. (??) into Eq. (??) the

strong form of the general elastodynamic problem is obtained,

∇ ·C : ∇Su = ρü. (4)
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Finite-element discretization. Here we consider the FE method for the spatial discretization of the prob-

lem. The solution domain Ω is defined over the unit cell of a 2D lattice spanning the range 0 ≤ (x, y) ≤ a,

where a is the lattice constant. The strong form of the general elastodynamic problem in Eq. (??) is con-

verted into the weak form by introducing a weighting function w and integrating over the solution domain

[? ],

−
∫

Ω

(
∇Sw : C : ∇Su

)
dΩ =

∫
Ω

(ρw · ü) dΩ. (5)

Note that a force term is not included as we seek to obtain the band structure, and in the case of time

simulations the loading is introduced in terms of prescribed displacement. The solution domain is discretized

into nel element domains Ωe,

Ω =

nel⋃
e=1

Ωe. (6)

A typical weighting function for an element in the domain has the form

w1 = NAw1A, A = 1, ..., nen, (7)

where NA is a shape function associated with node A, w1A is the Ath component of the approximate

weighting function, and nen is the number of element nodes. The time-dependent displacement field is

discretized in a similar way,

u = NBd1B , B = 1, ..., nen, (8)

where d1B is time dependent and expresses the nodal displacement. Substituting Eq. (??) and Eq. (??) into

Eq. (??) yields

−
∫

Ω

(
∇SNAw1A : C : ∇SNBd1B

)
dΩ =

∫
Ω

(
ρNAw1A ·NBd̈1B

)
dΩ. (9)

Equation (??) can be expressed as a system of algebraic equations in the following matrix form:

MÜ + KU = 0, (10)

where M and K are the mass and stiffness matrices, respectively, and U and Ü are the nodal displacement

and acceleration vectors, respectively. The mass and stiffness matrices are assembled from the element-level

mass, Me, and stiffness, Ke, contributions following the direct stiffness method [? ],

M =

nel∑
e=1

Me, (11)

K =

nel∑
e=1

Ke. (12)

Evaluating the integral on the right-hand side of Eq. (??) yields the consistent mass matrix. The main

disadvantage of the consistent mass formulation is that it generally results in non-zero off-diagonal terms in
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the mass matrix. This makes the time evolution of Eq. (??) computationally demanding because it requires

a system solution. Lumped-mass matrices are designed to be diagonal in order to speed up time integration.

There are numerous ways to obtain a lumped mass matrix, but one of the most common is the HRZ method

[? ]. In the HRZ method, only the diagonal entries of the consistent mass matrix are computed but are

scaled such that the total translational mass is preserved in each direction.

The time-evolving elastodynamic wave propagation response is obtained by the time integration of

Eq. (??). Together with the application of periodic Bloch boundary conditions and a proper transient

excitation in the form of prescribed displacement, this equation can be solved for different values of the

Bloch vector k to obtain the band structure of a periodic system following the procedure we describe in this

paper.

Bloch boundary conditions. Bloch’s theorem describes the behavior of a wave in an infinite periodic medium

in terms of a wave function in the reciprocal space [? ]. In terms of displacement vectors, the theorem takes

the form

u (x,k; t) = ũ (x,k) ei(kTx−wt), (13)

where ũ is the Bloch function, t is the time, i =
√
−1, and, for a two-dimensional system, x = (x, y) is

the position and k = (kx, ky). Consider now the unit cell represented in Fig. ??(a). The set of edge nodes

belonging to the top and right edges (dashed lines in Fig. ??(a)) constitutes a redundant DOF as these nodes

actually belong to neighbouring unit cells. Hence, these sets of DOF are removed by linking them to the

corresponding DOF belonging to the bottom and left edges (continuous lines in Fig. ??(a)). The equations

representing the boundary conditions are collected in matrix form and inserted into the mass and stiffness

matrices through a transformation matrix. Specific details on how these sets of DOF are defined, linked,

and inserted into the Bloch transformation matrix is found in Ref. [? ].

III. Unit-cell time-domain simulation

Time integration method. Equation (??) is integrated in time using one of the several forms of Newmark’s

time-integration methods [? ], yielding the computation of the displacements, velocities, and accelerations

for increasing values of t. Following Newmark’s family of methods. the discrete system of equations are

Di+1 = Di + ∆tVi + (∆t)
2

[(
1

2
− β

)
Ai + βAi+1

]
, (14)

Vi+1 = Vi + ∆t [(1− γ) Ai + γAi+1] , (15)

MAi+1 + KDi+1 = Fi+1. (16)
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In these equations, D, V and A denote displacement, velocity, and acceleration vectors, respectively. The

time interval is denoted by ∆t and i indicates the time step. The quantities β and γ are the Newmark

parameters determining the specific type of Newmark scheme, which affects the accuracy and the stability

of the numerical simulation. In this work, these parameters are chosen to be β = 0, γ = 1/2, providing an

explicit central-difference Newmark scheme, which is computationally efficient and less demanding in its

storage requirements compared to implicit methods. However, an explicit Newmark scheme is conditionally

stable, thus the time interval is defined such that the Courant-Friedricks-Levy (CFL) lies at the stability

limit

∆t =
∆he

cmax
, (17)

where ∆he is the element size and cmax is the highest phase velocity in any of the sub-media (or material

types) considered in the model. For time intervals below the quantity specified in Eq. (??), some accuracy

is compromised but stability is still guaranteed.

The procedure for solving for the elastodynamic wave propagation response using the selected Newmark

scheme is done as follows. Given K, M, F and proper initial conditions for prescribed displacement, the

following steps are carried out to compute the displacement, velocity and acceleration:

1. Use Eq. (??) to obtain the acceleration vector at t = 0, i.e., Ai. This is done by replacing the i+1 with

i in this equation and using Di as an initial condition. The force vector F is set to zero throughout

the simulation.

2. Obtain the displacement vector for the first future time step, i.e., Di+1. This is done by applying Eq.

(??) and using the displacement and velocity vectors at t = 0, i.e., Di and Vi, as initial conditions.

3. Use Eq. (??) to evaluate Ai+1.

4. Use Eq. (??) to evaluate Vi+1.

5. Advance in time and use Eqs. (??), (??), and (??) in this order to obtain the displacement, acceleration,

and velocity vectors, respectively, in the next time step.

6. Repeat the last step numerous times until the entire time range of interest is covered.

Transient excitation. A wide-band frequency signal is used to excite all the modes required to calculate the

dispersion relation of the system up to the frequency limit where the FE discretization begins to introduce

noticeable errors. A Ricker wavelet (also known as the Mexican hat signal) is applied as a prescribed

displacement at a random point in the unit cell, as shown in Fig. ??(a), where a squared unit cell with a

side length of a = 1 m is represented. The Ricker wavelet is the second derivative of a Gaussian function,

defined as

u (t) = a2
(
a2t2 − 1

)
e−

a2t2

2 , (18)

with fc =
√
π·a
2 defining the central frequency of the signal. The main advantage of this choice of signal

is the absence of a zero-frequency component, which is susceptible to introduce numerical artifacts in the
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scheme and should be filtered out from the recorded displacement field if present [? ]. On the other

hand, the Ricker wavelet possesses a limited bandwidth around its central frequency, especially at low

frequencies, which prevents the excitation of a sufficient number of modes of vibration. Therefore, we define

5 Ricker wavelets having central frequencies fc,1 = 0.25 × 103 Hz, fc,2 = 0.5 × 103 Hz, fc,3 = 1 × 103 Hz,

fc,4 = 2 × 103 Hz, and fc,5 = 4 × 103 Hz, (where Ω = 2πfc,ia/cl and ci is the phase velocity the medium

where the prescribed signal is applied) and consider their total displacement response in the time domain i.e.,

u(t) = u1+u2+u3+u4+u5. This extends the total band width of the signal to cover the necessary frequency

range for the target band-structure calculations (e.g., roughly the first 12 branches). It is worth noting that

each one of the signals has its maximum value at the same value of the time step; hence, while their addition

in the time-domain may appear as a single Ricker wavelet, inspection of the signal in the frequency domain

reveals the increase of the total signal bandwidth. The resulting combined signal is shown in Fig. ??(b) in

the time-domain and in Fig. ??(d) in the frequency domain. Moreover, the frequency spectrum of each of

the five signals used to obtain the total prescribed signal is also shown in Fig. ??(d), (where Vi denotes the

amplitude of the response stemming from the application of the excitation with central frequency fc,i).
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Figure 1: Location and form of input and output signals used for the 2D time-domain simulations. (a) Unit cell having a simple

geometry. (b), (c) Ricker wavelet used as a prescribed displacement excitation signal and recorded signal at a random point in

the unit cell, respectively. (d), (e) Fourier transform of the above signals. The spectrum of each of the 5 Ricker wavelets used

to build the excitation signal is also shown in (d).

Calculation of frequency band structure and Bloch mode shapes. The procedure to obtain the band structure

starts by setting up a value for the Bloch wave vector k, which is inserted into the mass and stiffness matrices

through the Bloch boundary transformation matrix (due to the dependence on the wave vector, the Bloch

boundary transformation must be applied at each k point). Then, a transient excitation is applied at a

random point within the unit cell for t = 0 as described above. As the time is incremented, Eqs. (??), (??)
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and (??) are used to solve for future displacements, velocities and accelerations at every node. A detector

is randomly placed at one node in order to record the temporal signal for the displacement, as illustrated in

Fig. ??(a). The time-history data is Fourier transformed into the frequency domain using the Fast Fourier

Transform (FFT) method, obtaining a set of resonant modes as illustrated in Fig. ??(e). For a sufficiently

long period of time, the recorded signals can be assumed to be periodic, minimizing the error introduced by

the FFT method when non-periodic signals are considered (see Section ?? for details). Each of the peaks of

these resonant modes in the frequency domain corresponds to the eigenvalue of a vibrational mode for the

given Bloch wave vector k. The spanning of k along the IBZ allows for obtaining the resonant modes, and

hence, the dispersion curves.

In addition to obtaining the band structure, the computation of Bloch mode shapes is also necessary

to fully characterize the dispersion characteristics of the periodic medium. Unlike a standard eigenvalue

problem, for which the eigenvalues and eigenvectors provide the band structure and Bloch mode shapes,

respectively, the proposed time-domain technique allows for obtaining the eigenvalues only. However, the

well-known experimental modal analysis procedure [? ] may be utilized to compute the mode shapes

from a set of frequency response functions (FRF) for the Bloch transformed unit cell. Moreover, the Modal

Assurance Criterion (MAC) [? ] may be employed in order to identify and solve degenerate modes at high-

symmetry points by comparing Bloch mode shapes obtained from sources placed at two different points in the

unit cell (see Fig. ??(a)). The computation of Bloch mode shapes requires the recording of the displacement

field signals at every node in order to obtain the required FRFs. Hence, the number of detectors used is

equal to the number of nodes in these calculations.

IV. Numerical examples

The proposed FETD method is used to compute the band structure of 1D and 2D phononic crystals

in this Section. Results are presented and compared to the solutions obtained by solving the correspond-

ing standard eigenvalue problem by FE, selected as a reference method. An analogous FDTD method

that also incorporates Bloch boundary conditions is implemented for comparison (see Appendix A for a

detailed description of discretization scheme and the approach followed for applying the Bloch boundary

conditions). All examples considered are for unit cells composed of aluminum and an ABS polymer. The

properties of these materials are: density ρ = 2700 kg/m3, Young’s modulus, E = 70 GPa, Poisson ratio,

ν = 0.34 for aluminum, and ρ = 1050 kg/m3, E = 2.3 GPa and ν = 0.34 for ABS.

1D phononic crystal. In the one-dimensional problem, we consider longitudinal wave propagation (axial

modes) along a slender rod with a unit cell composed of two layers of equal length of ABS and aluminum

with a filling fraction fr = 0.5, as shown in the schematic diagram in Fig. ??. Bloch periodic boundary

conditions are applied at the ends of the unit cell which allows us to represent a periodic rod of infinite
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length. Band-structure results are depicted in Fig. ??, showing calculations using FE (eigenvalue problem),

FDTD and FETD. The unit cell in both the FE and FETD methods is discretized in space into nel = 256

two-node elements, while for the FDTD method the grid is staggered and composed of n = 256 points for

the stress and n+1 points for the velocity. For the two time-domain methods, the time evolution is simulated

over nst = 220 (1,048,576) steps with a time interval ∆t = 5.4 × 10−7 s, as stated in Eq.(??). As observed

in Fig. ??, nearly identical eigenvalues are obtained using FE and FETD, and some discrepancies are found

for the FDTD case. These differences are analyzed in detail in Section ??.
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Figure 2: Phononic band structure for longitudinal elastic waves in a 1D phononic crystal. An aluminum and ABS unit cell

is considered, with a filling fraction fr = 0.5. Black solid lines, green triangles, and blue dots correspond to FE, FDTD, and

FETD results, respectively.

2D phononic crystal. Two different geometries comprising a square lattice are considered in the two-

dimensional problem. Both geometries are composed of an ABS matrix and an aluminum inclusion placed

at the center of the unit cell. The first geometry incorporates a simple square aluminum inclusion, denoted

from now on as simple geometry, while the second geometry incorporates an inclusion with a complex shape,

denoted as complex geometry. This complex shape, which is inspired by the helicoid-catenoid logo of the

Phononics 20xx conference series [? ], exhibits varying curvatures. Figure ?? illustrates the meshes used for

the simple and complex geometries. For the simple geometry, all the methods under evaluation (FE, FDTD,

FETD) implement a structured and uniform grid; see Figs. ??(a),(b). The grid for FE-based methods is

formed by n = nx × ny = 322 two-node elements (nx and ny define the number of elements in the x and

y directions, respectively). The grid for FDTD is composed of nx × ny = 322 points for normal stress,

= nx + 1×ny + 1 = 332 for shear stress, and nx + 1×ny and nx×ny + 1 points for the x and y components

of the velocity field. In this manner, the total number of nodal degrees of freedom is the same for all three

methods, Ndof = 2178. After application of the Bloch boundary conditions, this number is reduced to
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Ndof = 2048, since the nodes lying at the top and right sides of the unit cell belong to neighboring unit

cells and are condensed out. The complex geometry is designed to explore one of the main advantages of

FE-based methods over FD methods, namely the use of unstructured grids. Figures ??(c),(d) illustrate the

two different approaches used to mesh a complex shape, an unstructured grid used for FE and FETD, which

is precisely adapted to the shape of the inclusion, and a structured and uniform grid used for FDTD, where

the geometry of the inclusion is described with much less accuracy. The total number of nodal degrees of

freedom used for the FE-based methods, after application of Bloch boundary conditions, is ndof = 2560.

For the FDTD case, it is not possible to have the same exact number of degrees of freedom due to the

different type of mesh used, although the number of points in the mesh is chosen so that the number of

degrees of freedom after reduction due to periodicity is the closest possible value compared to that used for

the FE-based models, ndof = 2520. The k-space is discretized such that lk = 17. Hence, a total of nk = 49

k-points are evaluated to generate the elastic band structure along the main symmetry directions. For the

time domain methods, the total number of steps is set to nst = 218 = 262, 144 time steps, and the time

interval is obtained by applying Eq. ??, resulting in a time interval ∆t = 1.57 × 10−6 s for the simple

geometry (the corresponding frequency resolution is ∆f = 1/(∆tṅst) = 2.4 Hz). Different time intervals are

set for the complex geometry due to the different type of meshes used. For FETD, the time interval for the

complex geometry model is calculated considering the smallest element size, ∆t = 4.45× 10−7 (∆f = 8.56

Hz). The corresponding time interval for FDTD is set to ∆t = 2.88× 10−6 (∆f = 1.32 Hz).

Figure ?? provides band structure results along the boundaries of the IBZ for the simple [(a) and (b)]

and complex [(c) and (d)] geometries. For both geometries, consistent and lumped mass matrices are used

for the finite-element-based methods, FE, FETD. Black (gray) solid lines illustrate FE results for consistent

(lumped) mass matrices and blue (red) dots represent FETD results for consistent (lumped) mass matrices.

Green triangles represent FDTD results. An excellent agreement is noted between the results obtained

by the proposed FETD method and by solving the standard eigenvalue problem by FE, regardless of the

geometry used. Noticeable differences are, however, observed in the results obtained using FDTD. While

clear differences are found already using a simple geometry with the same type of mesh (Figs. ??(a),(b)),

these are greatly increased for the complex geometry, as the structured mesh used in FDTD fails to properly

capture the effects of the curved shape of the aluminum inclusion. A detailed analysis of the accuracy

(in terms of the number of time steps), convergence, and computational efficiency for k = (π/2a, π/2a) is

presented later in Section ??.

Bloch mode shapes. The periodic Bloch mode shapes φtd computed with the time-domain algorithm are

obtained from FRFs (akin to experimental modal analysis) and expanded to full size using a transformation

operation [? ]. A comparison of the Bloch mode shapes calculated using FE and FETD models with the

same number of degrees of freedom, for the 3rd branch at k = (π/2a, π/2a), is depicted in Fig. ?? for
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FE, FETD - Simple(a) FDTD - Simple(b)

FE, FETD - Complex (c) FDTD - Complex(d)

Figure 3: Meshes used for the 2D numerical calculations using FE, FETD and FDTD. Structured and uniform meshes used

to model the simple geometry using (a) FE, FETD and (b) FDTD. (c) Unstructured mesh generated using finite-elements to

model the complex geometry. (d) Structured and uniform mesh to model the complex geometry using FDTD.

consistent and lumped mass matrices, showing the two geometries under examination. The structure of

the mode shapes do not indicate clear differences between the two methods at a first glance. The Bloch

mode-shape error is quantified by comparing the FETD mode shapes φtd to the FE mode shapes φfe, and

is defined as

em = 1−
abs

[
φtd
′φfe

]
|φtd| |φfe|

, (19)

where abs[·] denotes the complex modulus, and | · | denotes the vector 2-norm. The resulting error is

em,cm = 1.42 · 10−4 and em,lm = 4.66 · 10−5 for the simple geometry case shown in Figs. ??(a),(b) and

Figs. ??(e),(f) corresponding to the consistent and lumped mass models, respectively. It is also noted that

the error is of the same order for the 10 first branches, and is below the following limits: em,cm < 1.94 ·10−4;

em,lm < 1.56 · 10−4. The error in the mode shape calculations for the complex geometry is also very low,

although it is slightly higher than the simple-geometry case; it is em,cm = 7.16 · 10−4 and em,lm = 3.44 · 10−4

for the 3rd branch at k = (π/2a, π/2a), and it is below the following limits for the first 10 branches:

em,cm < 3.38 · 10−3; em,lm < 1.98 · 10−3.
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Figure 4: Phononic band structure for longitudinal and shear-vertical elastic waves in 2D phononic crystals with the two

different geometries, considering only wave vectors confined to the edge of the IBZ. Results are shown for FE and FETD based

on consistent and lumped mass models. Results corresponding to the FDTD implementations are also shown. Black solid lines

and blue/red dots correspond to FE and FETD, respectively; while green triangles correspond to the FDTD results.

V. FETD method performance

Accuracy. We evaluate the relative error as a function of the total number of steps nst by comparing the

predicted eigenvalues using FETD versus direct solution by FE for the simple and complex geometries. All

the error results shown here are obtained using models having the same exact meshes presented in Fig. ??,

and are calculated as follows:

est =
ftd − ffe

ffe
, (20)

where ftd, ffe are the computed eigenvalues for the 3rd branch at k = π/a (1D) or k = (π/2a, π/2a) (2D) for

the time-domain methods, that is FDTD and FETD, and the direct FE method, respectively. Results shown

in Fig. ??(a) are for the 1D problem. The error here converges to a minimum and a constant value as the

number of steps is increased, falling quickly below 1% and being almost negligible for nst > 220. In contrast,

the finite-difference approach converges to a slightly larger error value of 1.5%. For the 2D problem, FETD

results show a similar trend for both the consistent and lumped mass cases and both type of geometries; the

error is maximum for small number of steps and is rapidly reduced as the recorded signals progress in time,

being below 1% and 2% for the simple and complex geometries, respectively, as shown in Figs. ??(b),(c). Note
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FE (CM)(a) FETD (CM)(b)

FE (LM)(e) FETD (LM)(f)

FE (CM)(c) FETD (CM)(d)

FE (LM)(g) FETD (LM)(h)

Simple geometry Complex geometry

Figure 5: Calculated mode shapes for the 3rd branch at k = (π/2a, π/2a) for the simple and complex geometries of 2D

phononic crystals. (a), (e) illustrate mode shapes extracted from FE calculations for a simple geometry using consistent and

lumped masses, respectively. (b), (f) represent mode shapes calculated using the FETD method for the simple geometry and

considering consistent and lumped mass matrices, respectively. Mode shapes calculated for the complex geometry are shown

in (c), (g) using FE and consistent and lumped masses, respectively, and in (d), (h) using FETD and consistent and lumped

masses, respectively.

that for a very low number of time steps, the assumption of periodicity in the recorded signals is not accurate,

resulting in higher relative error in the eigenfrequency estimations when transforming the temporal signals

into the frequency domain. The importance of the spatial discretization procedure arises when comparing

the FDTD results between the simple and complex geometries, where the error is dramatically increased

from an acceptable value of ≈ 3% for the simple geometry to a significant value of ≈ 10% for the complex

geometry. This result clearly demonstrates how the proposed FETD method offers a much more precise

way to handle complex geometries compared to other existent time domain methods for band structure

calculations, such as FDTD. As stated previously, the frequency resolution ∆f is inversely proportional to

the product of the time interval and the total number of steps, resulting in a higher resolution (lower ∆f)

as the number of steps is increased. This is clearly observed in the sawtooth pattern of the error signals,

where ∆f is related to the difference between the local maxima and minima.
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Figure 6: Time-domain methods error in frequency as a function of number of time steps for (a) 1D, (b) 2D simple geometry,

and (c) 2D complex geometry. Results are shown for the 3rd branch and wave vector k = π/a in 1D and k = (π/2a, π/2a)

in 2D. Vertical dashed black lines indicate the number of time steps used for all other calculations presented in this work:

nst,1D = 1, 048, 576 and nst,2D = 262, 144.

Convergence. The relative error in the band-structure calculations as a function of the number of DOF is

calculated using the following expression:

edof =
fNdof,td

− fNref ,fe

fNref ,fe
, (21)

where fNdof,td
denotes an eigenvalue computed in the time domain for a given number of DOF and fNref ,fe

denotes an eigenvalue computed for a reference FE model having Ndof = 512 periodic DOF in 1D, and

Ndof =32,768, Ndof = 40.960 periodic DOF in 2D for the simple and complex geometries, respectively. Note

that since the reference case is taken as the direct eigenvalue solution for the finest resolved model under

analysis, the FE error (based on a consistent mass model) will eventually reach a value of edof = 0. The

total number of time steps used for these calculations for the time-domain methods is nst = 262, 144. Error

results are depicted in Figs. ??(a)-(c) for the 4th branch at wave vector k = (π/2a, π/2a). Results show,

as a general trend, a much slower convergence for the FDTD method regardless of the dimensionality and

geometry considered, and a very similar convergence between FE and FETD methods for both consistent and

mass matrices. For the 1D case, the error is reduced below 1% for a moderate number of DOF (Ndof = 32)

for FE-based methods, while for FDTD, 256 DOFs are needed to get an error below this value. In 2D,

convergence is quite fast for all the finite-element methods for a simple geometry, with an error below 2.5%

even for the smallest model size; while relatively finely resolved models (Ndof = 8192) are needed using

FDTD to get acceptable errors, i.e., below 2%. Finally, the results for the complex geometry show a general

increase in the error for all methods, especially for small-size models, as expected. However, FE and FETD

error values are much lower than FDTD. This is attributed mostly to the geometry conforming mesh used,

which describes the geometric complexity in the material distribution with much more accuracy than the

uniform mesh used for FDTD. Furthermore, we observe that FE-based methods exhibit higher accuracy
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than FDTD even at a very high number of DOF (see the differences between FETD and FDTD error values

for Ndof = 40960).
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Figure 7: Frequency error estimation as a function of number of DOF for (a) 1D, k = π/a, (b) 2D simple geometry, k =

(π/2a, π/2a), and (c) 2D complex geometry, k = (π/2a, π/2a). Results are shown for the 4th branch. Vertical dashed black

lines in the three subfigures mark the number of DOF used in Figs. ?? and ??, which are ndof,1D = 256, ndof,2D = 2,048, and

ndof,2D = 2,560, respectively.

Computational efficiency. The computation time of the proposed FETD method depends mainly on the

computational complexity needed to compute the acceleration in Eq. (??), which has to be done nst times

for each k point. The computational complexity of the eigenvalue problem determines the computation time

for FE approach. Although the mass and stiffness matrices obtained using FETD are basically tridiagonal

matrices, the matrix inversion needed in Eq. (??) results in a full matrix. The computational complexity

associated with the matrix inversion of full matrices can be roughly estimated to be between O(n2) and

O(n3) depending on the algorithm employed. However, this complexity may be greatly reduced when sparse

matrices are used. The numerical simulations carried out in this work are done using the commercial software

Matlab [? ].

The computation time (depicted in logarithmic scale) versus Ndof is observed in Fig. ?? for the (a) 1D

model, and (b) 2D simple-geometry model. Note that the computational complexity is independent of the

type of mesh used as long as the same number of DOF is used; hence the calculation in 2D is restricted to the

simple geometry. Every set of data obtained by the different methods used in this work are fitted to obtain a

rough estimation of the numerical complexity. A function of the for ȳ = ax̄b + c is employed, were ȳ denotes

the computational time and x̄ represents the number of DOF. Results for the fittings are shown in Table

??. For a low number of DOF, direct solution of the eigenvalue problem is much more efficient. However,

as the model is discretized into more elements, the relative performance of the time-domain algorithms

(both FETD and FDTD) improve significantly. This is because the computational complexity of the matrix

inversion is slightly lower than direct eigenvalue analysis, as it can be observed in the exponents of the

fittings. As stated above, time-domain algorithms are strongly sped-up when sparse matrices are used, this
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is clearly observed in Fig. ??(b) where FETD results are compared for consistent (blue solid line) and

lumped mass (red dashed line) models. A break-even point is found at Ndof = 4.3 × 109 for FETD versus

FE in 1D, although the uncertainty of the exact location of this point is somewhat approximate since it is

obtained as a result of an extrapolation. Note that the high value obtained for this break-even point is due

to using a consistent mass matrix, which results in a higher computational cost than the one that could

be obtained by using a sparse matrix (i.e., lumped mass model). This is clearly observed by analyzing the

promising results obtained in 2D when using the FETD method and a lumped mass model. Two break-even

points are found in this case. First, the computation time using FETD (LM) is of the same value as solving

the eigenvalue problem, FE (LM), for the largest model used in the simulations, Ndof = 32, 768. Then, a

second break-even point is obtained for Ndof = 109,600, using the fitted expressions mentioned before, when

comparing FETD using a lumped mass model versus FE using a consistent mass.
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Figure 8: Computation time as a function of number of degrees of freedom for (a), 1D, k = π/a, and (b), 2D, k = (π/2a, π/2a).

Results are shown for the 3rd branch. Circles represent the computation time results obtained directly from numerical simu-

lations and solid lines represent curve fits of this data using the expression ȳ = ax̄b + c. Vertical dashed black lines mark the

number of DOF used in Figs. ?? and ??, which are Ndof,1D = 256, Ndof,2D = 2, 048, respectively.

VI. Conclusions

A new method for elastic band-structure calculations based on the finite-element time-domain method is

proposed and analyzed in this paper. This method incorporates Bloch boundary conditions that enable the

reduction of the domain to a unit cell, in contrast to other time-domain methods where a certain number of

unit cells is considered in the computations [? ]. The domain is discretized in space by finite elements and in

time using an explicit Newmark time-stepping scheme. The frequency band structure and mode shapes are

calculated and compared to results obtained by directly solving the standard eigenvalue problem using the

FE method as well as using the FDTD method, demonstrating the accuracy and convergence performance
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Method ȳ = ax̄b + c Complexity

1D

FETD 1.2× 10−3(Ndof )2.08 + 4.0 O(n2.08)

FE 1.0× 10−8(Ndof )2.61 + 1.0 O(n2.61)

FDTD 9.9× 10−4(Ndof )1.23 + 5.3 O(n1.23)

2D

FETD (CM) 4.3×10−3(Ndof )1.99+23.5 O(n1.99)

FETD (LM) 1.5×10−4(Ndof )1.76+14.9 O(n1.76)

FE (CM) 1.9× 10−7(Ndof )2.33 + 9.1 O(n2.33)

FE (LM) 4.9× 10−7(Ndof )2.31 + 8.5 O(n2.31)

Table 1: Table summarizing computational complexity of proposed FETD method versus other techniques.

of the new method. An advantage of FE-based methods is that FE discretization easily handles complex

geometries and is generally more accurate in estimating the eigenvalues than finite-difference methods, as

demonstrated using a unit cell incorporating a complex shaped inclusion where it was shown that the pro-

posed FETD method strongly outperforms in both accuracy (Fig. ??) and convergence (Fig. ??). Another

advantage of the FETD method with respect to FE arises when a high number of DOF is used to discretize

the unit cell, where the computational complexity of the eigenvalue problem requires higher computation

times compared to the time-domain calculations involved in the proposed method (see Fig. ??). Future

investigations that consider complex unit-cell geometries, or complex geometric distributions of material

within the unit-cell, or possibly the introduction of time-dependent designs, e.g., unit-cells incorporating

fluid flow channels, stand to benefit significantly from this method.

Further improvements may be implemented in order to increase the computational efficiency while main-

taining the same accuracy. For example, the definition of a pseudoperiodic initial field distribution, which

is consistent with the periodicity enforced at the boundaries of the unit cell, can reduce considerably the

total number of time steps needed to compute the band structure (as reported in Ref. [? ] for FDTD

elastic band-structure calculations). Furthermore, the length of the time-history data may be dramatically

reduced by considering an alternative to a standard Fourier transform for the transformation to the frequency

domain. This may be done using a post-processing method called the high-resolution spectral estimation

method [? ].
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APPENDIX A: Finite-difference time-domain model

We describe here the discretization and modeling details of the FDTD method used in this work. We

consider wave propagation along isotropic materials in the linear regime and without losses. The dynamics

of an inhomogeneous elastic solid under these conditions in two dimensions is expressed as follows based ion

a Cartesian coordinate system:

ρv̇ = ∇ · σ, (A.1)

σ̇ = λI∇v + µ(∇v + v∇), (A.2)

where v = (vx, vy) is a vector representing the velocity field, σ = (σxx, σyy, σxy, σyx) is a matrix representing

the stress field and λ, µ are the Lamé parameters.

Discretization

The discretization of the velocity, normal stress, and shear stress fields shown in Eqs.?? and ?? is

performed using a time interval ∆t, and space intervals ∆x and ∆y, with ∆x = ∆y. Partial derivatives

are substituted by their central finite-difference approximations. The scheme staggers the velocity fields in

time and space with respect to the stress fields. Furthermore, the shear stress components are staggered in

space with respect to the normal stress components. Thus, the spatial distribution of the fields result in the

spatial distribution shown in Fig. ??. Note that (i, j) represents the position index of the x, y directions in

the 2D grid, and n denotes the time step index.

19



i + 1i i - 1/2 i + 1/2 i + 3/2

j - 1/2

j

j + 1/2

j + 1

j + 3/2

v
x
 (i + 1/2, j, n + 1/2)

v
y
 (i, j + 1/2, n + 1/2)

σ
xx,yy

 (i, j, n)

σ
xy

 (i + 1/2, j + 1/2, n)

Dx

Dy

a
x

a
y

Figure A.1: Schematic representation of the adopted FDTD scheme.

The explicit expressions of the discretized versions of Eqs.?? and ?? are as follows:
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where Eqs.?? and ?? represent the velocity field in the x and y directions, respectively, Eqs.?? and ??
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represent the normal stress field in the x and y directions, respectively, and Eq.?? represents the shear

stress.

Boundary conditions

Similar to the the FE and FETD methods, Bloch boundary conditions are used in the FDTD method.

However, some differences in the their implementation are to be considered. In FDTD, Bloch boundary

conditions are applied for both the velocity field

v (x,k; t) = ṽ (x,k) ei(kTx−wt), (A.8)

and the stress field

σ (x,k; t) = σ̃ (x,k) ei(kTx−wt), (A.9)

where the notation convention used in Eq. ?? is followed. The discretized version of these boundary condi-

tions is as follows:
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σnxx,yy (0, j) = e−ikxaxσnxx,yy (ax, j) (A.14)

σnxx,yy (ax, j) = eikxaxσnxx,yy (0, j) (A.15)
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Normal to the y axis:
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σnxx,yy (i, 0) = e−ikyayσnxx,yy (i, ay) (A.23)

σnxx,yy (i, ay) = eikyxayσnxx,yy (i, 0) (A.24)
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Special attention must be given to the implementation of these boundary conditions. The discretized

version shown above clearly shows how these fields are staggered in space and time. However, it is not

straightforward to consider that since stress and velocity fields are staggered in time, the application of

these boundary conditions has to be performed immediately after each of the fields are updated. Thus, if

the choice is to first solve Eqs. ??, ??, and ??, then the boundary conditions corresponding to the stress

should be applied right after and always before updating the velocity fields, Eqs. ?? and ??. Once the

velocity fields are updated, the corresponding boundary conditions have to be applied.
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