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Abstract

Broadband acoustic attenuation produced by a three dimensional (3D) locally
resonant sonic crystal (LRSC), exploiting both the multiple coupled resonances
and the Bragg band gaps, is numerically and experimentally reported in this
work. The LRSC is made of square cross-section scatterers arranged on a square
lattice and periodically incorporating both quarter-wavelength and Helmholtz
resonators along their heights. Local resonators of different types are combined
with the periodicity of the system generating multiple coupled resonances at low
frequencies and opening Bragg band gaps respectively. This twofold coupling
produces a strong broadband attenuation: a large insertion loss (IL), with an
average value of 16.8 dB, covering three and a half octaves from 350 Hz to 5000
Hz with a LRSC of 30 cm width. This frequency band corresponds to one of the
several railway noise sources (rolling noise, traction auxiliaries, etc.). A simpli-
fied 2D LRSC is finally analyzed numerically in a real train-track configuration,
showing the efficiency of the proposed design to attenuate the railway rolling
noise.

Keywords: sonic crystals, acoustic barrier, acoustic metamaterial, resonators

1. Introduction

The acoustic properties of locally resonant sonic crystals (LRSC) [1, 2, 3, 4]
have been extensively exploited over the last years for applications in acoustics
based on acoustic filters [5], lenses [6], waveguides [7], energy trapping systems
[8] and isolation devices [9], among others. The design of acoustic barriers for5

environmental noise remains yet the most widespread application [9, 10, 11, 32,
13, 14, 15, 16, 17, 18, 19, 20, 21]. LRSC are effectively excellent candidates
in a plethora of applications to efficiently attenuate airborne sound thanks to
their broadband filtering ability. This ability yields in the coupling of both the
periodicity (band gaps) and the coupled local resonances (stop bands), [9, 32,10

13, 21]. Moreover, air and light might flow through LRSC, which is particularly
suitable in urban contexts. LRSC effectively exhibit a drastic reduction of air
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flow resistivity when compared to usual sound barriers, which directly implies
a reduction of the foundation costs [20].

Environmental noise includes railway noise, which encompasses different15

kind of noise sources. Railway noise is generally classified in three categories:
auxiliary, rolling, and aerodynamic noises. Auxiliary noise arises from the differ-
ent technical equipments, like diesel engine, power transformer, converter, etc.
These equipments are located in the upper or lower parts of locomotives and
coaches, either on the roof or at the wheel height. This noise is predominant dur-20

ing parking periods and at very low train speeds (≤ 50 km.h−1). Rolling noise
is radiated by the rolling stock and the track, due to the vibration originated
at the wheel-track contact, mostly because of rail roughness and corrugation.
The global noise radiation is therefore the sum of different contributions arising
from the train wheels, the rail and the sleepers of the track. This second type25

of noise is predominant for train speeds between 80 and 300 km.h−1. Finally,
the aerodynamic noise appears for higher train speeds, up to 300 km.h−1.

In this article, we focus on rolling noise and the design of a LRSC in the
corresponding frequency range. The attenuating properties of a 3D LRSC made
of square cross-section scatterers arranged on a square lattice and periodically30

incorporating both quarter-wavelength resonators (QWR) and Helmholtz res-
onators (HR) along their heights are theoretically and experimentally studied.
Viscothermal losses are accounted for both in the QWR and HR by using the
Zwikker and Kosten formulae [22, 23]. The combination of stop bands, due to
local resonant scatterers generating multiple coupled resonances at low frequen-35

cies, with bandgaps, due to periodicity, is exploited to produce the broadest
and largest possible value of the insertion loss (IL). The HR are deep sub-
wavelength resonators, the resonance of which is in our case λ/l = 18, where λ
is the wavelength and l is the length of the HR. The QWR are designed such
that their resonance frequency coincides with the Bragg band gap. Numerical40

predictions and experimental results show a strong broadband attenuation, the
LRSC exhibits a large IL covering three and a half octaves with an average
value of 16.8 dB from 350 Hz to 5000 Hz. Finally, a simplified 2D LRSC is
numerically analyzed in a real train-track configuration, showing the efficiency
of the proposed design for the attenuation of rolling noise.45

The article is organized as follows. In Section 2 the modeling of both the
local resonators and the LRSC is presented. The way the viscothermal losses
are accounted for in the local resonators and the conditions used to calculate
the dispersion relation and the scattering problem of the 3D LRSC are explicitly
presented. Section 3 shows the experimental setup, while the results are dis-50

cussed in Section 4, also including a simplified 2D LRSC numerically analyzed
in a real train-track configuration. Finally, concluding remarks are summarized
in Section 5.

2. Modeling

The modeling of the local resonators as well as the whole periodic system,55

including the scatterers together with the local resonators, are detailed in the
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following subsections.

2.1. Local lossy resonators

Figures 1(a) and (b) show the schematics of the QWRs and HRs, respec-
tively. The QWR consists of a cylindrical borehole carved out of a square-rod60

scatterer. The HR is composed of a cylindrical neck added to the same cylindri-
cal borehole. The propagation of acoustic plane waves in a circular cross-section
duct of radius rc accounting for the viscothermal losses is described by the com-
plex and frequency dependent effective density and bulk modulus, as described
in Ref. [23]65

ρ̃c = ρ0

(
1− 2J1(rcG̃r)

rcG̃rJ0(rcG̃r)

)−1

, (1)

κ̃c = K0

(
1 + (γ − 1)

2J1(rcG̃k)

rcG̃kJ0(rcG̃k)

)−1

, (2)

where G̃r =
√
ıωρ0/η and G̃k =

√
ıωPrρ0/η, with ı =

√
−1, ρ0 is the density,

K0 = γP0 is the bulk modulus of air, γ is the specific heat ratio, P0 is the
atmospheric pressure, Pr is the Prandtl number and η is the dynamic viscosity.
We notice that the frequency dependent effective properties of more complex
geometries have been also obtained in Ref. [23]. Alternatively, we can define the70

effective impedance Z̃c = ρ̃cκ̃c and wavenumber k̃c = ω
√
ρ̃c/κ̃c from Eqs.(1)

and (2).
Using the effective parameters for a cavity element (Eqs. (1-2)), the impedance

of a QWR made of a circular borehole of diameter dqwr = 2rqwr (where rqwr is
the radius of the borehole) and length lqwr can be written as [24]75

Z̃QWR = −ıZqwr cot(kqwrlqwr) , (3)

where Zqwr and kqwr are obtained from Eqs. (1-2).
It is worth noting here that this expression is not exact as long as correction

length due to radiation is not included. The characteristic impedance accounting
for the borehole radiation can be expressed as [25]:

Z̃QWR = −ıZqwr cot(kqwrlqwr) + ıkqwr∆lZqwr , (4)

where the correction length reads as ∆l = 0.6rc.80

Similarly, the impedance of a HR made of a cylindrical neck of diameter
dn = 2rn and length ln, and a cylindrical cavity of diameter dc = 2rc and
length lc can be written as [26]

Z̃HR = ıZn
A− tan knln tan kclc
A tan knln + tan kclc

, (5)

3



(a) (b)

(c)

(d)

Bloch Bl
oc
h

PM
L

Bloch

Bloch

IL

PML

Bloch

Bloch

Rigid

Rigid

HelmholtzQuarter-wave

z
y

x

Plane wave

x = 0

x
l

n
x
 • 2a

xy

2a
xy

2a
xy

a
z

Figure 1: Schematics of the modeling. Local resonators: (a) Quarter-wavelength and (b)
Helmholtz resonators. (c) Three-dimensional unit cell employed for the eigenvalue problem.
(d) Scattering problem for the calculation of the IL of an infinite LRSC slab.

where A = Zc/Zn and kn (kc), Zn (Zc) are the effective wavenumbers and
effective characteristic impedances in the neck (cavity) of the HR.85

It is again worth noting here that this expression should account for the
radiation of each element. Therefore, the correct expression of the characteristic
impedance becomes [26]:

Z̃HR = −ı cncc − Znkn∆lcnsc/Zc − Znsnsc/Zc

sncc/Zn − kn∆lsnsc/Zc + cnsc/Zc
, (6)

where cn = cos(knln), cc = cos(kclc), sn = sin(knln), sc = sin(kclc). The
length correction is deduced from the addition of two correction lengths ∆l =90

∆l1 + ∆l2 respectively defined as ∆l1 = 0.82

[
1− 1.35 rn

rc
+ 0.31

(
rn
rc

)3]
rn and

∆l2 = 0.6rn
The first length correction, ∆l1, is due to pressure radiation at the discon-

tinuity from the neck to the cavity of the HR [27], while the second length
correction, ∆l2, comes from the radiation at the discontinuity from the neck to95

the surrounding medium [28].
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2.2. Numerical modeling of the periodic system

We introduce now the numerical models of the LRSC utilized in this work,
which are solved using the Finite Element Method (FEM). We solve first an
eigenvalue problem to obtain the dispersion relation of an infinite lossless 3D100

LRSC, and then a scattering problem using two different LRSC slabs, one having
an infinite transversal length and the other one a finite length by considering
the viscothermal losses in the resonators but not outside the scatterers. The
former represents a case close to a real acoustic barrier of very large transversal
length while the latter will serve to compare the attenuation performance with105

the experimental results measured in an anechoic chamber. For all three cases
the spatial domain is discretized creating at least 6 elements per wavelength for
the highest analyzed frequency, λmin (6000 Hz, hence λmin = 5.7 cm).

2.2.1. Eigenvalue problem: dispersion relation

The 3D unit cell of the LRSC used in this study is shown in Fig. 1(c). It is110

composed of four scatterers embedding resonators of different type and rotated
45 degrees around their vertical axes with respect to the lattice orientation. All
four resonators are facing the center of the unit cell in such a way that iden-
tical resonators are facing one with each other, i.e., the two HRs and the two
QWRs are in front of each other. This specific orientation of the scatterers arise115

from the fact that the broadest achievable band gap of a two-dimensional sonic
crystal composed of square cross-section scatterers is produced when these are
rotated 45 degrees around their axes [29]. In addition, the selected distribution
of different types of resonators is obtained from the analysis of different config-
urations, choosing the one, featuring the broadest stop band, as shown in the120

Appendix A.
The unit cell shown in Fig. 1(c) is discretized using 4.5 × 104 elements.

The boundaries of the wooden square cross-section scatterers are considered
acoustically rigid and Floquet-Bloch boundary conditions are assumed on the
edges of the unit cell to account for the periodicity of the system (see Fig. 1(c))125

p(~r + ~R) = p(~r)eı
~kB ·~R, (7)

where
−→
R is the lattice vector and

−→
kB is the Bloch vector. By fixing the wavevec-

tor, ~kB = (kBx, kBy, kBz) at a specific location along the path of the irreducible
Brillouin zone, the corresponding eigenfrequencies are evaluated, and the dis-
persion relation of the periodic structure is calculated. In the present case, the
irreducible Brillouin zone is not fully representative of the periodic system due130

to the particular distribution of different resonators in the unit cell. Hence,
the main directions of symmetry in the reciprocal space are following the path
ΓX - XM - MΓ - ΓM’, i.e., considering the ranges kBx = [−π/2axy, π/2axy] and
kBy = [0, π/2axy], for kBz = 0.

2.2.2. Scattering problem: infinite LRSC slab135

The geometry of the scattering problem using an infinite LRSC slab, i.e. a
finite thickness and infinite width system, as it is shown in Fig. 1(d). In the
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illustrated example, the infinite slab is composed of nx = 2 unit cells along
the propagation direction (x-direction, thickness); boundary conditions along
the y- and z-directions are chosen such that the structure can be considered140

periodic along these two directions. A plane wave impinges the structure from
the negative x-axis (ΓX direction). Perfectly matched layers (PML) are applied
on both ends along the x-direction. The whole solution domain is discretized
into 2.2× 105 elements.

The pressure field is evaluated in the axial plane, i.e., the xy-plane, for145

z = az/2. In order to evaluate the attenuation of the 3D LRSC, the IL at
frequency f is spatially averaged using M points along a line ranging from
y = [−axy/2, axy/2] behind the LRSC at x = xl = 0.65 m (see Fig. 1(d)).

〈IL(f)〉 = 20 log10

(∑M
i=1 |p̃ref (~ri, f)|∑M
i=1 |p̃sc(~ri, f)|

)
. (8)

where |p̃ref (~r, f)| and |p̃sc(~r, f)| are the absolute values of the acoustic pressure
in the absence and in the presence of the 3D LRSC, respectively. It is worth150

noting here that the length xl is large enough to avoid the contribution from
evanescent waves scattered by the structure.

2.2.3. Scattering problem: finite LRSC slab

The finite slab is a LRSC with finite thickness and width. In our case we
choose nx = 2 unit cells along the x direction (thickness), ny = 9 unit cells along155

the y direction (width) and of infinite height along the z direction is considered
and will be presented later in Section 4. The acoustic source is modeled as a
piston of infinite length along the z direction placed at 1.4 m from the structure.
Boundary conditions along the z-direction are chosen such that the LRSC can
be considered of infinite height. PML layers are considered on both ends on x-160

and y-directions, hence the only contributions from the incident field behind the
LRSC are those propagating through the structure and from its lateral edges.
The spatial discretization is performed using 1.85 106 elements.

3. Experimental setup

Our attention is now turned into the description of the experimental setup,165

introducing the geometry of the locally resonant scatterers, including both types
of resonators; the whole periodic system, i.e., the finite LRSC slab and the
instrumentation and experimental methods employed for the measurements.

3.1. Locally resonant scatterers

The scatterers consist of wooden rods of square cross-section. Each rod is170

0.05 × 0.05 × 2.00 m3 (i.e., L = 0.05 m) and incorporates 29 resonators in its
central area along the z-direction separated by a distance az = 0.05 m. Each
QWR has a diameter dQ = 0.035 m and depth lQ = 0.04 m (see Fig. 2(a)).
HRs are obtained by inserting a ln-thick PVC annular disc on top of the QWRs.
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The inner hole of each PVC annular disc plays the role of the HR neck. The175

neck diameter is dn = 0.004 m and its length is ln = 0.004 m. The diameter of
the HR cavity is dc = 0.035 m and its depth lc = 0.036 m (see Fig. 2(b)).
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Figure 2: Experimental set-up. (a), (b) Transversal views of both types of resonators, QWR
and HR, respectively. (c), (d) Schematic diagram of the unit cell and main geometrical
parameters. (e) Picture of the experimental set-up in the anechoic chamber.

3.2. Periodic arrangement of locally resonant scatterers: LRSC

The LRSC is composed of an arrangement of locally resonant scatterers, dis-
tributed in a 2D square lattice with a lattice period axy = 0.075 m, as shown in180

Fig. 2(c). The vertical lattice period of the resonators along the scatterer height
is az = 0.050 m. Therefore, the 3D unit cell is a parallelepiped rectangle with
a lattice constant 2axy, as shown in Fig. 2(d). The LRSC experimentally ana-
lyzed is built by using 2 unit cells along the propagation direction, x−direction,
and 9 unit cells along the transverse direction, y−direction. The filling fraction185

of the LRSC, defined as the ratio of the volume of the scatterers Vsc over the
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total volume of the unit cell Vcell, is ff = Vsc

Vcell
≈ 0.314. Vsc is defined in this

work as the solid part of the unit cell.
Experimental measurements are performed using a microphone B&K 1/4”

type 4135. The acoustic source is a loudspeaker Genelec 8351A. The excitation190

signal is a sweep sine function ranging from 50 to 6000 Hz with a step of 12 Hz.
The positions of the microphone along the measurement line are controlled by a
Zaber LSQ 1D robotized arm. The acquisition of the acoustic signal is performed
using a Stanford SR 785 spectrum analyzer. A picture of the experimental setup
is represented in Fig. 2(e). The loudspeaker used to generate the acoustic field195

in the anechoic chamber is placed at an approximate distance of 1.4 m from
the LRSC. A single microphone is utilized to measure the transfer functions
between the electrical and the acoustic signal measured at every point along the
line behind the LRSC. Only propagation along the x− y plane is considered.

3.3. Insertion Loss200

The attenuation of the LRSC is evaluated measuring the IL along a line
behind the sample at xl = 0.65 m, (x = 0 is located following the same con-
vention presented in Fig. 1(d)). This measurement line spans the interval
yl = [−0.225, 0.225] cm with 1 cm step (M = 46 points). The transfer func-
tion between the signal registered by the microphone and the input electrical205

signal is measured twice along this line, i.e., in the absence and in the presence
of the LRSC, and later spatially averaged. The absolute value of the spatially
averaged complex transfer function at point ~ri and frequency f is given by

〈
|H̃(f)|

〉
= 20 log10

(
1

M |Ṽ (f)|

M∑
i=1

|p̃(~ri, f)|

)
, (9)

where H̃ = (H̃ref , H̃sc), and p̃ = (p̃ref , p̃sc) is the measured acoustic pressure
along the line. Note that subscripts refer to measurements performed in the ab-210

sence and in the presence of the LRSC. The spatially averaged 〈IL〉 is obtained
making use of Eq. (8).

4. Results

4.1. Characterization of the local lossy resonators

The local resonators used in the LRSC are characterized in this subsection.215

A numerical full wave simulation mimicking an impedance tube measurement
is performed in order to obtain the acoustic impedance of the local resonators.
The configurations of the impedance tube considered for the QWR and HR are
shown in Figs. 3(a, b), respectively. To characterize the acoustic properties of
the local resonators, the effective properties given by Eqs. (1-2) are introduced in220

their respective domains. The acoustic impedance of each resonator is recovered
from the numerical model evaluating the transfer function, and compared to the
analytical expressions given by the Eqs. (4, 6). Note that the previous analytical
models have been already validated experimentally [30, 31].
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Figures 3(c, d) show the real and imaginary part of the normalized impedance225

of the QWR and HR, respectively. Continuous and dashed lines correspond to
analytical predictions from Eqs. (4, 6), while symbols represent results from
the numerical model presented previously. Numerical and analytical results are
in excellent agreement, which validate the model used in this work to account
for the losses. Note that viscothermal losses are considered in both calcula-230

tions, hence the value of the resonance frequency represents the behavior of the
resonator itself, with no coupling to other resonant elements. The resonance fre-
quency corresponds to the frequency at which =(Z̃res) = 0 (where res =QWR,
HR). By doing so, the resonance frequency of the HR is found at fHR = 380 Hz
and that of the QWR at fQWR = 2000 Hz.235
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Figure 3: Characterization of the local resonators, comparison between analytical and nu-
merical results. (a), (b) show configurations in an impedance tube with QWR and HR,
respectively. Real (red continuous line for analytics and red open circles for numerics) and
imaginary (blue dashed line for analytics and blue open squares for numerics) parts of the
normalized acoustic impedance of the (c) QWR, ZQWR/Z0 and (d) HR, ZHR/Z0.

4.2. Locally resonant sonic crystal

4.2.1. Dispersion relation

The dispersion relation along the main directions of symmetry (ΓX-XM-MΓ-
ΓM’) for the unit cell described in Section 2 is shown in Fig. 4(a). The several
bands shown in the dispersion relation are due to the folding effect related to the240

supercell behaviour of the structure. At low frequencies (around 400 Hz) a full
stop band is observed due to the resonance of the HRs. The pressure distribution
of the unit cell (eigenvector) at the resonance frequency of the HR corresponding
to point X of the dispersion relation is shown in Fig. 4(b). At this frequency,
the pressure field is mostly located in the HR. For higher frequencies, but still245

lower than the Bragg band gap which is around 2200 Hz, other pseudo-band
gaps are opened in the ΓX direction as a consequence of additional cavity mode
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excitation [21]. For example, the pressure distribution at frequency 1190 Hz at
point Γ is shown in Fig. 4(c), for which a cavity mode in the external cavities
of the unit cell is well activated creating a band gap around this frequency in250

the ΓX direction. Finally, we show the eigenvector at frequency 1600 Hz at
point Γ (see Fig. 4(d)). At this frequency, the coupled QWRs open another
stop band, as shown in Fig. 4(e). At higher frequencies, the combined effects
of the QWRs and the periodicity produce a full band gap between 1600 Hz and
3000 Hz. Higher band gaps can be also observed in the dispersion relation due255

to periodicity and higher order resonant modes.
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HR, fHR = 390 Hz, (c) aditional cavity modes at 1190 Hz, (d) resonance frequency of the
QWR, fQWR = 1600 Hz. (e) Dispersion relation along the ΓX direction. (f) Numerical IL
for an infinite LRSC slab.

4.2.2. IL of an infinite LRSC slab

To analyze in detail the effect of the HRs, the QWRs and periodicity, the
dispersion relation along the ΓX direction shown in Fig. 4(e) is compared to
the IL produced by an infinite LRSC slab composed of nx = 2 unit cells. The260

IL produced by this infinite slab is shown in Fig. 4(f) for the lossless (blue
continuous line) and the lossy (red dashed line) cases. The attenuation peaks
observed in the IL spectrum are in very good agreement with the band gaps
obtained from the eigenvalue problem. At the resonant frequency of the HR,
fHR = 390 Hz, we observe an IL peak of amplitude 35 dB. Interestingly, for265

higher frequencies the coupling of the QWR and the effect of periodicity pro-
duces IL peaks of amplitude 40 dB. Note that the losses are only accounted for
in the resonators, therefore their main effects are manifested at their resonance
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frequencies. The influence of losses in the case of the HR is significant, produc-
ing an impedance mismatch and therefore a reduction of the IL peak at 390270

Hz. For the QWR, the effects of losses are mostly negligible.
The analysis of an infinite LRSC slab is of large importance to have an idea

of the effect of a large barrier, as it would be the case for an application in the
context of railway noise control. However, in many practical situations, and in
particular for this work, the experimental analysis is performed in an anechoic275

chamber using a structure of finite transversal length. Hence the interference
pattern produced by both edges of the structure should be accounted for in the
numerical simulations, as shown in the next Section.

4.2.3. IL of a finite LRSC slab

(b)

(a)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Frequency (Hz)

0

10

20

30

In
se
rt
io
n
L
o
ss

(d
B
) Experiments Lossless Lossy resonators

IL
evaluation

L
1
 = 1,400 m L

2
 = 0,425 m

L
IL
 = 0,450 m

x

y

z

n
x
 • 2a

xy
n

y
 •
 2

a
x
y

Source p
i
 

Figure 5: (a) Schematic diagram of the finite LRSC slab used for numerical simulations.
(b) Comparison of the IL calculated numerically, with (red dashed line) and without (blue
continuous line) losses, and experimentally measured (grey circles). Bars represent IL in
thirds of octave for the numerical case with losses (red bars) and experiments (grey bars).

The schematic diagram of the finite LRSC slab used for the corresponding280

numerical calculations is shown in Fig. 5(a), where IL is evaluated following the
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same exact procedure described in Section 3.3. Numerical (blue continuous and
red dashed lines for the lossless and lossy cases, respectively) and experimental
(gray circles) IL results for a finite LRSC slab show a very good agreement, as
shown in Fig. 5(b). The finite size effect of the structure strongly affects the285

amplitude of the IL peaks in comparison with the infinite slab, reducing the
attenuation of the structure. However, the frequencies of the IL peaks present
the same behavior as those of the infinite slab (see Fig. 4(f)). We notice that
between 3000 Hz and 5000 Hz the experimental results show better IL than the
analytical model. This is due to the fact that losses are not accounted out of the290

resonators, and in this range of frequencies the scattering an most important
phenomenon. However, our numerical model still captures the trends of the
experimental results.

In order to analyze the attenuation ability of the LRSC as an acoustic barrier
we have also calculated IL in thirds of octave. Bars in the background of Fig.295

5(b) represent the corresponding experimental (grey) and numerical (red) IL
values. Results show that the proposed structure increases the attenuation for
all the bands between 50 and 6000 Hz. In particular, an overall IL of 16 dB is
produced in the range of frequencies of interest, i.e., from 350 to 6000 Hz.

4.3. Simplified model in a real train-track configuration300

In this Section we apply a simplified 2D model of the LRSC designed in
this work to a realistic case of railway rolling noise application. The geometry
is shown in Fig. 6(a). The boundaries of the train and the ground (ballast,
sleepers, rail, etc.) are all considered acoustically rigid while the remaining
boundaries are modeled adding PML layers. The spatial domain is discretized305

into 2.3×106 elements. The acoustic source is modeled as a point source located
at the position of the train wheel.

Figure 6(b) illustrates numerical IL results, which are spatially averaged
along a human-sized vertical line (chosen to be 1.75 m high) located 1 m behind
the LRSC. Frequency dependent results present a similar trend to the previous310

3D analysis, but in this case the effect of the multiple virtual sources, due to
the rigid boundary conditions in the domain, is observable. Three IL snapshots
show the sound pressure level maps at three frequencies of interest. At the HR
resonance frequency, Fig. 6(c), the omnidirectional effect of the stop band is
represented by a strong attenuation of the acoustic field behind the structure.315

The effect of the ground [32] and reflections produced by the rigid boundary
conditions of the walls of the train and the ground are strongly attenuated
by the crystal, creating an acoustic shadow region behind the LRSC.At higher
frequencies, at fcoupling = 1390 Hz, Fig. 6(d) shows how the coupling of the
QWR attenuate the incident wave on the LRSC. Finally, at the Bragg frequency,320

shown in Fig. 6(e), the band gap is producing a strong attenuation in the region
under analysis.
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Figure 6: Simplified 2D model in a real train-track configuration. (a) Geometry of the numer-
ical model. (b) Spatially averaged IL results measured along a vertical line behind the LRSC.
Acoustic pressure level (in dB) in the domain at three frequencies of interest: (c) Resonance
of the HR in 2D, fHR = 800 Hz, (d) Coupling between the QWR, fcoupling = 1390 Hz, and
(e) Bragg frequency, fBragg = 2280 Hz

5. Conclusions

A LRSC made of square rod scatterers with embedded HR and QWR is the-
oretically and experimentally analyzed in this work. The system is designed to325

work in the range of frequencies corresponding to various railway noise sources,
in particular for the case of rolling noise. We exploit the idea of combining
local resonators to generate multiple coupled resonances at low frequencies with
Bragg band gaps arising from periodicity. We have considered both the effect of
viscothermal losses and finite-size effects of the structure. Viscothermal losses330

affect the resonators efficiency at their resonances and are negligible for other
frequencies. The effect of the transversal length of the structure strongly affects
the IL peak amplitudes. In the case analyzed in this article, a LRSC of 30 cm
width, strong broadband attenuation is obtained: the structure exhibits a large
IL covering three and a half octaves with an average value of 16.8 dB ranging335

from 350 Hz to 5000 Hz. These values can be greatly improved in real situations
where larger structures of the same thickness can be built. We finally employ
the LRSC in a simplified 2D geometry to analyze numerically the attenuation
capabilities of the system in a real train-track configuration. The good efficiency
of the proposed design to attenuate railway rolling noise opens new routes for340

designing efficient systems, with unprecedented advantages for increasing the at-
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tenuation. Moreover, low flow resistivity and allowing the light to pass through
the crystal ensures suitability of the proposed structure for urban contexts.
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Appendix A

The best combination of HRs and QWRs is chosen after evaluating the345

dispersion relations of multiple possible 2D combinations. Figure 7 illustrates
full and pseudo band gaps along the ΓX direction for several combinations.
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Figure 7: Preliminary studies of multiple LRSC unit cells. Pseudo band gaps (ΓX), in grey,
and full band gaps, in black, for multiple coupling configurations of the LRSC. The frequency
range spans from 0 Hz to 5000 Hz. Columns (1) to (8) represent 2axy ×2axy supercells, while
(i), (ii) and (iii) represent axy × axy unit cells. The configuration shown in column (4) is the
one employed throughout this work as it predicts the largest band gaps in the frequency range
of interest.
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[17] J. Sánchez-Dehesa, V. Garćıa-Chocano, D. Torrent, F. Cervera, S. Cabrera,
F. Simon, Noise control by sonic crystal barriers made of recycled materials,395

J. Acoust. Soc. Am. 129 (1173).
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using the overlap of resonances in 3d sonic crystals., Crystals 6 (5) (2015)
51.

[22] C. Zwikker, C. Kosten, Sound Absorbing Materials, Elsevier Publishing410

Company, 1949.

[23] M. R. Stinson, The propagation of plane sound waves in narrow and wide
circular tubes, and generalization to uniform tubes of arbitrary cross-
sectional shape, J. Acoust. Soc. Am. 89 (2) (1991) 550–558. arXiv:https:
//doi.org/10.1121/1.400379, doi:10.1121/1.400379.415

URL https://doi.org/10.1121/1.400379

[24] L. Schwan, A. Geslain, V. Romero-Garćıa, J.-P. Groby, Complex dispersion
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