J. M. Mäki, Lysyl oxidases in mammalian development and certain pathological conditions, Histol. Histopathol, vol.24, pp.651-660, 2009.

A. Baker, Lysyl oxidase plays a critical role in endothelial cell stimulation to drive tumor angiogenesis, Cancer Res, vol.73, pp.583-594, 2013.

T. R. Cox, A. Gartland, and J. T. Erler, Lysyl Oxidase, a Targetable Secreted Molecule Involved in Cancer Metastasis, Cancer Res, vol.76, pp.188-192, 2016.

P. C. Trackman, Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone, Matrix Biol. 52, vol.54, pp.7-18, 2016.

K. A. Johnston and K. M. Lopez, Lysyl oxidase in cancer inhibition and metastasis, Cancer Lett, vol.417, pp.174-181, 2018.

P. C. Trackman, Functional importance of lysyl oxidase family propeptide regions, J. Cell. Commun. Signal, 2018.

S. Ricard-blum and S. D. Vallet, Proteases decode the extracellular matrix cryptome, Biochimie, vol.122, pp.300-313, 2016.

S. Ricard-blum and S. D. Vallet, Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs, Matrix Biol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02109885

J. L. Grimsby, H. A. Lucero, P. C. Trackman, K. Ravid, and H. M. Kagan, Role of lysyl oxidase propeptide in secretion and enzyme activity, J. Cell. Biochem, vol.111, pp.1231-1243, 2010.

L. Thomassin, The Pro-regions of lysyl oxidase and lysyl oxidase-like 1 are required for deposition onto elastic fibers, J. Biol. Chem, vol.280, pp.42848-42855, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00314060

A. H. Palamakumbura, The propeptide domain of lysyl oxidase induces phenotypic reversion of ras-transformed cells, J. Biol. Chem, vol.279, pp.40593-40600, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00314062

P. A. Hurtado, Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation, Biochem. Biophys. Res. Commun, vol.366, pp.156-161, 2008.

S. R. Vora, Lysyl oxidase propeptide inhibits FGF-2-induced signaling and proliferation of osteoblasts, J. Biol. Chem, vol.285, pp.7384-7393, 2010.

J. D. Griner, C. J. Rogers, M. Zhu, and M. Du, Lysyl oxidase propeptide promotes adipogenesis through inhibition of FGF-2 signaling, Adipocyte, vol.6, pp.12-19, 2017.

M. V. Bais, G. B. Ozdener, G. E. Sonenshein, and P. C. Trackman, Effects of tumor-suppressor lysyl oxidase propeptide on prostate cancer xenograft growth and its direct interactions with DNA repair pathways, Oncogene, vol.34, pp.1928-1937, 2015.

J. Li, Nna1 mediates Purkinje cell dendritic development via lysyl oxidase propeptide and NF-?B signaling, Neuron, vol.68, pp.45-60, 2010.

Y. Guo, N. Pischon, A. H. Palamakumbura, and P. C. Trackman, Intracellular distribution of the lysyl oxidase propeptide in osteoblastic cells, Am. J. Physiol. Cell Physiol, vol.292, pp.2095-2102, 2007.

, Scientific REPORtS |, vol.8, 2018.

S. Sato, The Ras signaling inhibitor LOX-PP interacts with Hsp70 and c-Raf to reduce Erk activation and transformed phenotype of breast cancer cells, Mol. Cell. Biol, vol.31, pp.2683-2695, 2011.

S. Sato, Inhibition of CIN85-mediated invasion by a novel SH3 domain binding motif in the lysyl oxidase propeptide, PLoS ONE, vol.8, p.77288, 2013.

N. Sánchez-morgan, K. H. Kirsch, P. C. Trackman, and G. E. Sonenshein, UXT Is a LOX-PP Interacting Protein That Modulates Estrogen Receptor Alpha Activity in Breast Cancer Cells, J. Cell. Biochem, vol.118, pp.2347-2356, 2017.

N. Sánchez-morgan, K. H. Kirsch, P. C. Trackman, and G. E. Sonenshein, The lysyl oxidase propeptide interacts with the receptortype protein tyrosine phosphatase kappa and inhibits ?-catenin transcriptional activity in lung cancer cells, Mol. Cell. Biol, vol.31, pp.3286-3297, 2011.

G. B. Ozdener, M. V. Bais, and P. C. Trackman, Determination of cell uptake pathways for tumor inhibitor lysyl oxidase propeptide, Mol. Oncol, vol.10, pp.1-23, 2016.

B. Fogelgren, Cellular fibronectin binds to lysyl oxidase with high affinity and is critical for its proteolytic activation, J. Biol. Chem, vol.280, pp.24690-24697, 2005.

M. V. Panchenko, W. G. Stetler-stevenson, O. V. Trubetskoy, S. N. Gacheru, and H. M. Kagan, Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase, J. Biol. Chem, vol.271, pp.7113-7119, 1996.

P. Schlage, Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome, Mol. Cell Proteomics, vol.13, pp.580-593, 2014.

S. D. Vallet, Chapter 11: Strategies for Building Protein-Glycosaminoglycan Interaction Networks Combining SPRi, SPR, and BLI, Handbook of Surface Plasmon Resonance, pp.398-414, 2017.

S. R. Vora, Characterization of recombinant lysyl oxidase propeptide, Biochemistry, vol.49, pp.2962-2972, 2010.

H. Fischer, Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale, J. Appl. Cryst, vol.43, pp.101-109, 2010.

W. Burchard, Static and dynamic light scattering from branched polymers and biopolymers. in Laser light scattering in biochemistry, pp.3-22, 1992.

G. Tria, H. D. Mertens, M. Kachala, and D. I. Svergun, Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering, IUCrJ, vol.2, pp.207-217, 2015.

A. S. Karczy?ska, Prediction of protein structure with the coarse-grained UNRES force field assisted by small X-ray scattering data and knowledge-based information, Proteins, vol.86, pp.228-239, 2018.

S. A. Samsonov and M. Pisabarro, Computational analysis of interactions in structurally available protein-glycosaminoglycan complexes, Glycobiology, vol.26, pp.850-861, 2016.

K. Atkovska, S. A. Samsonov, M. Paszkowski-rogacz, and M. T. Pisabarro, Multipose Binding in Molecular Docking, Int. J. Mol. Sci, vol.15, pp.2622-2645, 2014.

P. R. Joseph, P. D. Mosier, U. R. Desai, and K. Rajarathnam, Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions, Biochem. J, vol.472, pp.121-133, 2015.

S. Rother, Structural and functional insights into the interaction of sulfated glycosaminoglycans with tissue inhibitor of metalloproteinase-3 -A possible regulatory role on extracellular matrix homeostasis, Acta Biomater, vol.45, pp.143-154, 2016.

I. Capila and R. J. Linhardt, Heparin-protein interactions, Angew. Chem. Int. Ed. Engl, vol.41, pp.391-412, 2002.

L. M. Cryan and M. S. Rogers, Targeting the anthrax receptors, TEM-8 and CMG-2, for anti-angiogenic therapy, Front. Biosci, vol.16, pp.1574-1588, 2011.

G. Launay, R. Salza, D. Multedo, N. Thierry-mieg, S. Ricard-blum et al., the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities, Nucleic Acids Res, vol.43, pp.321-327, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01877957

P. C. Trackman, D. Bedell-hogan, J. Tang, and H. M. Kagan, Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor, J. Biol. Chem, vol.267, pp.8666-8671, 1992.

C. Steentoft, Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines, Nat. Methods, vol.8, pp.977-982, 2011.

H. Xie, Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins, J. Proteome Res, vol.6, pp.1917-1932, 2007.

C. Min, A loss-of-function polymorphism in the propeptide domain of the LOX gene and breast cancer, Cancer Res, vol.69, pp.6685-6693, 2009.

A. J. Garvin and J. R. Morris, SUMO, a small, but powerful, regulator of double-strand break repair, Philos. Trans. R. Soc. Lond. B. Biol. Sci, p.372, 2017.

G. Beauclair, A. Bridier-nahmias, J. Zagury, A. Saïb, and A. Zamborlini, JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs, Bioinformatics, vol.31, pp.3483-3491, 2015.

R. Siegel, Biosynthesis of collagen crosslinks: increased activity of purified lysyl oxidase with reconstituted collagen fibrils, PNAS, vol.71, pp.4826-4830, 1974.

A. D. Cronshaw, TRAMP (tyrosine rich acidic matrix protein), a protein that co-purifies with lysyl oxidase from porcine skin. Identification of TRAMP as the dermatan sulphate proteoglycan-associated 22K extracellular matrix protein, Matrix, vol.13, pp.255-266, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00313845

E. G. Forbes, A. D. Cronshaw, J. R. Macbeath, and D. J. Hulmes, Tyrosine-rich acidic matrix protein (TRAMP) is a tyrosine-sulphated and widely distributed protein of the extracellular matrix, FEBS Lett, vol.351, pp.433-436, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00313838

S. Kalamajski, D. Bihan, A. Bonna, K. Rubin, and R. W. Farndale, Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase, J. Biol. Chem, vol.291, pp.7951-7960, 2016.

M. Fatoux-ardore, Large-scale investigation of Leishmania interaction networks with host extracellular matrix by surface plasmon resonance imaging, Infect. Immun, vol.82, pp.594-606, 2014.

E. Kohfeldt, P. Maurer, C. Vannahme, and R. Timpl, Properties of the extracellular calcium binding module of the proteoglycan testican, FEBS Lett, vol.414, pp.557-561, 1997.

B. L. Brizzard, R. G. Chubet, and D. L. Vizard, Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution, Biotechniques, vol.16, pp.730-735, 1994.

T. Ishida and K. Kinoshita, Prediction of disordered regions in proteins based on the meta approach, Bioinformatics, vol.24, pp.1344-1348, 2008.

Z. Dosztányi, B. Mészáros, and I. Simon, ANCHOR: web server for predicting protein binding regions in disordered proteins, Bioinformatics, vol.25, pp.2745-2746, 2009.

N. Malhis, M. Jacobson, and J. Gsponer, MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences, Nucleic Acids Res, vol.44, pp.488-493, 2016.

S. W. Provencher and J. Glöckner, Estimation of globular protein secondary structure from circular dichroism, Biochemistry, vol.20, pp.33-37, 1981.

N. Sreerama and R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Anal. Biochem, vol.287, pp.252-260, 2000.

L. Whitmore and B. A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases, Biopolymers, vol.89, pp.392-400, 2008.

, Scientific REPORtS |, vol.8, 2018.

P. Pernot, Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution, J. Synchrotron Radiat, vol.20, pp.660-664, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01572998

A. Round, BioSAXS Sample Changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments, Acta Crystallogr. D Biol. Crystallogr, vol.71, pp.67-75, 2015.

M. Incardona, EDNA: a framework for plugin-based applications applied to X-ray experiment online data analysis, J. Synchrotron Radiat, vol.16, pp.872-879, 2009.

D. Franke, ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions, J. Appl. Cryst, vol.50, pp.1212-1225, 2017.

P. V. Konarev and D. I. Svergun, A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems, IUCrJ, vol.2, pp.352-360, 2015.

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. Koch, and D. I. Svergun, PRIMUS: a Windows PC-based system for small-angle scattering data analysis, J. Appl. Cryst, vol.36, pp.1277-1282, 2003.

S. Förster, L. Apostol, and W. Bras, Scatter: software for the analysis of nano-and mesoscale small-angle scattering, J. Appl. Cryst, vol.43, pp.639-646, 2010.

A. G. Kikhney and D. I. Svergun, A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins, FEBS Lett, vol.589, pp.2570-2577, 2015.

C. Faye, E. Chautard, B. R. Olsen, and S. Ricard-blum, The first draft of the endostatin interaction network, J. Biol. Chem, vol.284, pp.22041-22047, 2009.

R. Salza, Extended interaction network of procollagen C-proteinase enhancer-1 in the extracellular matrix, Biochem. J, vol.457, pp.137-149, 2014.

S. Ricard-blum, Characterization of endostatin binding to heparin and heparan sulfate by surface plasmon resonance and molecular modeling: role of divalent cations, J. Biol. Chem, vol.279, pp.2927-2936, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01061436

P. Shannon, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

A. Liwo, C. Czaplewski, S. O?dziej, and H. A. Scheraga, Computational techniques for efficient conformational sampling of proteins, Curr. Opin. Struct. Biol, vol.18, pp.134-139, 2008.
DOI : 10.1016/j.sbi.2007.12.001

URL : http://europepmc.org/articles/pmc2465814?pdf=render

A. Liwo, A unified coarse-grained model of biological macromolecules based on mean-field multipole-multipole interactions, J. Mol. Model, vol.20, p.2306, 2014.

R. A. Laskowski, PDBsum new things, Nucleic Acids Res, vol.37, pp.355-359, 2009.
DOI : 10.1093/nar/gkn860

URL : https://academic.oup.com/nar/article-pdf/37/suppl_1/D355/3325320/gkn860.pdf

E. G. Hutchinson and J. Thornton, HERA-a program to draw schematic diagrams of protein secondary structures, Proteins, vol.8, pp.203-212, 1990.

G. M. Morris, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem, vol.19, pp.1639-1662, 1998.
DOI : 10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b

URL : http://hidra1.cbm.uam.es/publications/teaching/curso_verano_uah_2011/autodock4.pdf

A. Pichert, Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling, Glycobiology, vol.22, pp.134-145, 2012.

K. N. Kirschner, GLYCAM06: a generalizable biomolecular force field. Carbohydrates, J. Comput. Chem, vol.29, pp.622-655, 2008.
DOI : 10.1002/jcc.20820

URL : http://europepmc.org/articles/pmc4423547?pdf=render

D. A. Case, University of California, 2017.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise, KDD, vol.96, pp.226-231, 1996.

S. A. Samsonov, J. Gehrcke, and M. T. Pisabarro, Flexibility and explicit solvent in molecular-dynamics-based docking of proteinglycosaminoglycan systems, J. Chem. Inf. Model, vol.54, pp.582-592, 2014.

A. K. Nivedha, S. Makeneni, B. L. Foley, M. B. Tessier, and R. J. Woods, Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff, J. Comput. Chem, vol.35, pp.526-539, 2014.

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph, vol.14, pp.27-28, 1996.
DOI : 10.1016/0263-7855(96)00018-5

N. S. Gandhi and R. L. Mancera, Free energy calculations of glycosaminoglycan-protein interactions, Glycobiology, vol.19, pp.1103-1115, 2009.
DOI : 10.1093/glycob/cwp101

URL : https://academic.oup.com/glycob/article-pdf/19/10/1103/16652763/cwp101.pdf

N. Homeyer and H. Gohlke, Free Energy Calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area Method, Mol. Inform, vol.31, pp.114-122, 2012.
DOI : 10.1002/minf.201100135

A. Naba, The extracellular matrix: Tools and insights for the, omics" era. Matrix Biol, vol.49, pp.10-24, 2016.