Skip to Main content Skip to Navigation
Journal articles

Chiral sound waves in strained Weyl semimetals

Abstract : We show that a strained wire of a Weyl semimetal supports a new type of gapless excitation, the chiral sound wave (CSW). It is a longitudinal charge density wave analog to the chiral magnetic wave predicted in the quark-gluon plasma but driven by an elastic axial pseudo-magnetic field. It involves the axial-axial-axial contribution to the chiral anomaly which couples the chiral charge density to the elastic axial gauge field. The chiral sound is unidirectional: it propagates along the elastic magnetic field and not in the opposite direction. The CSW may propagate for long distances as it does not couple directly to quickly dissipating electromagnetic plasmons, while its damping is controlled by the slow chirality flip rate. We propose an experimental setup to directly detect the chiral sound, which is excited by mechanical vibrations of the crystal lattice in the GHz frequency range. Our findings contribute to a new trend, the chiral acoustics, in strained Weyl semimetals.
Complete list of metadata

Cited literature [57 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02109227
Contributor : Maxim Chernodub <>
Submitted on : Monday, November 9, 2020 - 7:31:13 PM
Last modification on : Tuesday, February 23, 2021 - 3:04:02 PM
Long-term archiving on: : Wednesday, February 10, 2021 - 7:56:25 PM

File

1904.09113.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

M. N. Chernodub, María A. H. Vozmediano. Chiral sound waves in strained Weyl semimetals. Physical Review Research, American Physical Society, 2019, 1, pp.032040. ⟨10.1103/PhysRevResearch.1.032040⟩. ⟨hal-02109227⟩

Share

Metrics

Record views

122

Files downloads

91