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Cloud Motion Identification Algorithms Based on All-Sky Images to
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Lydie Magnone, Fabrizio Sossan, Enrica Scolari, Mario Paolone
École Polytechnique Fédérale de Lausanne, Switzerland

Abstract—Cloud motion is a cause of direct irradiance varia-
tions at ground level and determines significant fluctuations of
PV generation. In this work, we investigate on how integrating
information on clouds motion extracted from all-sky images
into a time series-based forecasting tool for global horizontal
irradiance (GHI) to enhance its prediction performance. We
consider three different cloud motion algorithms: heuristic
motion detection (HMD), particle image velocimetry (PIV), and
a persistent model. The HMD method is originally proposed
in this paper. It consists in choosing the cloud motion vector
leading to the best cloud map prediction considering the most
recent sky images. Results show that integrating the information
of the predicted cloud coverage in the circumsolar area leads to
a decrease of the width of the GHI prediction intervals up to
2% for prediction horizons in the range 1 to 10 minutes.

I. INTRODUCTION

The trend towards decentralized control and short-term re-
dispatch of conventional generation in power systems has
increased the focus on short-term forecasting of stochastic
generation at low aggregation level. Examples are in the field
of control of microgrids, active distribution networks, and
photovoltaic (PV) self-consumption, where the availability
of predictions for specific PV installations is required, e.g.
[1]. Whereas traditional satellite-based forecasting methods
fail to meet spatial and temporal resolution requirements,
recent developments in the existing literature have proposed
the application of time series based methods to learn patterns
of PV production/irradiance from historical observations, see
[2]. With respect to the sole use of historical irradiance
observations, the integration of information from all-sky im-
ages (ASIs) establishes a step further in terms of available
knowledge thanks to enabling the identification of clouds
position and motion.

The tool-chain to infer irradiance predictions from ASIs
generally consists in the following main steps: i), image pre-
processing, ii), cloud detection (i.e. deciding whether each
pixel of the image correspond to a cloudy or clear sky
point), iii), cloud motion identification, and, iv), elaboration
of irradiance predictions. In this work, cloud detection is
performed by applying Schmidt’s algorithm [3].

First, we focus on the performance analysis of cloud motion
algorithms. We propose an original method, called heuristic
motion detection (HMD), and we compare its performance
against those of particle image velocimetry (PIV, from the
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existing literature) and a persistent benchmark method. Per-
formance is evaluated in terms of misclassification which is
achieved when predicting the future position of clouds (so-
called cloud map). In order to exclude from the performance
assessment the errors due to wrong segmentation, we consider
a set of manually segmented images (where the assignment
cloud/clear sky pixel is performed by human visual inspec-
tion) as a ground truth value.

Second, the predicted cloud map is used to compute the
amount of cloudy pixels in a circumsolar area. This infor-
mation is used as an additional influential variable in a time
series based forecasting tool for prediction intervals (PIs) of
the global horizontal irradiance (GHI) considering 1, 2, 5 and
10 minutes forecast horizons.

This paper is organized as follows: Section II describes the
state-of-the-art, Section III presents the methods, Section IV
is for results, and Section V states the conclusions.

II. STATE-OF-THE-ART

The first work focusing on intra-hour irradiance forecast
considering information from sky-images is described by
Chow et al. in [4]. Cloud shadows projected on the ground
are estimated using two-dimensional cloud maps generated
from the cloud cover. Cloud motion vectors are generated
by processing two consecutive sky images. Marquez and
Coimbra, [5], predict the direct normal irradiance (DNI) by
considering the clouds in the vicinity of the sun and detect
cloud motion with PIV. Their irradiance forecasts outperform
the persistence model for forecast horizons in the range 3 to
15 min, with the most accurate forecasts at 5 min. Chen et
al. in [6] apply PIV to compute a velocity vector per cloud
and develop a multi-scale cloud block matching strategy to
account for clouds deformations. Another technique for cloud
tracking is optical flow, which consists of a collection of
apparent velocities of objects in an image. It is applied to
cloud motion detection for predicting sun occlusions in [7],
using consecutive frames shot at a few seconds distance. Since
in this works we consider frames at 1 minute resolution,
optical flow is not considered. Quesada-Ruiz et al. in [8]
propose a method for cloud tracking applied to intra-hour
DNI forecast. A sector-based method is used to detect the
direction of motion of potentially sun-blocking clouds, and
an adjustable-ladder method focuses on sky regions that
potentially affects DNI values. Finally, Bernecker et al. in [9]
introduce non-rigid registration for detecting cloud motion.



A sun occlusion probability is filtered by a Kalman filter to
obtain continuous GHI forecasts for up to 10 min.

Several works focus on the inclusion of all-sky images fea-
tures into machine learning methods. In [8], a DNI forecasting
model is developed based on an artificial neural network
(ANN). It uses cloud cover time series (estimated from ASIs)
in combination with DNI historical observations to forecast
DNI on the 5 and 10 minutes look-ahead time. A hybrid
model to construct DNI prediction intervals is proposed in
[10]. It exploits information from ASIs, which are integrated
to a support vector machine and ANNs. Authors of [11]
propose a model for intra-hour GHI forecasting based on the
k-nearest-neighbors (kNN). It exploits local observations and
information from ASIs and delivers point predictions and PIs
of both GHI and DNI. The inclusion of ASIs improves the
definition of the PIs. Authors of [12] incorporate measured
irradiance data with features extracted from ASIs to deliver
point predictions, achieving to foresee irradiance variations
accurately.

III. METHODS

The tool-chain used to compute GHI prediction intervals is
shown in Fig. 1 and consists in the following steps (detailed
in the rest of this section):

1) Image acquisition.
2) Image pre-processing. The horizon (i.e. topological

features and nearby objects) is removed from the image,
and the distortion due to the fish-eye lens is corrected
with a geometrical transformation. Besides, the sun
position is determined as a function of the sun zenith
and azimuth values.

3) Cloud detection. Each pixel of the image is labeled as
a cloud or clear sky. The result of the segmentation is
a binary image called cloud map.

4) Cloud motion identification. It consists in estimating
the cloud movement. We consider three methods: (i)
HMD, a method proposed in this paper for the first
time, (ii) PIV, and (iii) the persistence predictor. Each
cloud motion algorithm returns one motion vector (a
single one for the whole image), called global motion
vector.

5) Cloud map forecasting: the cloud map is translated by
applying the global motion vector. This leads to the
forecasted cloud map.

6) Local cloud cover computation. Given the forecasted
cloud map, it consists in computing the percentage of
cloudy pixels in a specific area around the sun.

7) GHI prediction intervals computation. We extend a
time series-based probabilistic prediction tool from our
previous work [2], which was originally fed with GHI
measurements only. We add the local cloud cover as an
influential variable to explain GHI variations.

A. Image acquisition

Images are from an USB 2 megapixel camera with CMOS
sensor and fish-eye lens. It is installed on the roof of our

Fig. 1. Process of GHI forecast with all-sky images.

laboratory building, pointing at the zenith. Frames are taken
at 1 minute resolution with manual exposure time to limit
overexposure of the circumsolar area. The framegrabber is a
Raspberry PI computer.

B. Image pre-processing

The sun position is determined by converting the solar
zenith and azimuth coordinates (calculated by using the PV
Performance Modeling Toolbox by Sandia National Laborato-
ries [13]) into pixels coordinates. We use the Zenithal Equal
Area Projection method from [14]. The image distortion is
corrected by applying the procedure described in [15], which
requires a series of pictures of a chessboard (shot offline).
The sun coordinates are then transformed into undistorted
coordinates. Finally, the horizon features (trees, buildings,
mountain ridges) are removed by using a binary mask,
manually determined offline.

C. Cloud detection

It consists in determining if a pixel corresponds to a cloudy
or clear sky point. A common procedure for cloud detection
consists in computing the red to blue ratio (RBR) of the image
color channels, which generally achieves a good degree of
separation between clouds (high RBR) and clear sky pixels
(low RBR). However, misclassification occurs due to very
bright clear sky pixels (high RBR) in the circumsolar area
and very dark clouds (low RBR). Authors of [3] proposed an
augmented RBR definition. It makes use of a clear sky library
to achieve a better segmentation of the circumsolar pixels, and
solar saturation and gray intensity level to account for dark
clouds. The pixel RBR we use in this work is defined as:

Rmod = Rorig −RCSL(a (2S − 1)− b (I − c)), (1)



where Rorig is the RBR of the considered image, RCSL is
the corresponding RBR value on a clear sky picture (selected
from a clear sky library such that the sun position is as close
as possible to the target picture), S is the saturation and refers
to the percentage of saturated pixels in a circumsolar region
with radius r, I is the gray intensity level, while a, b and c
are tuning parameters. Finally, a pixel is marked as a cloud
if its modified RBR value in (1) is larger than a threshold
Rthresh and vice-versa.

The free parameters a, b, c, r, Rthresh involved in the
cloud detection procedure are determined in order to give
the best performance with our imaging setup. They are
chosen with the following heuristic procedure: 40 images
referring to periods with different weather conditions and sun
position are selected and manually segmented; therefore, the
same images are automatically segmented by using different
possible combinations of the parameters in the ranges shown
in Table I. The best values of the parameters are chosen as
those leading to the best cloud map estimation.

TABLE I
SEGMENTATION PARAMETER SETTING

Name Selected value Tested range
a 0.6 0.3 to 1, with a step of 0.1
b 0.001 0 to 0.003, with a step of 0.001
c 220 130 to 220, with a step of 10
Rthresh 0.2 0.1 to 1, with a step of 0.1
r (pixels) 30 30 to 60, with a step of 10

D. Cloud Motion Identification

In this section, we first describe the formulation of the
proposed method for cloud motion identification, the HMD.
Later, we summarize the ideas behind PIV and describe the
persistence model. As mentioned earlier, we assume in this
work that all the visible clouds move uniformly, i.e. with same
direction and speed. Under this assumption, there is a unique
motion vector, called global motion vector.

Let us consider a set of pictures taken at 1 minute resolu-
tion. The problem consists in producing a binary image which
contains the 1, 2, 5, or 10 minutes ahead predictions of the
clouds position.

1) Heuristic Motion Detection (HMD): The HMD proce-
dure is the following:
• we consider two consecutive cloud maps at time t–1 (A)

and t (B);
• n binary cloud maps A1, . . . , An are generated by trans-

lating the cloudy map A according to a random motion
vector v = (u, v) with v ∈ R2. We denote by (i, j) the
pixel location. Then, the future position of a binary pixel
is:

[i(t), j(t)] = [i(t− 1) + u, j(t− 1) + v] (2)

In this work we consider 400 random vectors v.
• each cloud map A1, . . . , An is compared against B in

terms of matching error defined as the sum of the
misclassified pixels, see Section IV-B.

• the motion vector that generates the lowest matching
error is selected.

2) Particle Image Velocimetry (PIV): In brief, PIV consists
in comparing two consecutive pictures by evaluating the
cross-correlation between portions of the images, called in-
terrogation areas. This allows to infer the most likely particle
displacement and to compute the motion vectors. It is also
known from [4] as the cross correlation method. In this work,
we use the Matlab implementation available in the PIVlab
library [16]. Unlike the existing literature, we apply PIV
on binary rather than on gray-scale images. The number of
interrogation areas in an image, thus the number of vectors,
is a parameter of the algorithm. In this case, it is chosen
trough a sensitivity analysis as the one which leads to the
best performance, as shown in Section IV. The cloud motion
vectors of the image are averaged in order to obtain a global
motion vector.

3) Persistent method: This method assumes that the clouds
are persistent in a short-term horizon, and therefore the global
cloud motion vector is zero.

E. Cloud map forecasting

It consists in translating the current cloud map according
to the global motion vector, which is scaled in magnitude ac-
cording to the forecasting horizon to achieve. This leads to the
so-called forecasted cloud map. It was observed empirically
that averaging the last 5 motion vectors rather than using the
last one only leads to better forecasted cloud maps.

Fig. 2. Example of the forecasted cloud map procedure.

An example of the procedure described until this stage
is shown in Fig. 2. Fig. 2a shows the undistorted view of
the sky with the sun location (blue circle) and PIV motion
vectors (green arrows). The global motion vector, obtained by



averaging the PIV vectors, is used to translate the cloud map
obtained by segmenting Fig. 2a. The translated cloud map
is shown in Fig. 2b, where the white color denotes cloudy
pixels, blue clear sky, and yellow circumsolar region. Fig. 2c
shows the 1 minute ahead realization. Fig. 2d compares the
forecasted cloud map (purple color) against the future ground
truth cloud map from Fig. 2c (green color). The white color
denotes those pixels which are correctly classified as cloudy.

F. Local cloud cover computation

The forecasted local cloud cover is computed as the per-
centage of cloudy pixels in the forecasted cloud map in a
region around the sun. The region we consider is a disk with
100 pixels radius (at this stage, this is chosen empirically). We
consider a circumsolar area rather than the whole picture since
this is the region with the largest interest when considering
short-term sun occlusions by clouds.

G. GHI prediction intervals computation

The work in [2] describes a method to compute GHI
prediction intervals (PIs) with look-ahead time in the range
from seconds to minutes starting from historical GHI mea-
surements. We augment this algorithm by including the local
cloud cover as an additional influential variable. The PI,
which is defined as the interval where the future realization
is expected to fall with a designed confidence level α [17],
is denoted in the following formulation as

(
I↑αt+1|t, I

↓α
t+1|t

)
.

The original method in [2] consists in grouping N historical
values of the differentiated GHI time series ∆I into k clusters
according to the value of two selected data features:
• the average GHI value on a mobile window of length n,

considering the most recent data points:

Mi =
1

n

i∑
j=i−n

∆Ij , i = n+ 1, . . . , N ; (3)

• the GHI variability, defined as:

Vi =

√√√√ 1

n

i∑
j=i−n

(∆Ij −∆Ij−1)
2
, i = n+ 1, . . . , N.

(4)

The clustering process produces k clusters G1, . . . , Gk and
their centroids c1, . . . ck; the histograms of the clusters are
assumed as the empirical probability distribution function of
the variations with respect to the one-step-ahead irradiance re-
alization. During real-time operation, the data features vector
at time t, denoted by pt = (Mt, Vt), is calculated. The next
step is the calculation of the Euclidean distances between pt

and the centroids cl

dl = ‖cl − pt‖2, l = 1, ..., k (5)

which is used as a similarity criterion to select the cluster
representative of the future irradiance value. With respect to
the original method, we add the local cloud cover (obtained

from the procedure described above) as an additional feature
to build the clusters.

Finally, we compare three different combinations of influ-
ential variables:
• average irradiance and its variability (henceforth called

GHI measurements in Section IV-G);
• average irradiance, its variability and the local cloud

cover (henceforth called Images + GHI measurements);
• local cloud cover only (henceforth called Images).

IV. RESULTS

A. Experimental setup

GHI observations are from an Apogee SP-230 all-season
pyranometer installed near the camera. Pyranometer GHI
measurements are with an error of 2% and 5% at solar zenith
angles of 45 and 75 degrees, respectively. ASIs and GHI
measurements are synchronized and stored in a database.

B. Image metrics

To evaluate the performance of cloud detection and cloud
motion identification, we define the matching error similarly
to [4]. Let C be the ground truth cloud map (e.g., from manual
segmentation), Ĉ the estimated cloud map, and N the total
number of pixels in the image. The matching error is:

matching error =
1

N

I∑
i=1

J∑
j=1

∣∣∣Cij − Ĉij∣∣∣ (6)

The matching error is used in the work, i), to assign the pa-
rameters of the Schmidt’s algorithm (as described earlier), ii),
cloud detection performance assessment, and, iii), evaluation
of the cloud motion algorithms.

C. Forecasting performance metrics

To determine the quality of the prediction intervals of the
probabilistic forecasting algorithm, we use the Prediction In-
terval Coverage Probability (PICP) and the Prediction Interval
Normalized Averaged Width (PINAW), [18]. The PICP counts
the number of times that the realization falls inside the PI for
a given confidence level α:

PICP =
1

L

L∑
t=1

ct (7)

where L is the total number of forecast instances of the testing
dataset and

ct =

{
1, Î↓αt+1|t ≤ It+1 ≤ Î↑αt+1|t
0, otherwise.

(8)

where It+1 is the one-step ahead GHI realization. The PINAW
measures the width of the prediction interval:

PINAW =
1

LImax

L∑
t=1

(Î↑αt+1|t − Î
↓α
t+1|t), (9)

where Imax = 1000 W/m2.



D. Cloud detection performance assessment

Cloud detection is the first step of the prediction tool-chain.
Its accuracy plays a crucial role and it is therefore relevant to
quantify it. The average matching error Eq. 6 calculated over
the set of the 40 manually segmented pictures is 18%.

E. Selection of the number of motion vectors for PIV

We implement a sensitivity analysis to determine the best
number of motion vectors for PIV. In general, the number of
vectors depends on the size (in number of pixels) of the first
and second interrogation areas. We have tested different com-
binations for the size of the interrogation areas, as reported in
Table II. This allowed to determine the combination leading
to the smallest matching error into the forecasted cloud map.
The best combinations of interrogation areas are 400×400 and
200×200 pixels for interrogation areas 1 and 2, respectively,
for the 1 and 2 minutes forecast horizons, while they are
200× 200 and 100× 100 pixels for interrogation areas 1 and
2, respectively, for the 5 and 10 minutes forecast horizons.
These combinations the sizes used in the following for the
PIV interrogation areas.

TABLE II
TESTED PIV VECTORS AND INTERROGATION AREAS

Number of vectors 42×45 29×31 27×29 25×27 20×22
Interrogation area 1 200 280 300 320 400
Interrogation area 2 100 140 150 160 200

F. Performance assessment of cloud motion methods

In this section, the performance of the three considered
cloud motion methods (HMD, PIV and persistence) is com-
pared in terms of the matching error of their forecasted
cloud maps. Here, the testing image dataset consists in 40
consecutive images captured during partly-cloudy conditions.
Results are shown in Fig. 3 and summarized in Table III. We
obtain that:
• at 1 minute look-ahead time, the HMD method is the

best performing;
• at 2 minutes, the HMD and the PIV have a similar

performance and outperform the persistence method;
• at 5 and 10 minutes, neither the HMD nor the PIV

outperforms the benchmark persistence model.
The last result is likely due to the fact that the considered
cloud motion algorithms do not model phenomena such as
cloud generation, dissipation and cloud shape changing, all
effects which become more prominent when considering
longer forecasting horizon.

G. GHI forecast assessment

To compute the forecasted local cloud cover and test its
influence on the GHI forecasting tool, we choose the best
performing cloud motion algorithm according to the look-
ahead time. From the previous section, these are: HMD at 1
minute, PIV at 2 minutes, and persistence model at 5 and 10
minutes forecast horizon.

Fig. 3. Cloud motion methods evaluation for different forecast horizons.

TABLE III
MATCHING ERROR (%)

Forecast horizon 1 min 2 min 5 min 10 min
HMD 10.65 14.34 19.72 20.68
PIV 11.08 14.27 18.42 21.23
Persistence 12.83 15.82 17.68 18.44

Table IV shows the Pearson correlation coefficients be-
tween the time series of GHI and local cloud cover (con-
sidering measurements spanning a 21 days long period) on
four distinct forecast horizons (1, 2, 5 and 10 minutes). A
high correlation is observed between the two variables, thus
suggesting that the local cloud cover is a meaningful variable
that can be used to improve the accuracy of GHI forecast
methods.

TABLE IV
PEARSON CORRELATION COEFFICIENTS

Forecast horizon 1 min 2 min 5 min 10 min
Cloud motion method HMD PIV Persistence
Correlation coefficient -0.7622 -0.7985 -0.7806 -0.7504

We consider the probabilistic forecasting tool described in
Section III-G. The training and testing data set consists of
measurements for 16 and 5 days, respectively. We select a
number of clusters k manually tuned to achieve a coverage
probability very close to the target confidence level α = 95%.

Results are summarized in tables V and VI, and shown in
Fig. 4. They can be summarized as follows:
• from Table V, all the considered cases have a coverage

probability (PICP) close to the target confidence level
(95%), denoting that the methods have a good reliability;

• in any case, adding the forecasted local cloud cover to
GHI measurements is beneficial as it improves the GHI
forecast on all the considered forecasting horizons (or it
does not impact negatively, as in the 1 minute case);

• the use of the forecasted local cloud cover as only
influential variable outperforms all the other methods at
1, 2, and 5 minutes forecast horizons.

V. CONCLUSION AND FUTURE WORKS

We have carried a first investigation on how to augment a
GHI time series-based forecasting tool for solar irradiance



TABLE V
PICP (%)

Forecast horizon 1 min 2 min 5 min 10 min
GHI measurements 96.06 95.6 95.14 97.2
Images + GHI measurements 94.75 95.16 96.45 97.23
Images 94.92 94.56 94.75 95.95

TABLE VI
PINAW (%)

Forecast horizon 1 min 2 min 5 min 10 min
GHI measurements 4.13 7.05 12.69 18.12
Images + GHI measurements 4.13 6.89 12.23 16.69
Images 3.6 5.78 11.87 17.39

by using information on the cloud motion extracted from
all-sky images. The cloud motion algorithms considered in
the analysis are particle image velocimetry (PIV, from the
literature), heuristic motion detection (HMD, an original
method described in this work), and a persistent predictor.

It was shown that applying cloud motion identification
allows to improve cloud map forecasting performance up to
the 2 minutes forecasting horizon. Above the 2 minutes look-
ahead time, there is no advantage with respect to using a
persistance predictor.

Results on GHI prediction intervals shows that including
information on the cloud motion is in general beneficial
because it leads to get smaller PIs width.

The future work is in the direction of consolidating the
current results by extending the proposed method to an alter-
native all-sky imager, and comparing the results with those
obtained from cloud detection methods based on machine
learning strategies.
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