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Abstract

A major challenge of plant developmental biology is to understand how cells
grow during the formation of an organ. To date, it has proved di�cult to
develop computational models of entire organs at cellular resolution and, as
a result, the testing of hypotheses on the biophysics of self-organisation is
currently limited.
Here, we formulate a model for plant tissue growth in an SPH framework.
The framework identi�es the SPH particle with individual cells in a tis-
sue, but the tissue growth is performed at the macroscopic level using SPH
approximations. Plant tissue is represented as an anisotropic poro-elastic
material where turgor pressure deforms the cell walls and biosynthesis and
cell division control the density of the tissue.
The performance of the model is evaluated through a series of tests and
benchmarks. Results demonstrate good stability and convergence of sim-
ulations as well as readiness of the technique for more complex biological
problems.

Keywords: anisotropic material, cell division, DualSPHysics, root growth
model, smoothed particle hydrodynamics.

1. Introduction

Growth in plant tissues results from processes taking place at di�erent scales.1

At the macroscopic scale, the environment in�uences growth through water2
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Figure 1: (A) Root apical meristem of the plant Arabidopsis thaliana expressing �uores-
cent proteins marking the activity of the cell in the nucleus (red / yellow gradient) and
the boundaries of the cell walls (blue) [36]. The picture illustrates the importance of the
gradient in the cellular activity on growth and the developmental response of the organ.
(B) In our framework, each cell is represented by an SPH particle.

and nutrient within the soil matrix, the mechanical properties of the soil or3

the gradient of light through the canopy. However the understanding of plant4

responses to the environment at macroscopic scale remains a challenge. Tis-5

sues and organs are ensembles of microscopic cells which individual actions6

integrate into an emergent behaviour. The cells carry the genetic informa-7

tion, mediate the �ow of nutrients, and inhibit or facilitate the elongation8

of cell walls, and growth and development results from the coordinated ac-9

tions of these millions of cellular interactions. Microscopy techniques now10

allow direct observation of the growth of roots and their anatomy in sub-11

strates that reproduce natural conditions [30, 32, 40], and it is our ability to12

simulate organ at cellular resolution that remains limited.13

The Smoothed Particle Hydrodynamics is a particle-based method, used to14

solve macroscopic problems with an unstructured distribution of particles15

as integration points. It has been developped by Gingold and Monaghan16

[44] and Lucy [68], and is known for the simplicity and robustness of kernel17

integration. It has been used to simulate incompressible and viscous �uid18

�ows, problems in astrophysics, and large deformations of solid materials19

[74, 63, 72, 98]. Several codes have been developed to solve scienti�c and20

industrial problems [20, 77, 80, 87], and among them DualSPHysics has re-21

vealed most suitable for our model because of its �exibility, its performances,22

and the strong activity of its developer community [25].23

SPH provides a natural framework for multi-scale problems, with a strong po-24

tential for applications in biology where requirements include integration of25
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Figure 2: Schematic representation of an SHP kernel centred on particle a, computing the
relation between particle i and j with the kernel W of smoothing length h. The radius of
the smoothing kernel is a multiple s of the smoothing length.

multiple processes in complex and dynamic geometries. Its meshless formu-26

lation proved suitable to large deformation problems such as those found in27

ballistics, geo-disasters and tissue behaviour [2, 26, 39, 51, 49, 52, 56, 83, 89].28

The theoretical for poro-elasticity has been developped [17, 75, 76, 93] which29

facilitates development of plant tissue mechanics, and growth modelled as30

particles of variable mass has already been used in problems of accretion31

in black holes or for the particle treatment in in�ux/out�ux boundaries32

[15, 24, 37, 96]. Finally, the cell division is analogous to particle splitting33

techniques that have been studied extensively [23, 57, 50, 62, 64, 91, 90].34

Here, we propose a framework that links experimental data to computational35

modelling, based on the SPH method. It describes the growth of plant36

tissue at cellular level by identifying the cells to the numerical particles37

(Fig. 1). The paper �rst presents the equations of the model and their SPH38

formulation in Section 2 and in Section 3 we describe the implementation of39

the model in DualSPHysics. The model is evaluated in Section 4 and 5 with40

several numerical tests, and the results are reviewed in Section 6, along with41

the future development of the model in a global image processing pipeline.42

2. SPH formulation of the model43

2.1. Basics of SPH44

Smoothed Particles Hydrodynamics is a particle-based method that uses45

local interpolation to approximate continuous �eld quantities. SPH is based46

on the following identity to express any spatial function f(r)47
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f(r) =

∫
Ω
f(r′)δ(r− r′)dr′, (1)

where δ is the Delta Dirac. As δ is not di�erentiable, it is approximated by a48

smooth function called integration kernel to interpolate the continuous �eld49

variables. The domain of integration Ω is represented by a discrete set of50

particles, where the elementary volume of a particle i is mi
ρi

with mi being51

the mass and ρi the density of the particle. Hence, the interpolated value of52

a function f at particle i, located at ri can be expressed as53

f(ri) = 〈f〉i =
∑
j

mj

ρj
W (ri − rj, h), (2)

where j is the index of neighbouring particles, W (r, h) is the integration54

kernel, with a compact support of radius s ·h, s ∈ R+ and the regularisation55

length h is called the smoothing length (Fig, 2). The brackets represent the56

evaluation of the function at the centre of the particle i.57

In a similar way, the gradient of a function f reads58

〈∇f〉i =
∑
j

mj

ρj
∇W (ri − rj, h). (3)

2.2. Conservation of mass and momentum59

A solid body of root tissue is modelled in a three dimensional space with60

cartesian coordinates (X,Y, Z), at two di�erent scales. At the macroscopic61

scale (tissue level), the model describes the root in terms of partial di�erential62

equations and at the microscopic scale (cell level) we consider a particle63

model of interactions that identify the cells to the SPH particles. The density64

and momentum equations are65

Dρ

Dt
= −ρ∇ · u+ γ, (4)

Du

Dt
=
∇ · (σ + p)

ρ
, (5)

where t is the time variable, ρ the density, u the velocity vector, γ the growth,66

σ the stress tensor and p the pore pressure.67

In the SPH formulation the terms of the equations (4)-(5) read68
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〈ρ∇ · u〉i =
∑
j

mj (uj − ui) · ∇iWij , (6)

〈
∇ · (σ + p)

ρ

〉
i

=
∑
j

mj

(
σi + pi
ρ2
i

+
σj + pj
ρ2
j

+ ΠijI

)
· ∇iWij (7)

where ρi, ui and σi represent density, velocity and stress at particle i respec-69

tively, ∇iWij = ∇iW (ri − rj , h) and Πij is the arti�cial viscosity term.70

Since the SPH uses a Lagrangian formulation, the location of a particle i is71

given by72

Dri
Dt

= ui. (8)

The kernel functionW is a 5-th order polynomial called the Wendland kernel73

[95]. It provides a good compromise between accuracy and computational74

e�ciency, and it is well known to prevent the generation of tensile instability75

[61, 28]76

W (r, h) =

{
21

16πh3

(
1− r

2h

)4 (2r
h + 1

)
if 0 ≤ r

h ≤ 2,
0 elsewhere.

(9)

The arti�cial viscosity Πab has been introduced in [73] to stabilise the velocity77

oscillations between the particles when they get disordered. It generates78

numerical dissipation when particles get close to each other79

Πij =

{
−αic0µij

ρ̄ij
if (ui − uj) · (xi − xj) ≥ 0,

0 otherwise,
(10)

with usually αi = 1, ρ̄ij =
ρi+ρj

2 and80

µij = h
(ui − uj) · (xi − xj)
|xi − xj |2 + (0.1h)2 . (11)

The term (0.1h)2 is chosen to prevent numerical divergence when particles81

get too close to each other.82
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2.3. Constitutive equations83

Plant roots grow in a speci�c direction, due to the anisotropic properties84

of the cell wall matrix [8, 12, 41, 43, 78, 82]. The cell walls are composed85

of cellulose micro-�brils that promote growth in the direction perpendicular86

to their orientation. Hence, the mechanical behaviour of the plant tissue is87

assumed to be transversely isotropic, where micro-�brils are oriented in the88

Y Z plane, promoting the growth in theX direction. For elastic deformations89

of a plant tissue, we consider the Hooke law σ = Cε. The elasticity tensor90

C depends on �ve parameters, namely Ex the Young modulus in the X91

direction; n =
Ey

Ex
the ratio between Ey the Young modulus in the Y Z plane92

and Ex; Gxy the shear modulus for planes parallel to the X direction; νxy93

the plane reduction in the Y Z plane for stress in the X direction; and νyz94

the plane reduction in the Y Z plane for stress lying in the same plane.95

Then the Hooke law in Voigt notation reads96



σ1

σ2

σ3

σ4

σ5

σ6

 =



C11 C12 C12 0 0 0
C12 C22 C22 − 2C44 0 0 0
C12 C22 − 2C44 C22 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55





ε1

ε2

ε3

ε4

ε5

ε6

 (12)

with97

C11 = Γ
1− νyz
n

, C12 = Γνxy,

C22 = Γ
1− nν2

xy

1 + νyz
, C44 =

Ey
2 (1 + νyz)

,

C33 = Γ
1− nν2

xy

1 + νyz
, C55 = Gxy,

Γ =
Ey

1− νyz − 2nν2
xy

.

(13)

and the compliance tensor S is98
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S = C−1 =



1
Ex

−νxy
Ex

−νxy
Ex

0 0 0

−νxy
Ex

1
Ey

−νyz
Ey

0 0 0

−νxy
Ex

−νyz
Ey

1
Ey

0 0 0

0 0 0
2(1+νyz)

Ey
0 0

0 0 0 0 1
Gxy

0

0 0 0 0 0 1
Gxy


. (14)

In the SPH formulation, the stress tensor σ is decomposed in hydrostatic99

pressure P and deviatoric stress τ100

σ = P I + τ. (15)

The hydrostatic pressure is assumed to depend on the tissue density and is101

calculated from the state equation102

P (ρ) = K

(
ρ

ρ0
− 1

)
(16)

with K the e�ective bulk modulus of an anisotropic material and ρ0 the103

equilibrium density. It is computed from the compliance tensor [38]104

K =
1

wtSw
(17)

where w = (1, 1, 1, 0, 0, 0).105

The deviatoric stress is de�ned as106

τ = Pσ = PCε (18)

with P = I− 1
3ww

t.107

To take into account large deformations, the rate of deviatoric stress Dτ
Dt108

is computed independently from the material frame of reference using the109

Jaumann derivative110

Dτ

Dt
= PCε̇+ ωτ − τω (19)
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where ε̇ = 1
2

(
∇u+∇uT

)
is the rate of the strain tensor and ω = 1

2 (∇u−111

∇uT
)
the spin tensor, see [46] for more details. The velocity gradient ∇u is112

obtained by the following �rst order approximation at particle i113

〈∇u〉i =
∑
j

mj

ρj
(uj − ui)∇iWij . (20)

Using (19), it leads to the SPH formulations of the rate of deviatoric stress114

〈
Dτ

Dt

〉
i

= PCε̇i + ωiτi − τiωi. (21)

Therefore, the value of stress at particle i is115

σi = P (ρi)I + τi. (22)

2.4. Turgor pressure116

Plant cells have plasma membranes that are permeable to �uids of di�erent117

concentration. It creates an osmotic pressure inside the cell, called the turgor118

pressure [9, 100]. The model is formulated in a poro-elastic framework, where119

the cell wall matrix is the solid phase and the turgor pressure is associated120

to the pore pressure [22, 84].121

pi = p0I. (23)

Pore pressure is kept positive to prevent any shrinking of the plant tissue.122

2.5. Biosynthesis123

During the growth of a tissue, the cells increase in mass, mainly because124

of water in�ux and thickening of walls through acumulation of pectins and125

polysacharrides [21, 41]. The later process prevents the thinning of cell walls126

and the weakening of elongating tissue. Biomass deposition is modelled as127

a densi�cation process, expressed as a function of the density ρi and the128

growth rate λg [3, 45, 55, 59].129

γ (ρi) = λg

(
ρ0

ρi
− 1

)
. (24)
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Similar laws have been documented for instance in bone growth [45, 55].130

The densi�cation model accounts for a range of processes. First, the rela-131

tionship incorporates changes in cell mass due to either biological (turgor,132

cell softening) and physical (drying of tissue) processes.133

It is worth noting that the formulation is reversible and therefore can lead134

to contraction of the tissue. This form of growth is a physical reality when135

adaptation to external forces is not fast enough, for example when a root136

reaches a physical barrier. In this case, elongation zones were shown to137

exhibit contraction [14]. When deviations from equilibrium density are small,138

the densi�cation rate is proportional to the di�erence in tissue density which139

makes the relationship symmetric. This assumption cannot be con�rmed140

experimentally because cell mass cannot be measured at this resolution. It141

is however a reasonable model hypothesis considering that water dominates142

the mass of the cell.143

The densi�cation mechanism has also a second important role in growth.144

Because density is related to pressure (16), it is linked to the permanent145

extension of the tissue. Therefore the growth rate λg controls indirectly the146

relaxation of the tissue's elasticity. Although the model is not directly for-147

malised in the viscoplastic framework, it implements a relaxation mechanism148

that is stable and requires a single parameter. This is a reasonable approach149

considering that it is not possible to characterize the visco-plastic parameters150

of cells live and in situ.151

2.6. Cell division152

Cell division is a fundamental mechanism through which plants maintain153

an organised cellular architecture and achieve highly specialised functions.154

Control of the cell architecture is achieved through cell expansion, but also155

through the frequency and the location of the new cell walls appearance. To156

maintain a distribution of SPH particles that matches the cells of natural157

tissues, it is therefore essential to derive a cell division model that mimics158

the patterns observed in natural systems. A cell division model can be159

decomposed into three components.160

(1) The cell division checkpoint. During its lifetime, a cell passes161

through a series of checkpoints that ultimately triggers the division. There162

is no widely accepted model for cell division in plants because the biological163

mechanisms involved are complex and the mathematical formulations are164

still debated. However microscopy observations indicate that the sensing of165

size and geometry of the cell is essential to divide at the right time and place.166

For this reason, mathematical models have often used cell size but also cell167

type or age as triggers for cell division [32, 54, 67, 97]. In our model, we168
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chose cell division to be triggered by particle mass. The division of a particle169

occurs when the particle mass reaches a threshold size m̄. Since the density170

of the tissue is maintained at values close to equilibirum due to biosynthe-171

sis, the mass criterion is equivalent to a size criterion, and this ultimately172

controls the particle size distribution at steady state.173

(2) The geometry of the division. The geometric rules underlying the174

placement of new cell walls are also intensely debated. There are no widely175

accepted rules for the placement of new cell walls during division, but Er-176

rera's principle, whereby the division minimises the surface area of daughter177

cells of identical volume, is commonly used [19, 60, 66]. It has inspired many178

recent models [10, 34, 86]. Here, the orientation of the division is a nor-179

malised vector di ∈ R3 that depends on the principal axes of deformation180

of the tissue. The position of the new particles is determined along di, and181

∆x de�nes the distance from the centre of the mother cell where the new182

particles are placed. It is obtained through a backward volume formula,183

∆xi =
1

2
vol−1

(
mi

ρi

)
. (25)

Here the volume calculation can be de�ned as either a rectangular brick184

shape for instance in the case of uniaxial expansion or spherical in the case185

of isotropic expansion. The locations r∗ of the daughter particles are186

r∗i = ri + di∆xi,

r∗i′ = ri − di∆xi.
(26)

Assumptions on cell shapes are required because deformation of individual187

cell shapes are not available during computation. The resulting division188

model approaches Errera's rule because cutting the length along the main189

axis of a cell produces the smallest cross section, and the symmetry of the190

placement of particles ensures daughter cells have equal size and volume.191

(3) The kinematics of the division. Since a cell division is the formation192

of a rigid wall inside a cell, the daughter cells inherit naturally the velocity193

of their mother (Fig. 3). The daughter cells are labelled i and i′ = N + 1,194

where N is the total number of particles before the division.195

3. Implementation196

The model is implemented using the numerical code DualSPHysics, based197

on C++, OpenMP and CUDA. Initially designed to simulate �uid dynamics,198
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Figure 3: Schematic representation of the cell division procedure of a particle i. The
particle divides along the direction di (A) and the daughter particles are set apart from
each other at a distance equal to ∆xi (B).

it is highly customisable, well maintained and proposes good performances199

in parallel computations [25].200

The numerical integration of the dynamics is performed as follow. First the201

node computes the poro-elastic deformation in response to the pore pressure.202

In a second step, the variation of mass due to the growth is calculated. Fi-203

nally the cell division procedure checks for particles that reach the threshold204

mass and performs their division.205

3.1. Time integration206

The integration of the quantities at particle i is based on a Verlet scheme [94].207

It proposes good stability for a low computational overhead. The numerical208

integration is based on two time steps. The time step for the computation209

of the poro-elastic deformation reads from (6), (7) and (21)210

rn+1
i = rn−1

i + ∆tuni +
(∆t)2

2

〈
∇ · (σ + p)

ρ

〉n
i

,

un+1
i = un−1

i + 2∆t

〈
∇ · (σ + p)

ρ

〉n
i

,

τn+1
i = τn−1

i + 2∆t

〈
Dτ

Dt

〉n
i

,

ρ̂ni = ρn−1
i − 2∆t 〈ρ∇ · u〉ni ,

(27)

where the superscript n denotes the time step, the brackets 〈·〉i the SPH211

approximation of the quantity at particle i and ρ̂ is the intermediate density212

related to only deformation.213
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The stability condition is given by ∆t = λCFL min {∆tf ,∆tcv} where214

∆tf = min
i

{√
h

‖fi‖

}
and ∆tcv = min

i

{
h

c0 + maxj {µij}

}
, (28)

with λCFL is a constant between 0 and 1 and fi =
〈
∇·(σ+p)

ρ

〉
i
. The version215

implemented in DualSPHysics includes a correction for the decoupling of the216

computed quantities that replaces the integration step by an explicit Euler217

step every certain number of time steps, noted here NVerlet.218

3.2. Growth219

The growth process is separated in two distinct steps with the mass increase220

occurring separately from the deformation. It is assumed to happen at con-221

stant volume, so the particle mass and density are updated according to (24),222

with γni = γ (ρ̂ni )223

mn+1
i = mn−1

i

(
1− 2∆t

γni
ρ̂ni

)
, (29)

ρn+1
i = ρ̂ni + 2∆γn. (30)

3.3. Cell division224

The cell division is implemented as a source of particles. The daughter225

particles are composed of the original particle and a duplicated one, with a226

shifted position and a mass divided by two. First, the cell division procedure227

checks and marks the particles that satisfy the division rule228

mi > m̄ = λmm0, (31)

where m0 is the initial mass of the particles and λm a scaling parameter.229

Then the memory arrays are extended and �lled with a copy of the duplicated230

particles data, except for the mass, which is divided by two, and the position,231

which is updated according to the backward volume formula (25).232

3.4. Smoothing length233

The smoothing length h is a constant de�ned as follows234

12



h = 2 3

√
m̄

ρ0
. (32)

It assumes that the smoothing length is proportional to the side of a cube235

centred on the particle, at the maximal volume it can reach before cell di-236

vision. Usually, when the mass of a particle varies, the smoothing length237

follows to prevent any disparity in the density evaluation. Here however,238

the density is assumed to be constant and the solid structure stable, it is239

su�cient to ensure the capture of the in�uence of the biggest particles.240

3.5. Boundary conditions241

The surface of a root can be highly deformed, as the result of a trade-242

o� between the inner pressure and the resistance of the soil. The surface243

particles are left free and the formulation (4) prevents the apparition of244

boundary errors in the density. This setting describes the free growth of a245

part of plant root in a nutritive liquid that has negligible momentum e�ects.246

4. Numerical tests247

The features and performances of the model are tested in several con�g-248

urations. The domains are �lled with particles distributed on a uniform249

Cartesian lattice with an initial spacing ∆xi,0. The initial mass of a particle250

i is251

mi,0 = ∆x3
i,0ρ0, (33)

and ρ0 is the initial density.252

First the poro-elastic model is evaluated in the isotropic and anisotropic253

cases and compared to analytical predictions for several particle discretisa-254

tions. Then we test the growth process and compare the results to analytical255

predictions. The tests are performed in three dimensions with parameters256

typically used in porous materials using the L1-norm of the density and de-257

formation �eld along with the L2-norm of the error. They are computed258

as259

‖f‖L1 =
∑
i

vi
V
|fi| , (34)

∥∥f − f̄∥∥
L2

=

√∑
i

vi
V

(
fi − f̄(ri)

)2
, (35)
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Figure 4: Schematic representation of the isotropic (A) and anisotropic (B) deformation
of a cube of length `0 under pore pressure p. To reach a new density equilibrium, the
tissue body has to deform.

where f is a �eld quantity, fi is the evaluation of this function at particle i,260

f̄ its exact evaluation, vi = mi
ρi

is the local volume, V =
∑

i vi is the total261

volume, and ri is the position of particle i.262

4.1. Poro-elastic deformation263

A cube of side length `0 = 1 m with the centre localised at (0, 0, 0) and264

at equilibrium density ρ0 is deformed under a pore pressure p = 100 MPa265

(Fig. 4, A). The material properties are266

K = 12500 MPa, ρ0 = 1000 kg m−3,
E = 15000 MPa, ν = 0.3.

(36)

The expected values of the equilibrium density and deformation are267

ρ̄ = ρ0

(
1− p

K

)
= 992 kg.m−3, (37)

ε̄x = ε̄y = ε̄z =
1− 2ν

E
p = 2.667× 10−3. (38)

The numerical simulations are performed for space steps from ∆xi,0 = 0.05268

to 0.0125 m with the following numerical parameters269

T = 10 s, CFL = 0.1,
h = 2∆xi,0, NVerlet = 5.

(39)

The deformation εx,i is computed for each particle i with the current position270

xi compared to the initial position xi,0271
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Figure 5: Evolution of the density as a function of SPH resolution. Computer density is
compared to theoretical values ρ̄.

∆xi,0 ‖ρ‖L1 ‖ρ− ρ̄‖L2
0.05 992.0944 6.2682× 10−3

0.025 992.0076 1.1571× 10−5

0.0125 992.0037 4.8360× 10−6

Table 1: Estimation of density with parameters de�ned in (36).

εx,i =
xi
xi,0
− 1. (40)

The evolution of density displays a �uctuation at the beginning for each272

simulatio (Fig. 5). The application of the pore pressure to a solid at rest273

generates a shock-wave before the density reaches steady state. The mag-274

nitude of the wave reduces as the space step ∆xi,0 decreases. The density275

reaches a steady state comparable to the expected values of ρ and εx. These276

results (Tab. 1 and Tab. 2) show a close match between numerical and the-277

oretical values, and the L2 error decreases monotonically.278

Next we perform numerical simulations using anisotropic properties of cell279

walls materials. Growth is facilitated in the X direction with a minimal280

deformation in the Y Z plane. The material properties are281

K = 1192.7030 MPa, ρ0 = 1000 kg m−3,
Ex = 1020 MPa, T = 10 s,
Ey = 15000 MPa, p = 10 MPa,
νxy = 0.06, νyz = 0.3.

(41)
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∆xi,0 ‖εx‖L1 ‖εy‖L1 ‖εz‖L1
0.05 2.9789× 10−3 2.9789× 10−3 2.9789× 10−3

0.025 2.9258× 10−3 2.9260× 10−3 2.9258× 10−3

0.0125 2.7173× 10−3 2.7173× 10−3 2.7173× 10−3

∆xi,0 ‖εx − ε̄x‖L2 ‖εy − ε̄y‖L2 ‖εz − ε̄z‖L2
0.05 8.2853× 10−6 8.2853× 10−6 8.2853× 10−6

0.025 2.3755× 10−6 2.3783× 10−6 2.3755× 10−6

0.0125 1.1298× 10−7 1.1302× 10−7 1.1302× 10−7

Table 2: Estimation of components of the strain tensor in the isotropic case (36).

∆xi,0 ‖ρ‖L1 ‖ρ− ρ̄‖L2
0.05 991.5750 5.9130× 10−5

0.025 991.5837 2.3162× 10−5

0.0125 991.6056 9.4279× 10−6

Table 3: Estimation of density in the anisotropic case (41).

Theoretical values for the strain tensor and tissue density of the deformed282

solid are:283

ρ̄ = 991.6157 kg m−3,

ε̄x = 8.6274× 10−3,

ε̄y = −1.12573× 10−4.

(42)

Those values describe a growth facilitated in the X direction, with the defor-284

mation in the Y and Z direction being an order of magnitude smaller than285

the elongation in the X direction.286

Results are similar to the the previous test (Tab. 3 and 4) and show there is287

good agreement between numerical and predicted density and deformation.288

The change of material behaviour results in the uniaxial elongation of the289

initial domain.290

4.2. Anisotropic growth291

Growth is then considered in an anisotropic con�guration (Fig.6, A). The292

pore pressure is imposed to a bounded domain corresponding to an initial293

cube of side length `0 = 1 m. The material properties are de�ned as in (41)294

with295

λg = 200 kg (43)
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∆xi,0 ‖εx‖L1 ‖εy‖L1 ‖εz‖L1
0.05 1.0703× 10−2 −1.3910× 10−4 −1.3970× 10−4

0.025 9.5661× 10−3 −1.3394× 10−4 −1.3394× 10−4

0.0125 9.2731× 10−3 −1.3102× 10−4 −1.3102× 10−4

∆xi,0 ‖εx − ε̄x‖L2 ‖εy − ε̄y‖L2 ‖εz − ε̄z‖L2
0.05 5.4356× 10−5 3.7688× 10−6 3.7617× 10−6

0.025 6.7148× 10−6 5.7906× 10−7 5.7808× 10−7

0.0125 9.3215× 10−7 1.1831× 10−7 1.1853× 10−7

Table 4: Estimation of the component of the strain tensor in the anisotropic case (41).

Figure 6: Schematic representation of the growth of a cube of initial length `0 under
a pore pressure p. Associated evolution of mass (B), density (C) and growth rate (D).
The deformation is maintained by the imbalance between the turgor pressure and the
assimilation of biomass.
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∆xi,0 M0 V0

0.05 1157.625 1.1576
0.025 1076.896 1.0769

Table 5: Values of M0 and V0 for each discretisation in the anisotropic case (43).

We evaluate the growth rate and the total mass against their predicted values296

γ̄ = λg

(
ρ0

ρ̄
− 1

)
= 1.6910 kg m−3 s−1, (44)

M(t) = M0 + γ̄V0t. (45)

with M0 =
∑

imi,0 and V0 =
∑

i
mi,0

ρi,0
.297

The mesh generation algorithm in DualSPHysics causes the total mass and298

volume at initialisation to depend on ∆xi,0. Therefore the prediction is299

corrected with V0 → 1, with values for M0 and V0 for each discretisation300

shown in Tab. 5.301

In this simulation, the total mass evolution follows the theoretical values,302

after the dissipation of the initial oscillation (Fig. 6, B) and the average303

density and growth rate evolve in line to the theoretical prediction during304

the simulation (Fig. 6, C-D). Growth results from the imbalance between305

the turgor pressure and the deposition of new cell wall material.306

5. Cell division tests307

Cell division can a�ect the results of the computations because density and308

spatial arrangement of SPH particles are changing with time. The nature309

of rearrangements are linked directly to how tissues develop. Therefore,310

to test the e�ect of cell division on SPH particles, we chose test cases for311

their similarity to natural growth processes. Because the morphologies and312

kinematics of growth involved in these cases are more complex, theoretical313

predictions cannot be made easily. Instead we chose to either compare the314

results of the simulation to cases where the cell division is absent or to analyse315

qualitatively the consistency of the computations.316

5.1. Cell division - apical growth317

First we tested the e�ect of cell division in the case of apical growth, which318

is commonly observed in root meristems. Apical growth is characterised319

by enhanced cell elongation with cells at the tip. Elongation is uniaxial to320
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the orientation of cellulose chains and growth results in the formation of321

cylindrical morphology observed for example in roots and stems. In these322

simulations, the direction of elongation is set to X, which implies that the323

direction of division must take place along the same axis. The material324

properties are as in (41) with325

λg = 200 kg.m−3.s−1 ∆xi,0 = 0.05 m. (46)

To recover the deformation of the cell from equation (25), the cell is assumed326

to have the shape of a brick, and the deformation in Y and Z is considered327

negligible. ∆xi is recovered through a backward formula for the side of a328

brick. The parameters of the division at particle i are329

di = (1, 0, 0), (47)

∆xi =
1

∆x2
i,0

mi

ρi
, (48)

λm = 1.5. (49)

Two criteria were used to assess the results of the study case. First it is330

important the cell division does not a�ect negatively the predictions of the331

simulation. Secondly, it is also essential that because of the large deforma-332

tions, only cell division induces changes in the topology of adjacent particles.333

Hence, the contact between adjacent cells must be conserved during the sim-334

ulation in the Y Z plane.335

The results of the cell division tests were compared to a growth with identical336

parameters but without division. The analysis of the particle distribution at337

T = 350 (Fig. 7) shows that the tissue extends consistently to a �nal domain338

several times larger than its original size. Disorganisation in the X axis is339

observed because of boundary e�ects, but the rectangular organisation in340

the transversal plane is conserved. Results also show that cell division does341

not a�ect negatively the stability of growth (Fig.7, C) and conservation of342

tissue density ρ̄ is obtained from the simulations (Fig.7, D). As expected a343

linear increase in mass is obtained. These results indicate that growth is344

not disrupted during division and throughout the drastic increase in particle345

number induced by the cell division (Fig.7, E).346

5.2. E�ect of di�erential growth347

The second test illustrates the formation of an isotropic outgrowth. Out-348

growth are common during the development of plant organs, for example349
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Figure 7: (A) Schematic representation of apical growth simulations. (B) Particle distri-
bution at T = 350, with original particles in white shade and additional particles resulting
from cell division in red. Results of the simulation show cell division does not a�ect the
evolution of density (C), of total mass (D) with drastic increase of particle number(E).
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during the formation of primordia in meristem, or during the formation of350

gals and tumours in response to diseases. The outgrowth here is generated351

from a cylindrical domain sample with non-zero pore pressure on one half352

of the rod (Fig. 8, A), and zero elsewhere. The increase in turgor pressure353

results in isotropic growth that progressively forms a bulge taking progres-354

sively a spherical shape. In this case, the orientation of cell division is given355

by the displacement of the mother particle. The material properties are as356

in (36) with357

p = 0.1 MPa T = 60 s
λg = 1000 kg.m−3.s−1 ∆x = 0.1 m

ρ̄ = 999.916 kg.m−3
(50)

Since growth does not expand preferentially in any direction, the shape of358

the cells will be approximated as a sphere. The parameters of the division359

model are360

di =
ui
‖ui‖

, (51)

∆xi = 0.3 3

√
6mi

πρi
, (52)

λm = 1.5. (53)

Results show the SPH model can be used to simulate the formation of an361

outgrowth (Fig. 8, B). The increase of mass and particle number tends to-362

wards a steady linear increase which is consistent with expansion (Fig. 8, C).363

Results also show the stability of the average density at values close to the364

equilibrium density ρ0 (Fig. 8, D). The growth of mass follows a linear curve365

because it results from the addition of mass produced from a �xed volume366

of space at a constant rate, which stops when the particles enter in a region367

where the pore pressure is zero.368

6. Discussion369

In this paper, we presented a model of root growth based on Smoothed370

Particle Hydrodynamics. The model features the principal drivers of growth,371

i.e. turgor pressure, cell wall anisotropy, cell wall biosynthesis and the cell372

division, with SPH providing a �exible theoretical framwork for integration373

of microscopic and macroscopic processes.374
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Figure 8: (A) Schematic representation of the simulation of outgrowths. (B) Particle
distribution at T = 60. (C) Particle number and total mass evolution. (D) Density
evolution.
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Figure 9: Pipeline for SPH computation of plant cellular development. (A) Image data
obtained with 3D microscopy, courtesy Ilonka Engelhardt. (B) Segmented root apical
meristem using MorphographX [6]. (C) Extraction of size and location of cells as input
for SPH computation. (D) Simulation of the elongation of the root tissue

Unlike most previous continuous approaches [81, 85, 88], the individual be-375

haviour of the cells is represented explicitely and it is possible to model376

the emergence of material properties from the tissue structure. Agent-based377

models have also been developped in the past to allow for a �ner level of378

description, where each cell is considered as an individual with a unique be-379

haviour. The formulation of such model is closer to reality, but analytical380

investigation is almost impossible [7, 11, 29, 69, 70, 92]. A way to bring381

together these two aspects is to formulate a multi-scale approach, combining382

several levels of description and allowing them to interact. Several propo-383

sitions exist and among them, gene-regulated network combined to growth384

[4, 31, 58, 71, 27], averaging approaches through analytical homogenisation385

[1, 35, 65, 79, 82], and the incorporation of a representation of individual386

cells in a continuous formulation of tissue deformation [5, 13, 42, 48, 53, 99].387

The de�nition of the microscopic element is crucial to elucidate fundamental388

processes of biological tissues development.389

Kernel integration provides a robust multi-scale formulation where cells can390

be identi�ed as SPH particles. Autonomous behaviour of cells is maintained391

at particle levels and conservation and constitutive laws describe tissue dy-392

namics at the macroscopic level. The suitability of SPH kernels integration393

was con�rmed by numerical tests which demonstrate the model handles ad-394
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equately integration of processes at microscale. Hence, this framework will395

be capable to handling more complex and intricate biological problems and396

will have application in developmental biology [83, 89].397

This work aligns particularly well with ongoing e�orts to develop microscopy398

techniques and image processing pipeline, where direct observation of roots399

allows to reconstruct three-dimensional visualisation [18, 30]. Data provided400

by such approaches can be easily incorporated into SPH simulation tools.401

These tools can then be used to study how cellular mechanisms contribute402

to the regulation of the growth of entire roots when they develop in a com-403

plex environment [33] (Fig. 9). Future work will also include the simulation404

of organs in contact with soil, covering tissues di�erentiation, and gene ex-405

pression, with the coupling to other numerical methods such as the Discrete406

Elements Method [16, 47].407
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