
HAL Id: hal-02108638
https://hal.science/hal-02108638

Submitted on 24 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incentive-Based Energy Consumption Scheduling
Algorithms for the Smart Grid

Stéphane Caron, George Kesidis

To cite this version:
Stéphane Caron, George Kesidis. Incentive-Based Energy Consumption Scheduling Algorithms for the
Smart Grid. 2010 1st IEEE International Conference on Smart Grid Communications (SmartGrid-
Comm), Oct 2010, Gaithersburg, United States. pp.391-396, �10.1109/SMARTGRID.2010.5622073�.
�hal-02108638�

https://hal.science/hal-02108638
https://hal.archives-ouvertes.fr


Incentive-based Energy Consumption Scheduling
Algorithms for the Smart Grid
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Abstract—In this paper, we study Demand Response (DR)
problematics for different levels of information sharing in a
smart grid. We propose a dynamic pricing scheme incentivizing
consumers to achieve an aggregate load profile suitable for
utilities, and study how close they can get to an ideal flat profile
depending on how much information they share. When customers
can share all their load profiles, we provide a distributed
algorithm, set up as a cooperative game between consumers,
which significantly reduces the total cost and peak-to-average
ratio (PAR) of the system. In the absence of full information
sharing (for reasons of privacy), when users have only access to
the instantaneous total load on the grid, we provide distributed
stochastic strategies that successfully exploit this information to
improve the overall load profile. Simulation results confirm that
these solutions efficiently benefit from information sharing within
the grid and reduce both the total cost and PAR.

I. INTRODUCTION

The current U.S. electrical grid is built up according to
a static, centralized structure: remote power plants transmit
electrical power through long-distance high-voltage lines to
substations (transmission network), which in turn adapt and
deliver it to local end users (distribution network). In this
model, the local network is often statically tuned to match
a given average load profile from its consumers.

Yet this structure is about to undergo a major shift: the
progressive integration of smart meters [1] and communicating
appliances will upgrade this “blind” system to a decentralized
“smart grid” [2], which is foreseen as a way to save billions
dollars in energy consumption [3].

In a smart grid infrastructure, utilities can set up dynamic
tariffs incentivizing customers to adjust their loads to the cur-
rent state of the network. This key feature, known as demand
side management, will yield several benefits, including:
• Integration of intermittent energy sources such as wind

or solar power at the distribution level [4];
• Demand Response: customers will be encouraged to shift

their heavy loads to off-peak hours;
• Resilience to attacks or power outages, with users spurred

to turn off their “non-critical” devices in case of heavy
load on the grid or upstream outages [5]; and

• Energy savings: studies [6] already suggest that giving
customers access to real-time consumption information
yields significant savings.

Such load management is becoming even more crucial as
plug-in hybrid electric vehicles (PHEVs) are coming to the
market. With battery capacities varying from 15 to 50 kWh,
these vehicles are expected to double the average household
load during charging time [4].

Therefore, the design of appropriate incentives and efficient
energy consumption scheduling (ECS) algorithms is a main
issue for the deployment of the upcoming smart grid.

In [7], the authors deal with ECS in the case of increasing
strictly convex cost functions. They propose a distributed
algorithm and show through a game-theoretic analysis that,
for incentives satisfying certain properties, it yields optimal
energy consumptions for end users. However, they implicitly
assume that the daily load on the network is proportional
to the daily cost for the utility, with a constant independent
of load scheduling (i.e., of game dynamics): this is a strong
hypothesis which implies utilities’ costs are linearly bounded
in any situation.

In this paper, we survey different scheduling problems de-
pending on the DR architecture (centralized or distributed) and
the degree of knowledge appliances have on the state of the
network. As in [7], we embed consumers in a local distribution
network consisting of a single energy source (e.g., a step-down
substation) supplying several load subscribers. Customers are
incentivized to move their loads to off-peak hours through
marginal costs which are linearly increasing with instantaneous
value of network overload.

The rest of this paper is organized as follows. We introduce
our pricing scheme and notations in section II. In section
III, we see that the general scheduling problem is NP-hard,
and provide a distributed solution set-up as a cooperative
game between consumers. We provide stochastic policies for a
decentralized setting in section IV. In section V, we derive the
best distributed policy for synchronized users in a power grid,
which we use as a reference in section VI where we provide
experimental results. We draw conclusions in section VII and
suggest future work in section VIII, including considerations
of interruptible and non-uniform demand profiles.

II. PROBLEM SET-UP

We consider a T -hour time period, e.g., T = 6 hours
from midnight to 6AM, during which N customers need to



automatically schedule their electrical jobs. Note that our time
horizon is finite since users do not want their jobs to be delayed
forever.

A. Loads and Costs
The nth customer has demand profile Dn parametrized by

flexible start time sn and fixed (dn, τn) parameters, where dn
denote the instantaneous power consumption of the job and
τn its duration:

Dn(t) = dn1{sn≤t≤sn+τn}

where 0 ≤ sn ≤ T − τn. We assume that once the service
start time sn is selected, it cannot be interrupted by the user.
The total instantaneous load on the network is then

λ(t) :=
∑
n

Dn(t) =
∑
n

dn1{sn≤t≤sn+τn}

We denote by C(λ(t)) the cost, in $/kW, experienced by
the utility at time t (for the costs charged to consumers, see
equation (4)). It depends on the instantaneous load λ(t), and
the function C itself is likely to depend on additional system
parameters. For example, the two-step conservation rate model
used by BC Hydro [8] (parametrized by load threshold L) is

CL(λ(t)) = C0 · 1{λ(t)<L} + C1 · 1{λ(t)≥L}.

In a more general setting, C can be any smooth convex
function of λ(t). However, in this article, we will focus on
a ramp cost function with load threshold L > 0:

CL(λ(t)) = C0 + C ′(λ(t)− L)+ (1)

where the base cost C0 and the overage rate C ′ are positive
constants (x+ denotes max(0, x)). Threshold L corresponds
to the load upon which the utility experiences overages, and
therefore raises the cost to dissuade customers from scheduling
their jobs (i.e., the second term in sum (1) represents the
marginal costs of producing electrical power by an overloaded
plant). Otherwise, λ < L corresponds to the plant’s nominal
operational regime.

Finally, we will call “Global Cost” the overall cost (in $)
for the utility:

GC :=

∫ T

t=0

∑
n

Dn(t)CL(λ(t))dt =

∫ T

t=0

λ(t)CL(λ(t))dt

With a ramp pricing scheme, this global cost becomes:

GCramp = GC0 + C ′
∫ T

0

λ(t)(λ(t)− L)+dt. (2)

where GC0 := C0

∑
n dnτn is a schedule-independent incom-

pressible cost.

B. Non-triviality Criterion
We are interested in scenarios where there is too much

demand for the system to avoid overages, and so it has to
cope with such situations. A simple way to insure this is for
jobs to meet the following criterion:∑

n

dnτn > LT. (3)

III. COMPLETE KNOWLEDGE SETTING

In this section, we survey scheduling when all the jobs’
characteristics (dn, τn) are known, either to all players or to
a single entity who tries to find an optimal schedule for the
whole system. This is for example the purpose of the global
controller in [9]. Web portals like Google PowerMeter [10],
OPOWER [11] or CustomerIQ [12] also centralize energy
consumption data about their users, which they can use
thereafter to derive an efficient schedule and advise consumers
to conform to it1.

We will first remind that finding an optimal schedule is an
NP-hard problem and discuss a greedy approach for it. We
will then consider a distributed algorithm set-up as a game
between consumers, and derive an optimal strategy for it.

A. NP-hardness

When load profiles (dn, τn) are different for different
users, the problem of minimizing GCramp over all start times
{sn}Nn=1 is NP-hard [13]. Even when all durations τn are equal
(or similarly all dn are equal), finding an optimal schedule is
still an NP-hard problem (i.e., the BIN PACKING problem).

B. Discussion : Greedy approach

Since the overall problem is NP-hard, one can consider
approximating its optimal solutions, e.g., using well-known
metaheuristics such as simulated annealing. Though we won’t
investigate how these techniques would perform, we will
give an incremental greedy solution that may get trapped in
suboptimal local extrema.

We consider inserting jobs in a given order i1, . . . , iN and
denote by λk the load profile after jobs i1, . . . , ik have been
scheduled (with λ0 ≡ 0). Given λk, we want to schedule the
(k + 1)

th job so as to minimize the global cost incurred by
λk+1. Let Ik+1(s) := [s; s + τk+1] ∩ {t|λk(t) > L − dk+1},
λ+k = (λk−L)+ and λ−k = (L−λk)+. Then, one can show that
minimal GCramp for λk+1 is achieved when sk+1 minimizes:∫

Ik+1(sk+1)

[
(dk+1 − λ−k )

2 + 2dk+1λ
+
k + L(dk+1 − λ−k )

]
C. Distributed Action

Now we assume consumers have complete knowledge of
each others demands and play a game where they seek to
minimize the global cost GCramp. We provide an effective
strategy for players, derived in a pessimistic setting, which
turns out to be efficient at peak shaving and yields very good
results in practice (see section VI).

Here “complete” knowledge means players will either com-
municate their demand profiles or make inferences about
others demands based on repeated observations (e.g., night
after night of [0, T ] = [12 AM–6 AM] activity).

To incent customers to minimize GCramp (which correspond
to the actual cost of supplying their demand, or an upper

1Note that the data rates associated with this framework are so small (at
most a few kilobits/second per user) that communication and security overhead
is negligible.



bound of it), utilities may charge customer i with an amount
bi proportional to both the energy he consumed and the global
cost, e.g.,

bi :=
diτi∑
j djτj

× GCramp = C0diτi ×
GCramp

GC0
, (4)

where C0diτi is the minimal possible cost for scheduling
player i’s job.

In what follows, we denote by Fi the Cumulative Dis-
tribution Function (CDF) of the start time of player i,
Fi(t) := P[si ≤ t], and fi the density of dFi. We also define
φi(t) := Fi(t) − Fi(t − τi) which is the probability of job i
being active at time t.

Considering equation (2), we can upper bound GCramp as
follows:

GCramp ≤ GC0 +

∫ T

0

λ(t)2dt =: GCbound.

Let us consider a game where users seek to minimize the
expected value of GCbound, which is the same as minimizing
E[
∫
λ2]. Since

∫
λ2 =

∫
(λ − µ)2 plus a constant, where µ

denotes the temporal mean of λ, this goal is closely related to
peak shaving.

For any user i, let us define:

Hi(t) :=
∑
j 6=i

dj (φj(t)− φj(t+ τi)) ,

which does not depend on Fi. We have:

E

[∫ T

0

λ(t)2dt

]
=

∑
i,j

didj

∫ T

0

φi(t)φj(t)dt

=
∑
i

di

∫ T

0

Fi(t)Hi(t)dt =:
∑
i

γi.

The game between customers goes like this: users play asyn-
chronously, and at his/her turn, player i updates Fi in order
to minimize γi ∝

∫
FiHi.

Claim 1. The optimal CDF F ∗i minimizing
∫
FiHi for any

given (right-continuous) function Hi is an indicator F ∗i (t) =
1{t≥si} for some si ∈ [0, T − τi].

To show this property, let us remark a few facts.

Lemma 1. For any CDF Fi, there exist a staircase CDF F̂i
such that

∫
F̂iHi ≤

∫
FiHi.

Proof: Since Hi is right continuous, one can take a
subdivision 0 = r0 < r1 < . . . < rn = T of [0, T ] such
that Hi is of constant sign on subintervals Ik := [rk, rk+1[,
but changes sign between consecutive subintervals. Now define
F̂i on Ik as maxIk Fi if Hi is negative on Ik, and minIk Fi
otherwise (see Figure 1). This definition yields a new CDF
such that F̂i(t)Hi(t) ≤ Fi(t)Hi(t) for all t ∈ [0, T ].

Lemma 2. For any staircase CDF Fi, there exists a “one
step” CDF F ∗i such that

∫
F ∗i Hi ≤

∫
FiHi.

Proof: From the previous lemma, we can suppose without
loss of generality that Fi is a staircase CDF, so that Fi(t) =

Fig. 1. Staircase CDF optimization.

∑
k pk1{t≥rk} where

∑
k pk = 1. Thus,

∫
FiHi =

∑
k pkAk

with Ak :=
∫ T
rk
Hi(t)dt. This is just a convex combination of

real constants: if we denote by m the index of the minimum
Ak, si := rm and F ∗i (t) = 1{t≥si}, then

∫
F ∗i Hi = Am ≤∑

k pkAk ≤
∫
FiHi.

Hence, given Hi, there is an optimum F ∗i which is an
indicator F ∗i (t) := 1{t≥si}, where we know how to compute
si from Hi. Furthermore,∫

F ∗i Hi =

∫ si+τi

si

∑
j 6=i

djφj(t)dt,

which means the best move for player i is to schedule his
job deterministically at a time minimizing the (weighted) sum
of the probabilities of other jobs being active during his span
[si, si + τi].

This game seeks to minimize
∑
i γi by optimizing each γi

iteratively. It does not necessarily lead to the optimal solution
since re-scheduling job i may increase any γj for j 6= i, yet
we will see in section VI that it achieves its goal pretty well
in practice.

IV. PARTIAL KNOWLEDGE SETTING

In this section, we suppose players do not share information
about each others demands (for privacy reasons), but can
still make inferences through the instantaneous total load λ(t)
which is assumed actively communicated by the network.2

We consider an iterative decision process where, at time t,
user i decides (stochastically) whether to schedule his job or
not according to:
• his own parameters (di, τi),
• the past load profile {λ(t′), t′ < t}.

Concerning the load profile, we will focus on protocols where
the decision at time t only depends on the last know value of
the load λ(t−).

In what follows, we suppose that all jobs’ durations τn are
integer multiples of a unit time slot duration τ0 dividing T , so
that we can without loss of generality schedule jobs at times
multiples of τ0.

2We hence suppose that the utility is able to measure the effective state of
the grid and compute its load, which is not a minor hypothesis since recent
work [14] highlighted flaws in the state estimation techniques currently in
use.



A. ALOHA Strategy

The first strategy we propose is inspired by the slotted
ALOHA protocol [15]. At each time step, if his job has not
been scheduled yet, player i applies the following decision
procedure, which is parametrized by 0 < qi < pi < 1:

Algorithm IV.1 ALOHA decision procedure for player i
if t = T − τi (last possible scheduling slot) then
si ← t

else if λ(t−) + di ≤ L then
si ← t with probability pi

else
si ← t with probability qi

end if

Parameters pi should be low enough to avoid customers
synchronization, but high enough to allow most of the jobs to
induce no overage (keep λ < L).

When L is far below the mean load 1
T

∫
λ and all qi = 0,

the policy may keep too many jobs for the end, resulting in
peak loads at times close to T . Suitable values qi > 0 help
deal with this unwanted behavior.

B. Decision Density

A way to generalize this approach is to set up a scheduling
decision function for player i, gi(t) := g(λ(t), t, di, τi) ∈
[0, 1], where we assume the form of g is the same for all
players. Player i will therefore start at time t with probability
gi(t), decisions being independently made by all players.

For example, under this formulation, the decision density
for the ALOHA strategy is

g(λ, t, d, τ) := mux(t = T − τ, 1,mux(λ+ d ≤ L, pi, qi)),

where mux is the multiplexer function (mux(c, a1, a2) := a1
is c is true, and a2 otherwise). Reasonable assumptions about
g include:
• g increases with t;
• g → 1 when t→ T − τi;
• g < 1 when λ� L and t� T ; and
• g decreases with λ when λ > L.

With this in mind, we devised a new stochastic strategy
improving the ALOHA one.

C. Time/Slackness Strategy

One of the issue of the ALOHA strategy lies in the way it
discriminates jobs, since it focuses on the instantaneous load
di and only takes τi into account as t→ T − τi. To remediate
this shortcoming, we instead use the slackness σ defined when
λ < L and t < T − τ as:

σ(λ, t, d, τ) :=
dτ

(L− λ)(T − τ − t)
,

i.e., the ratio of the job’s overall energy consumption dτ and
the residual energy (L − λ)(T − τ − t) which corresponds
to the energy available with no overage under the assumption
that λ stays constant.

Now define g1(t) :=
(

t
T−τ

)α
. We propose to use the

simple density:

g(t, σ) = g1(t) + (1− g1(t))(β + γ · 1{0<σ<1}), (5)

so that just three parameters α, β and γ are in play. We call
the associated policy Time/Slackness, since it consists of a
BERNOULLI trial over g1(t) (ensuring the task is scheduled in
time), followed by another trial based on slackness, giving a
boost to the tasks for which there is enough residual energy.

Experimental results (see section VI) confirm this new
strategy yields better results than the ALOHA one, suggesting
energy is a better discrimination criterion than power.

V. BLIND SETTING

In this section, we survey a power-grid setting where there
is no communication layer between users. We also assume
all customers have the same demand profile (d, τ) and decide
to schedule their jobs at times multiples of τ (where T =
Kτ , K ∈ N) in a discrete time setting. We show that, in this
simplified setting, the best strategy for customers is to choose
their time slot uniformly at random.

Note that, here, broadcasting λ(kτ−) to the users would be
useless since this value is independent from λ(kτ).

Claim 2. The expected overall cost E[GC] is minimized when
(independent) start times are chosen uniformly distributed on
{kτ, k ∈ J0,K − 1K}.

Proof: Let pk be the Probability Mass Function (PMF) of
start-time s, common to all customers by symmetry. Limited
information implies independent scheduling decisions. There-
fore, the number of customers that select a given service epoch
is binomially distributed, i.e.,

P[λ(kτ) = nd] =

(
N

n

)
pnk (1− pk)N−n.

So, the overall expected cost
N∑
n=1

K−1∑
k=0

τndCL(nd)

(
N

n

)
pnk (1− pk)N−n =:

K∑
k=1

G(pk)

is to be minimized subject to the PMF p in the K-dimensional
simplex

∑K−1
k=0 pk = 1. Note that G, defined by swapping

order of summation, does not depend on the time-index k.
The Lagrangian for this problem is

K−1∑
k=0

G(pk) + c

(
1−

K−1∑
k=0

pk

)
,

with Lagrange multipier c, leading to the first-order necessary
conditions whose solution is

∀k ∈ J0,K − 1K, pk = (G′)−1(c),

i.e., pk is constant in k. (One can check that G′ is indeed
bijective.) Condition

∑K
k=1 pk = 1 therefore yields pk = 1/K,

so p is the PMF of a uniform distribution.
Recall that the conditions in which this uniform policy is

optimal are different from the other settings we studied: we



are here in a power-grid with no communication layer. We use
this policy only as a reference in our numerical experiments.

VI. NUMERICAL EXPERIMENTS

Experiments on DR scenarios can involve embedding users
in one of the IEEE test systems used in [14] (which can be
found in MATPOWER, a MATLAB package) with a shared-
resources game between them, taking into account on the
characteristics of the buses. For our experiments we chose the
simpler model, used in [7], of a local distribution network with
one energy source and several load subscribers (see Figure 2).
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Fig. 2. Setup of the test system.

We implemented a simulator in PYTHON working on a six
hours time frame divided into a customizable number of time
slots. It implements the different policies we encountered:
• Uniform: the best solution in the blind setting;
• ALOHA I: the ALOHA strategy where all users share the

same probabilities pi = p and qi = 0;
• ALOHA II: same strategy with ∀i, pi = p > qi = q > 0;
• Time/Slackness: the policy from section IV with decision

density (5) parametrized by α, β and γ;
• Game: the game from section III.

Our simulator is open-source and available online at [16].
We set-up different test settings and ensured criterion (3)

was met in each of them. For the Game policy, optimal
behavior was reached for an average of 3 moves per player,
which suggests this strategy converges quickly.

For the ALOHA and Time/Slackness policies, we manually
chose good values of the parameters for each setting. In fact,
all settings turned out to share approximately the same efficient
values of the parameters, i.e.,
• ALOHA I: p ≈ 0.2
• ALOHA II: p ≈ 0.145 and q ≈ 0.0175
• Time/Slackness: α ≈ 45, β ≈ 0.006 and γ ≈ 0.12.

This value of α implies time considerations are neglected
while t < 90% T . In the last decile however, g1(t) yields
more balanced schedules than a simple time-over check.

A. Residential Setting

The first scenario we considered is the case where all jobs
have the same duration τ and instantaneous cost d, i.e., a
residential area where houses have the same first-order load
profile. For 1,000 users with a demand profile of 20 kW for
1 hour, the system’s nominal load was set to L = 3, 000
kW, while we chose C0 = 2.8 × 10−6 $/kW/s (which
is the first step in the model used at BC Hydro [8]) and
C1 = 2.8× 10−8 $/kW2/s.
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  ALOHA-like I

residential.in (1000 users)

Fig. 3. Average global costs in the residential setting.

We focused on the global cost GCramp experienced by the
utility for each policy. Results averaged over several runs are
shown in Figure 3 with confidence bars.

The best load profile for this configuration is a flat one. The
Game strategy achieves a nearly optimal result, which comes
from the fact that it is the only policy with enough information
to actively seek a flat profile. Stochastic heuristics just try to
approximate it (again with only limited information) while the
uniform one tends to underload the borders (times close to 0
and T ). We also see that, in this setting where all customers
are identical, the uniform policy yields better schedules than
the heuristics from section IV.

B. Heterogeneous Setting

We also investigated the case where a lot of different profiles
coexist on the network, including:

• a few “big” users demanding 100–400 kW for 2-5 hours,
• about 100 users demanding 10–50 kW for 1-3 hours,
• about 100 users demanding 10 kW for about 1 hour,
• a few “peak” users demanding > 800 kW for < 30 min.

System-wide parameters were set to L = 1000 kW, C0 =
2.8× 10−6 $/kW/s and C1 = 2.8× 10−7 $/kW2/s. Results
are show in Figure 4.

Again, the Game policy achieves the best behavior, but this
time our heuristics perform better than the uniform strategy.
Sample load profiles (which we won’t produce here but are
available online at [16]) indicate that:

• the Uniform strategy tends to make expensive mistakes,
scheduling “big” players when the grid is already stressed
and unloading the borders;

• ALOHA I achieves a rather flat load, but is likely to keep
big players for the end, yielding a final peak;

• ALOHA II partially avoids this behaviour when q is
high enough, but does not discriminate players in case
of overage;
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Fig. 4. Average global costs in the heterogeneous setting.

• Time/Slackness is the best of the three heuristics and
achieves a good compromise in scheduling both small
and big users at each time step.

C. Peak-to-average ratio

We mentioned that the Game strategy is effective at peak
shaving. We may illustrate this with figures, comparing its
peak-to-average ratio (PAR) with the one of the Uniform
strategy, averaged over several runs.

Game Uniform Improvement
Domestic 1.02 1.29 20.9%

Heterogeneous 1.38 2.28 39.5%

TABLE I
PAR BENEFITS OF THE GAME POLICY.

VII. CONCLUSIONS

In this paper, we studied Demand Response problematics on
multiple architectures for the dynamic pricing scheme (1). We
saw that the general problem of finding an optimal schedule
under this cost is NP-hard. We then surveyed different strate-
gies depending on the degree of information sharing in the
network.

When all demand information is shared, we proposed a
game played by customers yielding good results in practice.
When only the instantaneous load is known, we provided
distributed strategies using the instantaneous load to reduce
their costs. To experimentally evaluate all these policies, we
developed our own open-source simulator which we released
at [16]. Simulation results confirm that all these strategies
perform better than when consumers do not communicate,
especially the distributed game which significantly reduces
the global cost and PAR, given the required information is
available.

VIII. FUTURE WORK

In our jobs model, we chose a first-order approximation
of the aggregate profile. Further study could take into ac-
count several devices per user with interruptible, non-constant
load profiles and power consumptions ranging from 0.01 kW
(light bulb) to 1 kW (dishwasher, cloths dryer). Furthermore,
multiple hierarchy levels can be considered: devices, users,
substations (trying to optimize their own costs, providing
incentives to the customers).

Also, in cost (1) we took a threshold L constant within the
timeframe of study, which does not encompass the integration
of renewable energy sources that may deliver additional power
during short time intervals. It would thus be interesting to
survey how heuristics perform with a time-varying threshold
L(t).

Finally, though the smart grid marketplace information
flow is small in volume (and can therefore be “strongly”
authenticated with low cost), security problems such as false
data injection attacks [14] arise, which warrant additional
consideration.
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