Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities, Chemical Reviews, vol.116, issue.18, pp.10346-10413, 2016. ,
Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles, Chemical Reviews, vol.117, issue.12, pp.8208-8271, 2017. ,
The Story of a Monodisperse Gold Nanoparticle: Au25L18, Accounts of Chemical Research, vol.43, issue.9, pp.1289-1296, 2010. ,
Correlating the Crystal Structure of A Thiol-Protected Au25Cluster and Optical Properties, Journal of the American Chemical Society, vol.130, issue.18, pp.5883-5885, 2008. ,
Crystal Structure of the Gold Nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18] ,
Crystal Structure of the Gold Nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18], Journal of the American Chemical Society, vol.130, issue.12, pp.3754-3755, 2008. ,
Origin of Discrete Optical Absorption Spectra of M25(SH)18? Nanoparticles (M = Au, Ag), The Journal of Physical Chemistry C, vol.112, issue.50, pp.19797-19800, 2008. ,
On the Structure of Thiolate-Protected Au25, Journal of the American Chemical Society, vol.130, issue.12, pp.3756-3757, 2008. ,
On the Ligand?s Role in the Fluorescence of Gold Nanoclusters, Nano Letters, vol.10, issue.7, pp.2568-2573, 2010. ,
Chirality in Thiolate-Protected Gold Clusters, Accounts of Chemical Research, vol.47, issue.4, pp.1318-1326, 2014. ,
Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field, Progress in Natural Science: Materials International, vol.26, issue.5, pp.428-439, 2016. ,
Jahn?Teller effects in Au25(SR)18, Chemical Science, vol.7, issue.3, pp.1882-1890, 2016. ,
Electrochemical Characterization of Water-Soluble Au25 Nanoclusters Enabled by Phase-Transfer Reaction, The Journal of Physical Chemistry Letters, vol.3, issue.17, pp.2476-2481, 2012. ,
Electrochemistry of Molecule-like Au25Nanoclusters Protected by Hexanethiolate, The Journal of Physical Chemistry C, vol.113, issue.20, pp.8756-8761, 2009. ,
Au25(SR)18: the captain of the great nanocluster ship, Nanoscale, vol.10, issue.23, pp.10758-10834, 2018. ,
Computational Evaluation of Optical Nonlinearities: Quantum Chemical Approaches, Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials, pp.29-38, 2017. ,
Atomically precise clusters of gold and silver: A new class of nonlinear optical nanomaterials, Frontier Research Today, vol.1, p.1001, 2018. ,
URL : https://hal.archives-ouvertes.fr/hal-02980242
Non-linear optical properties of gold quantum clusters. The smaller the better, Nanoscale, vol.6, issue.22, pp.13572-13578, 2014. ,
URL : https://hal.archives-ouvertes.fr/hal-02309830
Symmetry breaking in ligand-protected gold clusters probed by nonlinear optics, Nanoscale, vol.8, issue.24, pp.12123-12127, 2016. ,
Role of sterics in phosphine-ligated gold clusters, Physical Chemistry Chemical Physics, vol.21, issue.4, pp.1689-1699, 2019. ,
Tuning the Magic Size of Atomically Precise Gold Nanoclusters via Isomeric Methylbenzenethiols, Nano Letters, vol.15, issue.5, pp.3603-3609, 2015. ,
Structure Determination of a Water-Soluble 144-Gold Atom Particle at Atomic Resolution by Aberration-Corrected Electron Microscopy, ACS Nano, vol.11, issue.12, pp.11866-11871, 2017. ,
Dynamic Stabilization of the Ligand?Metal Interface in Atomically Precise Gold Nanoclusters Au68 and Au144 Protected by meta-Mercaptobenzoic Acid, ACS Nano, vol.11, issue.12, pp.11872-11879, 2017. ,
The isomeric effect of mercaptobenzoic acids on the preparation and fluorescence properties of copper nanoclusters, Chemical Communications, vol.51, issue.60, pp.11983-11986, 2015. ,
Kinetic Control and Thermodynamic Selection in the Synthesis of Atomically Precise Gold Nanoclusters, Journal of the American Chemical Society, vol.133, issue.25, pp.9670-9673, 2011. ,
Ultraviolet Photodissociation of Selected Gold Clusters: Ultraefficient Unstapling and Ligand Stripping of Au25(pMBA)18 and Au36(pMBA)24, J. Phys. Chem. Lett, vol.8, pp.1283-1289 ,
Application of Mass Spectrometry in the Synthesis and Characterization of Metal Nanoclusters, Analytical Chemistry, vol.87, issue.21, pp.10659-10667, 2015. ,
Coupling of HPLC with Electrospray Ionization Mass Spectrometry for Studying the Aging of Ultrasmall Multifunctional Gadolinium-Based Silica Nanoparticles, Analytical Chemistry, vol.85, issue.21, pp.10440-10447, 2013. ,
URL : https://hal.archives-ouvertes.fr/hal-00914866
Atomically precise metal nanoclusters: stable sizes and optical properties, Nanoscale, vol.7, issue.5, pp.1549-1565, 2015. ,
Quantum Sized Gold Nanoclusters with Atomic Precision, Accounts of Chemical Research, vol.45, issue.9, pp.1470-1479, 2012. ,
Isomerism in Monolayer Protected Silver Cluster Ions: An Ion Mobility-Mass Spectrometry Approach, The Journal of Physical Chemistry C, vol.121, issue.24, pp.13421-13427, 2017. ,
Possible isomers in ligand protected Ag11cluster ions identified by ion mobility mass spectrometry and fragmented by surface induced dissociation, Chemical Communications, vol.52, issue.19, pp.3805-3808, 2016. ,
Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry, Chemical Communications, vol.53, issue.53, pp.7389-7392, 2017. ,
Size Characterization of Glutathione-Protected Gold Nanoclusters in the Solid, Liquid and Gas Phases, The Journal of Physical Chemistry C, vol.121, issue.49, pp.27733-27740, 2017. ,
URL : https://hal.archives-ouvertes.fr/hal-01679519
Structural insights into glutathione-protected gold Au10?12(SG)10?12 nanoclusters revealed by ion mobility mass spectrometry, The European Physical Journal D, vol.72, issue.8, p.144, 2018. ,
URL : https://hal.archives-ouvertes.fr/hal-01900250
Conformational Dynamics in Ion Mobility Data, Analytical Chemistry, vol.89, issue.7, pp.4230-4237, 2017. ,
URL : https://hal.archives-ouvertes.fr/hal-01637719
High-resolution ion mobility measurements of indium clusters: electron spill-out in metal cluster anions and cations, Chemical Physics Letters, vol.304, issue.1-2, pp.19-22, 1999. ,
Collision-Induced Dissociation of Undecagold Clusters Protected by Mixed Ligands [Au11(PPh3)8X2]+ (X = Cl, C?CPh), ACS Omega, vol.3, issue.6, pp.6237-6242, 2018. ,
Understanding ligand effects in gold clusters using mass spectrometry, The Analyst, vol.141, issue.12, pp.3573-3589, 2016. ,
Collision-Induced Dissociation of Monolayer Protected Clusters Au144 and Au130 in an Electrospray Time-of-Flight Mass Spectrometer, The Journal of Physical Chemistry A, vol.118, issue.45, pp.10679-10687, 2014. ,
Glutathione capped gold AuN(SG)M clusters studied by isotope-resolved mass spectrometry, International Journal of Mass Spectrometry, vol.335, pp.1-6, 2013. ,
URL : https://hal.archives-ouvertes.fr/hal-02979581
Anion photoelectron spectroscopy of free [Au25(SC12H25)18]?, Nanoscale, vol.9, issue.36, pp.13409-13412, 2017. ,
Probing electrostatic interactions and structural changes in highly charged protein polyanions by conformer-selective photoelectron spectroscopy, Physical Chemistry Chemical Physics, vol.13, issue.34, p.15554, 2011. ,
URL : https://hal.archives-ouvertes.fr/hal-02979321
Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)?Thiolate Complexes and Thiolate-Protected Gold Nanocrystals, Journal of the American Chemical Society, vol.127, issue.14, pp.5261-5270, 2005. ,
Au10(SG)10: A Chiral Gold Catenane Nanocluster with Zero Confined Electrons. Optical Properties and First-Principles Theoretical Analysis, The Journal of Physical Chemistry Letters, vol.8, issue.9, pp.1979-1985, 2017. ,
URL : https://hal.archives-ouvertes.fr/hal-01889555
Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties, Progress in Natural Science: Materials International, vol.26, issue.5, pp.455-460, 2016. ,
URL : https://hal.archives-ouvertes.fr/hal-02289459
Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation, Nanoscale, vol.8, issue.5, pp.2892-2898, 2016. ,
URL : https://hal.archives-ouvertes.fr/hal-02289453
Theoretical design of new class of optical materials based on small noble metal nanocluster-biomolecule hybrids and its potential for medical applications, Adv. Phys, vol.2, pp.695-716, 2017. ,
Ligand-core NLO-phores: a combined experimental and theoretical approach to the two-photon absorption and two-photon excited emission properties of small-ligated silver nanoclusters, Nanoscale, vol.9, issue.3, pp.1221-1228, 2017. ,
URL : https://hal.archives-ouvertes.fr/hal-02317560
,
Isomeric Effect of Mercaptobenzoic Acids on the Synthesis, Stability, and Optical Properties of Au25(MBA)18 Nanoclusters, ACS Omega, vol.3, issue.11, pp.15635-15642, 2018. ,
URL : https://hal.archives-ouvertes.fr/hal-02108463