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Abstract

We prove that intersections and unions of independent random sets
in finite spaces achieve a form of Lipschitz continuity. More precisely,
given the distribution of a random set Ξ, the function mapping any
random set distribution to the distribution of its intersection (under
independence assumption) with Ξ is Lipschitz continuous with unit
Lipschitz constant if the space of random set distributions is endowed
with a metric defined as the Lk norm distance between inclusion func-
tionals also known as commonalities. Moreover, the function mapping
any random set distribution to the distribution of its union (under
independence assumption) with Ξ is Lipschitz continuous with unit
Lipschitz constant if the space of random set distributions is endowed
with a metric defined as the Lk norm distance between hitting func-
tionals also known as plausibilities.

Using the epistemic random set interpretation of belief functions,
we also discuss the ability of these distances to yield conflict measures.
All the proofs in this paper are derived in the framework of Dempster-
Shafer belief functions. Let alone the discussion on conflict measures,
it is straightforward to transcribe the proofs into the general (non
necessarily epistemic) random set terminology.

Keywords : random sets, Lipschitz continuity, belief functions, distance,
combination rules, information fusion, conflict, α-junctions.
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1 Introduction

When one is interested in a point-valued random variable but has access
to set-valued (imprecise) observations of this latter, Dempster [8] proposed
to use a probabilistic model relying on multi-valued mappings. This model
was further developed by Shafer [40] in a self-contained framework known
today as Dempster-Shafer theory, evidence theory or belief function theory.
In this framework, the uncertainty on the value of the random variable is
equivalently1 captured (among others) by set functions known as the belief,
plausibility and commonality functions. These functions evaluate respec-
tively how likely it is that the imprecise observations imply / are consistent
/ are implied by some event. In this paper, we focus on the case where these
events are disjunctions of elements of a finite and discrete space.

Besides, belief functions are also known to be formally equivalent to ran-
dom sets [32] and are interpretable as epistemic ones [3]. A random set is
a random element whose realizations are set-valued. The probability masses
governing the random set can also be uniquely characterized by set functions
that are capacities [28] (non additive measures). Some of these set functions
are:

• the containment functional that captures the probabilities that a given
set contains the random set,

• the hitting functional (or capacity functional) that captures the prob-
abilities that the random set intersects a given set,

• the inclusion functional that captures the probabilities that a given set
is included in the random set.

The above functions are the respective random set terminology for the belief,
plausibility and commonality functions.

In the deterministic setting, one can observe a form of consistency between
operations like union or intersection with set-distances in the sense that, for
some of these distances, if one intersects (resp. unites) the same set with two
other ones, say X1 and X2, then the obtained intersections (resp. unions)
are at least as close as X1 and X2 were before.

In this paper, we investigate if this observed consistency propagates to
some extent to the random setting. We prove that if one intersects (resp.

1These functions are in bijective correspondence [40].
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unites) the same random set with two other ones, say Ξ1 and Ξ2, then the
obtained random intersections (resp. unions) have distributions that are at
least as close as the distributions of Ξ1 and Ξ2 were before. These results are
dependent on the chosen metric for random set distributions. We examine
metrics that consist in Lk norm based distances between either hitting or
inclusion functionals. In addition, the results can be rephrased as Lipschitz
continuity (with a unit Lipschitz constant) for functions that map any ran-
dom set distribution to the distribution of its intersection (resp. union) with
a given fixed random set.

In the belief function framework, the closest related works are those of
Loudahi et al. [25, 26]. The authors proved that the consistency under study
holds between some belief function distances and combination operators that
yield the distribution of the intersection or union of independent random
sets. The results that we introduce in this paper involves distances that
are computationally more tractable than those introduced in [25, 26] but
also rely on independence assumptions. In the random set literature, many
results regarding unions of i.i.d. random sets and random set metrics are
available [30] but they do not address Lipschitz continuity. Also, we do not
require the examined random sets to be identically distributed.

Furthermore, building upon recent work from Pichon and Jousselme [35],
we also investigate if our results can be instrumental to span new degrees of
conflict. We prove that the consistency of a distance with the conjunctive
rule makes the corresponding conflict degree compliant with at least one re-
quirement discussed in Destercke and Burger [11]. However, we also show
that several distances relying on an Lk norm are not appropriate to yield a
degree of conflict as suggested in [35] when k is finite. These last develop-
ments focus on information fusion aspects of the belief function framework
only and do not generalize to non-epistemic random sets.

This article is organized as follows: section 2 gives necessary background
on the theory of belief functions and random sets. Section 3 is an overview
of distances between random set distributions and the sought Lipschitz con-
tinuity property is stated. Section 4 contains the main results of the paper,
i.e. Lipschitz continuity for the distribution of intersection and union of
independent random sets. Finally, in section 5, we make use of the afore-
mentioned results to investigate if the examined distances can yield relevant
degrees of conflict in the belief function framework. All the proofs of the
newly introduced results are given in the appendices.

Most of the paper is written using belief function terminology and usual
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notations in this framework but it can be transcribed to the random set
framework by merely switching the set function names as explained in the
first paragraphs of this introduction. Special care was paid to allow easy
readability for readers familiar with any of these two frameworks.

2 Belief functions and random sets

In this section, some mathematical notations for baseline belief function and
random set concepts are given. The reader is expected to be familiar with
one of these frameworks. More material on belief functions basics is found
for instance in [40, 7] and on random sets in [30, 31, 4].

Belief functions can be applied in the context of uncountable spaces [32,
43, 31, 10] but a majority of results were derived in the finite case and we
also make this assumption in this article.

2.1 Baseline definitions

A random set in a finite and discrete space Ω = {ωt}
n
t=1 is a random element

whose realizations are subsets of Ω. When one is interested in a point valued
variable but has access to set valued (imprecise) observations, one can try to
infer the distribution of an epistemic random set [29]. Belief functions are
in line with this epistemic interpretation. When one is interested in a set
valued variable and has access to corresponding samples, one can try to infer
the distribution of an ontic random set [28].

Both types of uncertainty lead to formally equivalent objects although
these objects need occasionally to be processed and understood in different
ways [3]. In the finite (and consequently countable) setting, the distribution
of a random set Ξi is a set function called mass function and is denoted by
mi. The power set 2Ω is the set of all subsets of Ω and it is the domain of
mass functions. For any A ∈ 2Ω, the cardinality of this set is denoted by |A|
and we thus have |Ω| = n. The cardinality of 2Ω is denoted by N = 2n. Mass
functions have [0, 1] as co-domain and they sum to one:

∑

A∈2Ω mi (A) = 1.
A focal element of a mass function mi is a set A ⊆ Ω such that mi(A) > 0.
A mass function having only one focal element A is called a categorical

mass function and is denoted by mA. A simple mass function is the
convex combination of mΩ with some categorical mass function mA.
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Several alternative set functions are commonly used as equivalent char-
acterizations of Ξi. The belief, plausibility and commonality functions
of a set A are defined as

beli(A) =
∑

E⊆A,E 6=∅

mi(E), (1)

pli(A) =
∑

E∩A 6=∅

mi(E), (2)

qi(A) =
∑

E⊇A

mi(E) (3)

and respectively represent how much likely it is that A contains / intersects /
is included in the underlying random set. In the random set literature, these
set functions are respectively referred to as the containment, hitting and
inclusion functionals. When the empty set has a positive mass, another
representation is provided by implicability functions bi. These functions
are closely related to belief and plausibility functions through the following
relations: ∀A ∈ 2Ω,

bi(A) = beli(A) +mi(∅), (4)

bi(A) = 1− pli (A
c) . (5)

Another useful concept is the negation (or complement) mi of a mass
function mi introduced by Dubois and Prade [14]. The function mi is such
that ∀A ⊆ Ω, mi(A) = mi(A

c) with Ac = Ω \ A. The authors also provide
a result that will be instrumental in the proof of proposition 4. This result
reads

bi (A
c) = qi (A) , ∀A ⊆ Ω, (6)

where bi denotes the implicability function in correspondence with mi.

2.2 Intersection, union and information fusion

Information fusion in the framework of belief functions is performed using
an operator mapping an arbitrary large set of input mass functions to a
single output mass function which summarizes all information contained in
the input ones. On top of this minimal requirement, the operator must also
follow a certain policy in the way that the information encoded in the input
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mass functions is processed to build the output one. There are two canonical
and dual such policies: conjunctivity and disjunctivity.

Suppose ⊑ denotes an informational partial order [46, 14, 9] for mass
functions in the sense that one writes m1 ⊑ m2 if m1 contains at least
as much (epistemic) information as m2. Following [13], a fusion operator is
conjunctive if its output is more informative than any input. The conjunctive
rule operator [44] denoted by ∩© is defined as follows

m1 ∩©m2 (E) =
∑

A,B⊆Ω
A∩B=E

m1 (A)m2 (B) , ∀E ⊆ Ω. (7)

The conjunctive rule is associative and commutative and the generalization
of the above expression to more than two input mass functions is immediate.
This rule is the unnormalized version of Dempster’s rule [8] and on the ran-
dom set side, it can be understood as the distribution of the intersection of
two independent2 random sets. Obviously, this operator is a generalization of
the set intersection as we have mA ∩©mB = mA∩B for any two subsets A and
B of Ω. For the sake of equation concision we adopt the following notation
m1∩2 = m1 ∩©m2. This combination is very simple to compute when dealing
with commonality functions:

q1∩2 (A) = q1 (A) q2 (A) , ∀A ⊆ Ω. (8)

It can be easily proved that the conjunctive rule is conjunctive. Consider
the informational partial order based on commonalities ⊑q which is defined
as

m1 ⊑q m2 ⇔ q1 (E) ≤ q2 (E) , ∀E ⊆ Ω. (9)

Since q1∩2 is the elementwise multiplication of q1 and q2, we obtain m1∩2 ⊑q

m1 and m1∩2 ⊑q m2.
When m2 = mE , i.e. m2 is categorical, the result of the conjunctive

combination between m1 andm2 is referred to as the conditioning ofm1 given
E because this operation is a generalization of probabilistic conditioning3

2There are several notions of independence for random sets [4, chapter 2]. In this paper,
we only consider the usual probabilistic notion, i.e. joint distributions factorizing as the
product of their marginals.

3If focal elements of m1 are singletons, i.e. the random set is point valued, then

Dempster’s conditioning coincides with Bayes rule: m1|E (A) = m1(A)
m1(E) .
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[40]. The mass function m1 ∩©mE is also denoted by m1|E . The following
property of the implicability function w.r.t. conditioning will be instrumental
in some proofs:

Lemma 1. For any mass function m1, any categorical mass function mE

and any subset A ⊆ Ω, we have

b1|E (A) = b1 ((E \ A)c) = b1 (E
c ∪A) . (10)

To the best of our knowledge, this property is not reported in the belief
function literature, we thus provide a proof in B.

As for disjunction, the output is required to be less informative than any
input and it is thus considered as an extremely conservative fusion policy.
The disjunctive rule operator [44] denoted by ∪© is defined as follows

m1 ∪©m2 (E) =
∑

A,B⊆Ω
A∪B=E

m1 (A)m2 (B) , ∀E ⊆ Ω. (11)

The disjunctive rule is also associative and commutative and it is a general-
ization of set union as we have mA ∪©mB = mA∪B for any two subsets A and
B of Ω. We denote by m1∪2 the result of the following combination: m1 ∪©m2.
On the random set side, m1∪2 is understood as the distribution of the union
of two independent random sets. The disjunctive combination is very simple
to compute when dealing with implicability functions:

b1∪2 (A) = b1 (A) b2 (A) , ∀A ⊆ Ω. (12)

The disjunctivity of this rule can be proved using the partial order based on
implicabilities ⊑b. This latter reads

m1 ⊑b m2 ⇔ b1 (E) ≥ b2 (E) , ∀E ⊆ Ω. (13)

Since b1∪2 is the elementwise multiplication of b1 and b2, we obtain the desired
conclusion.

The disjunctive rule is related to the conjunctive rule by the following De
Morgan relation [14]: for any mass functions m1 and m2

m1 ∩©m2 = m1 ∪©m2. (14)
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In K, we mention a more general family of combination rules for belief
functions which encompasses the conjunctive and disjunctive rules. These
rules are known as α-junctions [41]. Since α-junctions have a more limited
impact in the belief function literature than the conjunctive and disjunctive
rules, we chose not to mention them in the main body of this article. However,
the results that we prove in the next sections do propagate to α-junctions.
See K for the corresponding proofs.

2.3 The space of mass functions

Mass functions can be viewed as vectors belonging to the vector space R
N

with categorical mass functions as base vectors. Since mass functions sum to
one, the set of mass functions is the simplex M in that vector space whose
vertices are the base vectors {mA}A⊆Ω. This simplex is also called mass

space [5] and has finite Lebesgue measure but contains uncountably many
mass functions.

Embedding mass functions in a vector space is particularly useful when
computing either m1∩2 or m1∪2 because they can be obtained as the dot
product of some matrix with one of the input mass functions (seen as a
column vector) [42]. Each such matrix is in one-to-one correspondence with
the other mass function. The vector form of any set function will be denoted
using bold characters, for instance, the vector form of a mass function mi is
denoted by mi.

Let S1 denote the specialization matrix [14] in bijective correspondence
withm1. Each entry of S1 is given by S1(A,B) = m1|B (A). From a geometric
point of view [6], each column of S1 corresponds to the vertex of a polytope
P1, called the conditional subspace of m1. Any mass function m ∈ P1

is the result of the combination of m1 with another mass function using ∩©.
Most importantly, for any mass functions m1 and m2, we have

m1∩2 = S1 ·m2. (15)

Let G1 denote the generalization matrix in bijective correspondence
with m1. Each entry of G1 is given by G1(A,B) = m1∪B (A). For any mass
functions m1 and m2, we have

m1∪2 = G1 ·m2. (16)

8



There are also transfer matrices allowing to turn mass functions in com-
monality or implicability functions using a right-handed dot product. They
are presented in more details in K.

3 From mass function metrics to Lipschitz

continuity

In this section, we will first recall the definitions of some existing distances
between mass functions. We focus on (full) metrics and do not discuss dissim-
ilarities [45, 47] which have fewer baseline properties as compared to metrics.
The Lipschitz continuity property that we seek will then be stated and its
desirability will be justified by analyzing set-distances.

3.1 Vector-based distances

A distance, or metric, provides a positive real value assessing the discrepan-
cies between two elements. Let us first give a general definition of such an
application when the compared vectors are mass functions:

Definition 1. Given a domain Ω and its related mass space M, a mapping
d : M×M −→ [0, a] with a ∈ R

+ is a distance between two mass functions
m1 and m2 defined on Ω if the following properties hold:

• Symmetry : d(m1, m2) = d(m2, m1),

• Definiteness : d(m1, m2) = 0 ⇔ m1 = m2,

• Triangle inequality : d(m1, m2) ≤ d(m1, m3) + d(m3, m2).

If the mapping fails to possess some of the above properties, then it de-
grades into unnormalized distance, dissimilarity or pseudo-distance. Only
full metrics are able to provide a positive finite value that matches the intu-
itive notion of gap4 between elements of a given space.
If a 6= +∞, then the distance is bounded and if in addition a = 1, the distance
is normalized. Provided that a mass function distance d is bounded, this

4This term was used by Frechet [15] in his early works on metric spaces, i.e. spaces
endowed with a distance.
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distance can be normalized by dividing it with ρ = maxA,B∈2Ω d (mA, mB)
which is the diameter of M [26].

The most popular metric in the belief function literature is Jousselme
distance [17]. It is based on an inner product relying on a similarity matrix.
This distance is given by:

dJ(m1, m2) =

√

1

2
(m1 −m2)T ·D · (m1 −m2), (17)

where mi denotes the column vector version of mass function mi and D is
the Jaccard similarity matrix [16] between focal elements. Its components
are:

D(A,B) =

{

1 if A = B = ∅
|A∩B|
|A∪B|

otherwise
. (18)

Thanks to the matrix D, Jousselme distance takes into account the depen-
dencies between the base vectors of M. Consequently, the poset structure of
(

2Ω,⊑
)

has an impact on distance values, allowing a better match with the
user’s expectations.

Many other mass function distances are defined similarly by substituting
matrix D with another matrix evaluating the similarity between base vectors
in different ways [12, 5]. Experimental material in [18] shows that these
distances are highly correlated to dJ .

Observe that the aforementioned distances are the L2 norm of the differ-
ence of two vectors which are obtained by applying the same linear mapping
to each mass function under comparison. We can thus build other distances
by resorting to other norms. In particular, when the linear mapping maps a
mass function to its corresponding plausibility, commonality or implicability
function5, we obtain distances that will be instrumental in the sequel of this
paper. The formal definition of these distances follows.

Definition 2. For some family f ∈ {q, bel, pl, b} of set functions in bijective
correspondence with mass functions, an Lk norm based f-distance df,k is
the following mapping:

df,k : M×M → [0, 1] ,
(m1, m2) → 1

ρ
‖f1 − f2‖k .

5See [42] for the definition of this linear mappings.
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fi is the vector representation of the set function fi (in correspondence with
mi) and ρ is a normalization factor given by

ρ = max
A,B∈2Ω

‖fA − fB‖k .

For any vector f ∈ R
N , its Lk norm are given by:

‖f‖k =

(

∑

A⊆Ω

|f (A) |k

)
1
k

. (19)

Given relation (5), we see that dpl,k = db,k for any k. Consequently,
we do not further mention distances between implicability functions in the
sequel of this article. We end this subsection with a small result giving
closed form expressions for constant ρ for distances between plausibilities
and commonalities.

Lemma 2. For Lk norm based distance between commonality or plausibility
functions, we have

ρ =

{

(N − 1)1/k if k < ∞

1 if k = ∞
. (20)

Proof. (sketch) Given proposition 2 in [20], for any of the distances evoked
in the lemma, we have

max
A,B∈2Ω

d (mA, mB) = d (mΩ, m∅) . (21)

Finally, for f ∈ {q, pl}, we always have |fΩ (A) − f∅ (A) | = 1 if A 6= ∅ and
|fΩ (∅)− f∅ (∅) | = 0.

3.2 Matrix-based distances

Since specialization and generalization matrices are also in bijective corre-
spondence with mass functions, we can use the same recipe as in definition
2 to build new mass function distances. The only difference is that mass
functions are mapped to matrices and one must thus resort to matrix norms
instead of vector norms. Such distances were first introduced in [25, 26]. A
subset of these distances are defined as follows:
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Definition 3. The Lk norm based specialization distance dspe,k is the
following mapping:

dspe,k : M×M → [0, 1] ,
(m1, m2) → 1

ρ
‖S1 − S2‖k .

Si is the specialization matrix in correspondence with mi and ρ is a normal-
ization factor given by

ρ =

{

(2 (N − 1))1/k if k < ∞

1 if k = ∞

For any matrix F ∈ R
N , its Lk norm is given by:

‖F‖k =

(

∑

A,B⊆Ω

|F (A,B) |k

)
1
k

. (22)

It was proved in [26] that if we use generalization matrices in the same
way as the above definition, we obtain a distance that coincides with the
specialization distance.

Other matrix norms were investigated in [25, 26], i.e. operator norms.
These norms lead to mass function distances that have fewer desirable prop-
erties6 as compared to Lk matrix norm based ones. They are thus not men-
tioned in this article.

3.3 Union, intersection and set-distances

There are two main types of metrics between sets [22]: those accounting for
how many elements are shared by the subsets and those that also account for
the number of elements that they do not share. Examples of each category
are the following:

• the Jaccard distance

djac (A,B) =

{

0 if A = B = ∅

1−D (A,B) = |A∆B|
|A∪B|

otherwise
,

6These distances are not consistent with informational partial orders that generalize
set inclusion. See [20] for a definition of the consistency of mass function distances with
partial orders.
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• the (normalized) Hamming set distance dham (A,B) = |A∆B|
n

,

where ∆ denotes the set symmetric difference.
The Jaccard distance belongs to the first type of metric while the Ham-

ming distance belongs to the second one. The following example illustrates
their main difference.

Example 1. In this example, we replace subsets by their binary representa-
tions, i.e. A = 0011 means that n = 4 and the elements of A are the third
and fourth elements of Ω. We have

djac (0011, 0110) =
2

3
and dham (0011, 0110) =

2

4
, (23)

while djac (00011, 00110) =
2

3
and dham (00011, 00110) =

2

5
. (24)

The hamming distance decreases as a fifth element is contained in Ω and
thus this distance depends on elements that the subset do not share.

We can wonder how these distances interact with set operations like in-
tersection and union. Actually, the nature of these interactions are highly
dependent on how one wishes to perform information fusion using either
intersections or unions:

• Suppose subsets represent a collection of candidate contents that a
classifier must assign to an input image. If we want to evaluate if two
images have similar contents, we can use a set distance between their
imprecise tags. Suppose imagea is tagged as {cat or dog} and imageb is
tagged as {dog or bike}. If we learn from a second classifier that both
images contain pictures of an animal, then we deduce that the image
contents are more likely to be closer after inserting this information.
More formally, if one intersects both A and B with a third party subset
C, the result of these intersections cannot be more distant than A and
B were initially, which reads

(a) d (A ∩ C,B ∩ C) ≤ d (A,B) .

• Suppose subsets are lists of attributes of some streaming video service
users. Suppose that it is known that usera likes action movies, is a
male and lives in the US. Suppose userb likes comedies, is a male and
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lives in the UK. Suppose we learn that both of them also like science
fiction movies, then we deduce that these users have closer profiles than
previously thought. More formally, if one unites both A and B with a
third party subset C, the result of these unions cannot be more distant
than A and B were initially, which reads

(b) d (A ∪ C,B ∪ C) ≤ d (A,B) .

Observe that in both of these examples, one adopts a conjunctive informa-
tion fusion policy in the sense that aggregation results are more informative
than each input. The conjunctive/disjunctive nature of an operator (like
intersection or union) depends on the type of underlying uncertainty. What
these examples are meant to highlight is that, should you intend to combine
the informative content of subsets using either intersections or unions, then
a set distance should comply to either (a) or (b) in order to translate in the
numerical distance values that informative contents are more similar after
fusion.

It can be proved that the Hamming set distance verifies (a) and (b) while
the Jaccard distance verifies (b) only, c.f. A for more details. From the
applicative contexts of the above examples, we see that the desirability of
property (a) or (b) depends on the information fusion operator. Outside the
scope of information fusion, we may not require any of these properties for
a set metric. When one intends to perform information fusion with random
sets, it makes sense to wonder if some mass function distances can general-
ize these properties with respect to information fusion operators defined for
them.

3.4 Union, intersection and random set distribution

distances

One way to generalize the properties (a) or (b) to random sets is stated by
the following property:

Definition 4. Let ∗ be a combination operator and d a mass function dis-
tance. d is said to be consistent with respect to ∗ if any of the following
conditions is verified:

(i) for any mass functions m1, m2 and m on Ω:

d (m1 ∗m,m2 ∗m) ≤ d (m1, m2) . (25)
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(ii) for any mass function m, the mapping Fm : M −→ M of the form

Fm (m0) = m0 ∗m (26)

is Lipschitz continuous with 1 as Lipschitz constant.

The equivalence between the two conditions follows from the very defini-
tion of Lipschitz continuity with 1 as Lipschitz constant. Indeed, for mapping
Fm to qualify as such, it means that we have

d (Fm (m1) , Fm (m2)) ≤ d (m1, m2)

for any pair of mass functions (m1, m2). In the remainder of this article, we
will refer to this property either as consistency property between an operator
and distance or, by small abuse of language, as 1-Lipschitz continuity of
an operator w.r.t. to a distance.

Under this property, repeated combinations with a given mass function m

cannot pull away any pair of mass functions. Such mappings are also called
non expansive or short maps. Lipschitz continuity is stronger than uniform
continuity. In particular, it implies a form of regularity for the corresponding
combination mechanism in the sense that the norm of its gradient is bounded
by 1 meaning that the combined mass function does not change very fast or
wiggle in the vicinity of functions m0 or m.

From an informative content standpoint, this property also has an impact.
Suppose a mass function m is separable7, i.e. the combination under rule ∗ of
elementary pieces of information embodied by simple mass functions yields
function m. Using a consistent distance w.r.t. ∗, mass functions are all the
closer as their decompositions involve identical elementary components.

Proving that a fusion operator achieves Lipschitz continuity is not triv-
ial because M is not finite but instead a compact subset of an uncountable
space. In [25], Loudahi et al. established the consistency of the L1 and L∞

based specialization distances w.r.t. the conjunctive and disjunctive rules.
Numerical experiments also show that the L2 based specialization distance is
not consistent w.r.t. the conjunctive or disjunctive rule in the sense of defini-
tion 4. The experiments also show that Jousselme distance is not consistent

7Shafer [40] introduced this terminology for decompositions w.r.t. Dempster’s rule but
we understand it in a more general perspective here by considering decompositions w.r.t.
some arbitrary rule ∗.
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w.r.t. the conjunctive rule. Its consistency with the disjunctive rule remains
undetermined.

Observe that we compare random sets only in distribution here. One
could think of other generalizations of properties (a) or (b) in probability or
in an almost sure fashion.

4 Lipschitz continuity results

In this section, we provide new Lipschitz continuity results of Lk norm based
distances between commonality or plausibility functions with the conjunctive
and disjunctive rules.

4.1 Main results on Lipschitz continuity for the con-

junctive rule

Proposition 1. For 1 ≤ k ≤ ∞, ∩© is 1-Lipschitz continuous w.r.t. the Lk

norm based q-distance dq,k.

See C for proof.

Proposition 2. ∩© is 1-Lipschitz continuous w.r.t. the L∞ norm based pl-
distance dpl,∞.

See D for proof.
As compared to previous Lipschitz continuity results [25, 26], specializa-

tion distances have a greater time complexity as compared to commonality
ones. Indeed, although the construction of specialization distances can be
sped up [24], the time complexity for the specialization distance is quadratic
in N . More precisely, the time complexity to build a specialization matrix is

O
(

N
log(3)
log(2)

)

≈ O (N1.58). However, computing the norm of such a matrix has

time complexity O (N2). The time complexity to compute a commonality
function [19] is O (N log (N)) while that of computing the norm of common-
ality is O (N). Given relations (5) and (6), the time complexity to compute
a plausibility function is identical to that of commonality ones. Moreover,
the memory complexity is obviously reduced as well.
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4.2 Lipschitz continuity for the conjunctive rule: nu-

merical experiments and counter-examples

This subsection contains experiments illustrating the (in)consistency of sev-
eral mass function distances with respect to the conjunctive rule. We gener-
ate randomly [2] 1e4 triplets of simple mass functions and check how many
times inequality (25) is verified (when ∗ = ∩©) for several distances. The
corresponding success rates are reported in Table 1.

Table 1: Consistency rates for several mass function distances w.r.t. ∩©

Distance dJ dq,1 dq,2 dq,∞ dpl,1 dpl,2 dpl,∞ dspe

Consistency rate 86.42% 100% 100% 100% 38.22% 63.60% 100% 100%

The results are compliant with proposition 1 and 2 as all commonality
distances and dpl,∞ achieve 100% of success. The results also show that
Jousselme distance and L1 or L2 norm based distances between plausibilities
are not consistent with ∩©. The rates also show that the circumstances in
which Lipschitz continuity does not hold for these distances are not rare
events.

To get a better insight as to why dpl,k is not consistent with ∩© when k is
finite, we provide the following counter-example:

Example 2. Let Ω = {a, b, c}. Supposem1 =
1
2
m{a,b}+

1
2
mΩ, m2 =

1
2
m{a,c}+

1
2
mΩ and m3 = m{b}. By conjunctive combination, we obtain

m1 ∩©m3 = m{b}, (27)

and m2 ∩©m3 =
1

2
m{b} +

1

2
m∅. (28)

The plausibilities are

∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω
pl1 0 1 1 1 1

2
1 1 1

pl2 0 1 1
2

1 1 1 1 1
pl1∩3 0 0 1 1 0 0 1 1
pl2∩3 0 0 1

2
1
2

0 0 1
2

1
2
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We see that

dpl,k (m1, m2) =
1

ρ

(

2

(

1

2

)k
)1/k

(29)

while dpl,k (m1 ∩©m3, m2 ∩©m3) =
1

ρ

(

4

(

1

2

)k
)1/k

. (30)

This counter-example tends to show that the inconsistency of these distances
lies (at least partially) in the way that the mass of the empty set is assigned
by the conjunctive rule.

4.3 Main results on Lipschitz continuity for the dis-

junctive rule

Proposition 3. For 1 ≤ k ≤ ∞, ∪© is 1-Lipschitz continuous w.r.t. the Lk

norm based pl-distance dpl,k.

See E for proof.

Proposition 4. ∪© is 1-Lipschitz continuous w.r.t the L∞ norm based q-
distance dq,∞.

See F for proof.
The same type of arguments outlining the added value of our new Lip-

schitz continuity results in the conjunctive case also hold in the disjunctive
one. The distances between plausibilities or commonalities have a smaller
time and memory complexities as compared to the specialization distances.
It must be noted that dspe,1, dspe,∞, dq,∞ and dpl,∞ are the only distances that
are reported to be consistent with both the conjunctive and disjunctive rules.
As the numerical experiments presented in the next paragraph will show, Lk

norm based distances between commonalities are not consistent with ∪© when
k is finite. The counter-example presented in 4.2 proves that Lk norm based
distances between plausibilities are not consistent with ∩© when k is finite.

4.4 Lipschitz continuity for the disjunctive rule: nu-

merical experiments and counter-examples

This subsection contains experiments illustrating the (in)consistency of sev-
eral mass function distances with respect to the disjunctive rule. We gener-
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ate randomly [2] 1e4 triplets of simple mass functions and check how many
times inequality (25) is verified (when ∗ = ∪©) for several distances. The
corresponding success rates are reported in Table 2.

Table 2: Consistency rates for several mass function distances w.r.t. ∪©

Distance dJ dq,1 dq,2 dq,∞ dpl,1 dpl,2 dpl,∞ dspe

Consistency rate 100% 94.76% 94.09% 100% 100% 100% 100% 100%

The results are compliant with proposition 3 and 4 as all plausibility
distances and dq,∞ achieve 100% of success. The results also show that L1

or L2 norm based distances between commonalities are not consistent with
∪©. The consistency of Jousselme distance can be conjectured. This distance
also achieves 100% of success if one draws random mass functions and not
just random simple mass functions.

To get a better insight as to why dq,k is not consistent with ∪© when k is
finite, we provide the following counter-example:

Example 3. Let Ω = {a, b, c}. Suppose m1 = m{a}, m2 = m{a,c} and
m3 = m{b}. By disjunctive combination, we obtain

m1 ∪©m3 = m{a,b}, (31)

and m2 ∪©m3 = mΩ. (32)

The commonalities are

∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω
q1 1 1 0 0 0 0 0 0
q2 1 1 0 0 1 1 0 0
q1∪3 1 1 1 1 0 0 0 0
q2∪3 1 1 1 1 1 1 1 1

We see that

dq,k (m1, m2) =
1

ρ
(2)1/k (33)

while dq,k (m1 ∪©m3, m2 ∪©m3) =
1

ρ
(4)1/k . (34)
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5 Conflict degrees spanned by consistent dis-

tances with the conjunctive rule

When information sources support antagonistic assumptions, it is important
to provide a way to numerically assess the level of inconsistency in their
respective messages. This is the purpose of degrees of conflict defined in the
framework of belief functions. If such a degree of conflict is bounded, we
can use different information fusion strategies in order to make more robust
decisions.

In the theory of belief functions, such a situation typically occurs when
there is a pair of subsets (A,B) such that A ∩ B = ∅ and m1 (A) > 0 and
m2 (B) > 0. In the following paragraphs, we give a brief reminder of existing
conflict degrees in the belief function literature as well as desirable properties
for such degrees. Next, we also comment on the advisability of building new
degrees using distances that are consistent with ∩©.

5.1 Assessing the degree of conflict between belief func-

tions

In his pioneering article, Dempster [8] already provides a way to assess the
degree of conflict between two mass functions. Let κ denote this criterion
which is known as Dempster’s degree of conflict and reads

κ (m1, m2) = m1∩2 (∅) . (35)

More recently, Destercke and Burger [11] outline that this degree can be
built upon a consistency measure φ which evaluates to what extent a single
mass function is not self-contradictory. In the case of Dempster’s degree of
conflict, this measure is simply given by

φ (m) = 1−m (∅) . (36)

They also introduce the following strong consistency measure Φ which is
such that

Φ (m) = max
a∈Ω

pl ({a}) . (37)

This second measure is the L∞ norm of the contour function8. It is stronger
in the sense that φ (m) < 1 ⇒ Φ (m) < 1 while the opposite implication is

8The contour function is the restriction of the plausibility function to singletons.
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not true. This means that Φ can detect a finer level of self-(in)consistencies
in the information encoded by some mass function.

Destercke and Burger [11] also introduce the following list of desirable
properties for some degree of conflict C:

(i) (extreme conflict values) C (m1, m2) = 0 iff m1 and m2 are non con-
flicting and C (m1, m2) = 1 iff m1 ∩©m2 = m∅,

(ii) (symmetry) C (m1, m2) = C (m2, m1),

(iii) (imprecision monotonicity) if m1 ⊑ m′
1 then C (m′

1, m2) ≤ C (m1, m2),

(iv) (ignorance is bliss) C (m1, mΩ) = 1 − I (m1) where I is a consistency
measure such as the aforementioned ones,

(v) (invariance to refinement) for some multi-valued mapping ρ : Ω → 2Θ

with |Ω| < |Θ| < ∞ and a mass functionm′
1 such thatm′

1

(

∪
a∈A

ρ (a)

)

=

m1 (A) for any A ⊆ Ω, we have C (m1, m2) = C (m′
1, m

′
2).

The definition of non-conflicting mass functions is not specified in prop-
erty (i) because several such notions can be considered. The authors ex-
plain that if non-conflict means that the intersection of any focal element
of m1 with any focal element of m2 is not empty then κ satisfies each
property with I = φ. Moreover, if non-conflict means that the intersec-
tion of all the focal elements of both mass functions is not empty then
K (m1, m2) = 1 − max

a∈Ω
pl1∩2 ({a}) satisfies each property with I = Φ. We

will refer to K as the degree of strong conflict. The informational partial
order in property (iii) is the specialization partial order [14] for both degrees
κ and K.

5.2 Deriving new degrees of conflict

Prior to Destercke and Burger [11], several authors [27, 23] proposed to derive
new degrees of conflict to overcome the limitations of κ. Indeed, Dempster’s
degree of conflict evaluates two pairs of mass functions as equally conflicting
as long as they assign the same mass to ∅ (after their respective conjunctive
combinations). Let m∩ denote the conjunctive combination of the first pair
and m′

∩ the combination of the second one. Suppose the focal elements of
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m∩ are {∅, A} and those of m′
∩ are {∅, A, B}. If A ∩B = ∅, then m′

∩ carries
intuitively a higher level of inconsistency which κ fails to grasp.

The degrees of conflict introduced in [27, 23] are built using pairwise
distances d (m1, m2). There are however several arguments [11, 1] outlining
that this practice is ill advised. However, in a recent work, Pichon and
Jousselme [35] highlighted that non-pairwise distances can be instrumental
in the construction of degrees of conflict. The authors examine the distance
between the conjunctive combinationm1∩2 and some reference mass function,
i.e. the total conflict mass function m∅. Indeed we have

κ (m1, m2) = 1− dpl,∞ (m1∩2, m∅) . (38)

Similarly, K can be retrieved as the L∞ norm based distances between the
contour functions of m1 and m2. This observation raises the following ques-
tion: can we build other relevant degrees of conflict in the same fashion as in
(38) but using other distances than dpl,∞? We try to provide some answers
to this question in the next paragraphs when the examined distances are
consistent with ∩©.

Proposition 5. Let d denote a mass function distance which is either an Lk

norm based distance between commonalities, plausibilities, or specialization
matrices. Let C : M×M → [0; 1] denote the following mapping

C (m1, m2) = 1− d (m1∩2, m∅) . (39)

Then C does not satisfy property (i) if k is finite.

See G for a proof.
From the above result, building a conflict degree using (39) using dq,k,

dpl,k or dspe,k is ill-advised whenever k 6= ∞. Intuitively, degrees of conflict
relying on L∞ are better candidates to verify (i) because the maximal norm
value is not uniquely achieved for m1∩2 = mΩ.

Proposition 6. Let Cq,∞ : M×M → [0; 1] denote the following mapping

Cq,∞ (m1, m2) = 1− dq,∞ (m1∩2, m∅) . (40)

Then Cq,∞ coincides with the degree of strong conflict K.
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Proposition 7. Let Cspe,∞ : M×M → [0; 1] denote the following mapping

Cspe,∞ (m1, m2) = 1− dspe,∞ (m1∩2, m∅) . (41)

Then Cspe,∞ coincides with Dempster’s degree of conflict κ.

See H and I for proofs.
Proposition 6 shows that the degree of strong conflict is retrieved through

the L∞ norm based commonality distance while remark 7 shows that Demp-
ster’s degree of conflict is retrieved through the L∞ norm based specialization
distance which are complementary observations in line with [35]. We con-
tinue with another more general remark, i.e. outside the sole scope of a given
family of mass function distances.

Proposition 8. Let d denote a mass function distance which is consistent
w.r.t. ∩©. Let C : M × M → [0; 1] denote the mapping defined from (39).
Then C satisfies property (iii) w.r.t. the Dempsterian partial order ⊑d.

See J for a proof. Following proposition 8, it seems that in general,
distances consistent w.r.t. ∩© are good candidates to possibly yield a relevant
conflict degree.

6 Conclusion

In the scope of the theory of belief functions, this paper provides new results
on the consistency of Lk norm based distances between commonalities and
the L∞ norm based distance between plausibilities with the conjunctive rule
of combination. We also prove the consistency of Lk norm based distances
between plausibilities and the L∞ norm based distance between common-
alities with the disjunctive rule of combination. The investigated form of
consistency is equivalent to Lipschitz continuity of the mapping obtained by
fixing one of the operand of pairwise combinations under these rules. Since
the corresponding Lipschitz constant is 1, this property means that com-
bining any pair of belief functions with any third party belief function is a
non-expansive operation.

Outside the scope of belief functions, the results apply to random set
distributions as belief functions can be interpreted as epistemic random sets.
In this more general context, the conjunctive rule yields the distribution
of the intersection of two independent random sets while the disjunctive
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rule yields the distribution of the union of two independent random sets.
Commonalities map any subset A to the probability that the random set is a
superset of A (inclusion functional). Plausibilities map any subset A to the
probability that the random set intersects A (hitting functional). Our results
prove that if F maps the distribution of a random set to the distribution of
the intersection of this random set with a given (fixed) independent one,
then F is Lipschitz continuous with Lipschitz constant 1 w.r.t. Lk norm
based distances between inclusion functionals or the L∞ norm based distance
between hitting functionals. Similarly, if F maps the distribution of a random
set to the distribution of the union of this random set with a given (fixed)
independent one, then F is Lipschitz continuous with Lipschitz constant 1
w.r.t. Lk norm based distances between hitting functionals or the L∞ norm
based distance between inclusion functionals.

We only investigate belief functions and random sets on finite spaces.
Extending these results to uncountable spaces is an important perspective
for future works. In the uncountable setting, random closed sets are defined
as measurable mappings with respect to the Effros σ-algebra on the family
of closed subsets of some locally compact Haussdorf completely separable
topological space. The main results obtained in the finite case essentially
rely on two aspects:

(i) intersection (resp. union) of independent random sets can be char-
acterized by the elementwise multiplication of their inclusion (resp.
containment) functionals,

(ii) a closed form expression of Lk norms for inclusion or hitting functionals.

Concerning the first aspect, the fact that (A ⊇ C and B ⊇ C) ⇔ A∩B ⊇ C

and (A ⊆ C and B ⊆ C) ⇔ A ∪ B ⊆ C is intuitively sufficient to obtain
equivalent relations in uncountable spaces. The relation for unions of inde-
pendent random closed sets is indirectly evoked for containment functionals
in [30, p.82]. The second aspects seems more challenging to generalize be-
cause one needs to introduce a norm for capacity functionals that is not just a
vector norm. It may be possible to build such norms using Choquet integrals.

Another relevant research track for future works consists in investigating
if the proposed Liptschitz continuity results hold as well when independence
assumptions are not verified. Intuitively intersecting or uniting some pair of
random sets with a third one that may or may not be dependent on either
of them should still make their corresponding distributions closer (w.r.t. the
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appropriate distance). The difficulty in this regard is that one can no longer
just work with marginal inclusion or containment functionals but with mul-
tivariate ones [36] that do not factorize as elementwise products of marginal
functionals. Recent work [37, 38, 39] generalizing Sklar’s theorem on copulas
to joint or multivariate capacity functionals of random sets may be useful
in this quest because it gives an explicit connection between marginal func-
tionals and multivariate ones. However, in contrast to point-valued random
variables, a family of copulas is necessary to characterize this link.

Finally, going back to belief functions, we also discuss the advisability of
building new degrees of conflict using distances that are consistent with the
conjunctive rule. Such degrees are mainly interesting in information fusion
applications of belief functions. We show that distances consistent with the
conjunctive rule can be deemed to be relevant candidates for this purpose
as they will achieve a desirable property for degrees of conflict. As for the
distances for which we provide new consistency results (distance between
commonalities or plausibilities), it turns out that they either violate another
desirable property or coincide with an already known degree of conflict.
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A Set metrics and their consistency with set

operations

This appendix is meant to show that some distances between sets verify either
property (a) or (b), see subsection 3.3 for the definitions of these latter. We
examine, the Hamming distance and the Jaccard distance:
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• Hamming distance: for any subsets A,B and C, we have

dham (A ∩ C,B ∩ C) =
| (A ∩ C)∆ (B ∩ C) |

n
(42)

=
| (A∆B) ∩ C|

n
(43)

≤
|A∆B|

n
. (44)

So we see that dham verifies (a).

We can also write

dham (A ∪ C,B ∪ C) =
| (A ∪ C)∆ (B ∪ C) |

n
(45)

=
| (A ∪B ∪ C) \ ((A ∪ C) ∩ (B ∪ C)) |

n
(46)

=
| (A ∪B ∪ C) \ ((A ∩ B) ∪ C) |

n
(47)

=
| ((A \ C) ∪ (B \ C)) \ (A ∩B) |

n
(48)

≤
| (A ∪ B) \ (A ∩ B) |

n
(49)

≤
|A∆B|

n
, (50)

and dham verifies (b) as well.

• Jaccard distance: for any subsets A,B and C, we have

djac (A ∪ C,B ∪ C) =
| (A ∪ C)∆ (B ∪ C) |

| (A ∪ C) ∪ (B ∪ C) |
(51)

=
|A∆B| − |(A∆B) \ C|

|A ∪B|+ |C \ (A ∪ B) |
(52)

≤
|A∆B|

|A ∪ B|
(53)

So we see that djac verifies (b).

To see that djac does not verify property (a), we provide the following
counter-example.
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Example 4. Let A and B denote two subsets that are not disjoint, i.e.
A ∩B 6= ∅ and therefore djac (A,B) = 1− |A∩B|

|A∪B|
< 1.

If C = A∆B, then A ∩ C = A \ B and B ∩ C = B \ A. This also
implies that (A ∩ C)∆ (B ∩ C) = A∆B because A∩C and B ∩C are
disjoint. We also have (A ∩ C) ∪ (B ∩ C) = A∆B and consequently
djac (A ∩ C,B ∩ C) = 1.

B Proof of lemma 1

In this appendix, we give a proof that b1|E (A) = b1 ((E \ A)c) for any impli-
cability function b1 and any subset A and E.

Proof. By definition of the implicability function and conditioning, we have
for any A ⊆ Ω

b1|E (A) =
∑

B⊆A

∑

C⊆Ω
s.t.

C∩E=B

m1 (C) . (54)

The second sum is empty if E is not a superset of B. If this condition is
verified, we remark that subsets C are necessarily the union of B and some
subset of Ec. This gives

b1|E (A) =
∑

B⊆A∩E

∑

D⊆Ec

m1 (B ∪D) . (55)

Finally, any subset X of (E \ A)c can be partitioned w.r.t. A ∩ E and Ec,
meaning that ∃!Y ⊆ A ∩ E and ∃!Y ′ ⊆ Ec such that X = Y ∪ Y ′. Conse-
quently, we have

b1|E (A) =
∑

X⊆(E\A)c

m1 (X) (56)

= b1 ((E \ A)c) (57)
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C Proof of proposition 1

In this appendix, we give a proof that for 1 ≤ k ≤ ∞, ∩© is 1-Lipschitz
continuous w.r.t. the Lk norm based q-distance dq,k.

Proof. Suppose m1, m2 and m3 are three mass functions on Ω and q1, q2 and
q3 are their respective commonality vectors. For any positive finite integer
k, we have:

[dq,k (m1 ∩©m3, m2 ∩©m3)]
k = [‖q1∩3 − q2∩3‖k]

k

=
∑

A⊆Ω

|q1∩3 (A)− q2∩3 (A) |
k

=
∑

A⊆Ω

|q1 (A) q3 (A)− q2 (A) q3 (A) |
k

=
∑

A⊆Ω

|q3 (A) |
k|q1 (A)− q2 (A) |

k,

For any subset A ⊆ Ω, we have that 0 ≤ q3 (A) ≤ 1 thus we obtain

[dq,k (m1 ∩©m3, m2 ∩©m3)]
k ≤

∑

A⊆Ω

|q1 (A)− q2 (A) |
k

≤ [dq,k (m1, m2)]
k
.

By definition, this latter inequality means that distance dq,k is consistent
with rule ∩©.

If k = ∞, we have:

dq,∞ (m1 ∩©m3, m2 ∩©m3) = ‖q1∩3 − q2∩3‖∞
= max

A⊆Ω
|q1∩3 (A)− q2∩3 (A) |

= max
A⊆Ω

|q1 (A) q3 (A)− q2 (A) q3 (A) |

= q3 (B) |q1 (B)− q2 (B) |,

with B = argmax
A⊆Ω

{q3 (A) |q1 (A)− q2 (A) |}. It follows that

dq,∞ (m1 ∩©m3, m2 ∩©m3) ≤ |q1 (B)− q2 (B) |

≤ max
A⊆Ω

|q1 (A)− q2 (A) |

≤ dq,∞ (m1, m2) .

By definition, this latter inequality means that ∩© is 1-Lipschitz continuous
w.r.t. dq,∞.
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D Proof of proposition 2

In this appendix, we give a proof that ∩© is 1-Lipschitz continuous w.r.t. the
L∞ norm based pl-distance dpl,∞.

Proof. Suppose m1, m2 and m3 are three mass functions on Ω and pl1, pl2
and pl3 are their respective plausibility vectors. Let us first prove an inter-
mediate result in case m3 = mE is categorical. We can write

dpl,∞
(

m1|E , m2|E

)

= max
A⊆Ω

|pl1|E (A)− pl2|E (A) |. (58)

Using the fact that pl and b-distances coincide and lemma 1, we obtain

dpl,∞
(

m1|E , m2|E

)

= max
A⊆Ω

|b1|E (A)− b2|E (A) | (59)

= max
A⊆Ω

|b1 ((E \ A)c)− b2 ((E \ A)c) | (60)

≤ max
A⊆Ω

|b1 (A)− b2 (A) |. (61)

So the consistency condition is verified when m3 is categorical. Now, let
us examine the general case where m3 is not necessarily categorical. Let B
denote the transfer matrix [42] allowing to obtain vector forms of implica-
bility functions by right-handed dot product with the vector form of their
corresponding mass functions. We can write

dpl,∞ (m1 ∩©m3, m2 ∩©m3) = ‖pl1∩3 − pl2∩3‖∞ (62)

= ‖b1∩3 − b2∩3‖∞ (63)

= ‖B · (m1∩3 −m2∩3)‖∞ (64)

= ‖B · (S1 − S2) ·m3‖∞ . (65)

One can always decompose a mass function as a convex combination of cat-
egorical ones: m3 =

∑

E⊆Ω

m3 (E)mE . We obtain

dpl,∞ (m1 ∩©m3, m2 ∩©m3) =

∥

∥

∥

∥

∥

∑

E⊆Ω

m3 (E)B · (S1 − S2) ·mE

∥

∥

∥

∥

∥

∞

(66)

≤
∑

E⊆Ω

m3 (E) ‖B · (S1 − S2) ·mE‖∞ , (67)
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with the last inequality following from the triangle inequality and absolute
homogeneity properties of the L∞ norm.

From our intermediate result, we know that for anyE, ‖B · (S1 − S2) ·mE‖∞ =
dpl,∞

(

m1|E , m2|E

)

≤ dpl,∞ (m1, m2). Consequently, we have

dpl,∞ (m1 ∩©m3, m2 ∩©m3) ≤ dpl,∞ (m1, m2)
∑

E⊆Ω

m3 (E) (68)

≤ dpl,∞ (m1, m2) . (69)

By definition, this latter inequality means that ∩© is 1-Lipschitz continu-
ous w.r.t. dpl,∞.

E Proof of proposition 3

In this appendix, we give a proof that for 1 ≤ k ≤ ∞, ∪© is 1-Lipschitz
continuous w.r.t. the Lk norm based pl-distance dpl,k.

Proof. Suppose m1, m2 and m3 are three mass functions on Ω and pl1, pl2
and pl3 are their respective plausibility vectors. For any positive finite integer
k, we have:

[dpl,k (m1 ∪©m3, m2 ∪©m3)]
k = [‖pl1∪3 − pl2∪3‖k]

k

=
∑

A⊆Ω

|pl1∪3 (A)− pl2∪3 (A) |
k

=
∑

A⊆Ω

|b1∪3 (A
c)− b2∪3 (A

c) |k

=
∑

A⊆Ω

|b1 (A
c) b3 (A

c)− b2 (A
c) b3 (A

c) |k

=
∑

A⊆Ω

|b3 (A
c) |k|b1 (A

c)− b2 (A
c) |k.

For any subset A ⊆ Ω, we have that 0 ≤ b3 (A
c) ≤ 1 and we obtain

[dpl,k (m1 ∪©m3, m2 ∪©m3)]
k ≤

∑

A⊆Ω

|b1 (A
c)− b2 (A

c) |k

≤
∑

A⊆Ω

|pl1 (A)− pl2 (A) |
k (70)

≤ [dpl,k (m1, m2)]
k
.

30



By definition, this latter inequality means that distance dpl,k is consistent
with rule ∪©.

If k = ∞, we have:

dpl,∞ (m1 ∪©m3, m2 ∪©m3) = ‖pl1∪3 − pl2∪3‖∞ ,

= max
A⊆Ω

|pl1∪3 (A)− pl2∪3 (A) |

= max
A⊆Ω

|b1∪3 (A
c)− b2∪3 (A

c) |

= max
A⊆Ω

|b1 (A
c) b3 (A

c)− b2 (A
c) b3 (A

c) |

= b3 (B
c) |b1 (B

c)− b2 (B
c) |,

with B = argmax
A⊆Ω

{b3 (A
c) |b1 (A

c)− b2 (A
c) |}. It follows that

dpl,∞ (m1 ∪©m3, m2 ∪©m3) ≤ |b1 (B
c)− b2 (B

c) |

≤ |pl1 (B)− pl2 (B) |

≤ max
A⊆Ω

|pl1 (A)− pl2 (A) |

≤ dpl,∞ (m1, m2) .

By definition, this latter inequality means that ∪© is 1-Lipschitz continuous
w.r.t. dpl,∞.

F Proof of proposition 4

In this appendix, we give a proof that ∪© is 1-Lipschitz continuous w.r.t the
L∞ norm based q-distance dq,∞.

Proof. Suppose m1, m2 and m3 are three mass functions on Ω and q1, q2 and
q3 are their respective commonality functions. Using relations (6) and (14),
we can write

dq,∞ (m1∪3, m2∪3) = max
A⊆Ω

|q1∪3 (A)− q2∪3 (A) | (71)

= max
A⊆Ω

|b1∪3 (A
c)− b2∪3 (A

c) | (72)

= db,∞ (m1 ∪©m3, m2 ∪©m3) (73)

= dpl,∞ (m1 ∪©m3, m2 ∪©m3) (74)

= dpl,∞ (m1 ∩©m3, m2 ∩©m3) . (75)
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Since dpl,∞ is consistent w.r.t. ∩©, we obtain

dq,∞ (m1∪3, m2∪3) ≤ dpl,∞ (m1, m2) (76)

and dpl,∞ (m1, m2) = db,∞ (m1, m2) (77)

= max
A⊆Ω

|b1 (A)− b2 (A) | (78)

= max
A⊆Ω

|q1 (A
c)− q2 (A

c) | (79)

= dq,∞ (m1, m2) . (80)

By definition, this latter inequality means that ∪© is 1-Lipschitz continuous
w.r.t. dq,∞.

G Proof of proposition 5

In this appendix, we provide a proof that the extreme conflict values property
cannot be verified when a degree of conflict C is defined as

C (m1, m2) = 1− d (m1∩2, m∅)

where d is an Lk norm based distance between either commonality functions,
plausibility functions or specialization matrices when k is finite.

Proof. We obviously have C (m1, m2) = 1 iff m1∩2 = m∅ and mass functions
m1 and m2 are maximally conflicting so the problem does not come from this
side of property (i).

Now, suppose d = dq,k and k is finite. Since C (m1, m2) = 0 ⇔ dq,k (m1∩2, m∅) =
1, we can write

dq,k (m1∩2, m∅) = 1 (81)

⇔
1

ρ
‖q1∩2 − q∅‖k = 1 (82)

⇔
1

ρk

∑

A⊆Ω

|q1∩2 (A)− q∅ (A) |
k = 1. (83)

Remember that ρk = N−1 for Lk norm based commonality distances. More-
over, q∅ (A) = 0 when A 6= ∅ and that q (∅) = 1 for any commonality function
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therefore we obtain

dq,k (m1∩2, m∅) = 1 (84)

⇔
∑

A⊆Ω
A 6=∅

|q1∩2 (A) |
k = N − 1. (85)

Finally, the sum of commonalities (power k) cannot be equal to N −1 unless
q1∩2 (A) = 1 for each A 6= ∅. This means that q1∩2 = qΩ which implies that
q1 = q2 = qΩ. This latter condition is not an admissible definition of non-
conflict. The proof for distances between plausibilities is extremely similar
and is thus omitted.

Concerning, distances between specialization matrices, the philosophy is
also similar but we provide a sketch of the proof. When dealing with an
Lk norm based specialization distance, we have ρk = 2 (N − 1) and this
distance is achieved for the pair (mΩ, m∅). To see that mΩ is the only mass
function achieving maximal distance with m∅, one just needs to observe that
the matrix entry S∅(A,B) = 1 if A = ∅ and S∅(A,B) = 0 otherwise. We can
write

[dspe,k (m1∩2, m∅)]
k =

∑

E⊆Ω

(
∥

∥m1∩2|E −m∅

∥

∥

k

)k
. (86)

The only way to maximize the above expression is to maximize each
∥

∥m1∩2|E −m∅

∥

∥

k

individually for E 6= ∅. We know that
∥

∥m1∩2|E −m∅

∥

∥

k
≤ 2 and we need

m1∩2|E (∅) = 0 to achieve this maximal value. This is not possible unless
m1∩2 = mΩ. Again, m1∩2 = mΩ implies that m1 = m2 = mΩ.

H Proof of proposition 6

In this appendix, we provide a proof that the degree of conflict Cq,∞ defined
as

Cq,∞ (m1, m2) = 1− dq,∞ (m1∩2, m∅)

coincides with the degree of strong conflict K.

Proof. By definition of Cq,∞, we can write

Cq,∞ (m1, m2) = 1−max
A⊆Ω

|q1∩2 (A)− q∅ (A) |. (87)
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Since q∅ (A) = 0 when A 6= ∅ and that q (∅) = 1 for any commonality
function, we obtain

Cq,∞ (m1, m2) = 1−max
A⊆Ω
A 6=∅

|q1∩2 (A) |. (88)

Any commonality function is such that q (A) ≥ q (A′) if A ⊆ A′, which gives

Cq,∞ (m1, m2) = 1−max
a∈Ω
A 6=∅

|q1∩2 ({a}) |. (89)

Finally commonality and plausibility functions coincide on singletons, hence
Cq,∞ (m1, m2) = K (m1, m2).

I Proof of proposition 7

In this appendix, we provide a proof that the degree of conflict Cspe,∞ defined
as

Cspe,∞ (m1, m2) = 1− dspe,∞ (m1∩2, m∅)

coincides with Dempster’s degree of conflict κ.

Proof. By definition, we have

dspe,∞ (m1∩2, m∅) = max
A,B⊆Ω

|S1∩2 (A,B)− S∅ (A,B) | (90)

= max
A⊆Ω

∥

∥m1∩2|A −m∅

∥

∥

∞
. (91)

For any A ⊆ Ω, we have

∥

∥m1∩2|A −m∅

∥

∥

∞
= max







1−m1∩2|A (∅) ;max
E⊆Ω
E 6=∅

m1∩2|A (E)







. (92)

For any E 6= ∅, we have

m1∩2|A (E) ≤
∑

E′⊆Ω
E′ 6=∅

m1∩2|A (E ′) (93)

≤ 1−m1∩2|A (∅) . (94)

We deduce that
∥

∥m1∩2|A −m∅

∥

∥

∞
= 1 −m1∩2|A (∅). Finally, Dempster’s

degree of conflict can only grow as one performs a conjunctive combina-
tion therefore max

A⊆Ω
1 − m1∩2|A (∅) = 1 − m1∩2 (∅), hence Cspe,∞ (m1, m2) =

κ (m1, m2).
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J Proof of proposition 8

In this appendix, we give a proof that for some degree of conflict C defined
as

C (m1, m2) = 1− d (m1∩2, m∅) ,

where d is a mass function distance consistent with ∩©, then C satisfies prop-
erty (iii) (from [11]) w.r.t. the Dempsterian partial order ⊑d.

Proof. By definition of the Dempsterian partial order, m1 ⊑d m
′
1 means that

there exists a mass function m such that m1 = m′
1 ∩©m. If d is consistent

w.r.t. ∩©, then for any mass function m2, we have

d (m′
1 ∩©m2 ∩©m,m∅ ∩©m) ≤ d (m′

1 ∩©m2, m∅) (95)

⇔ d (m1 ∩©m2, m∅) ≤ d (m′
1 ∩©m2, m∅) (96)

⇔ C (m1, m2) ≥ C (m′
1, m2) . (97)

K Consistency of distances with α-junctions

In [26], two families of mass function distances are introduced. Each of
them relies on a given type of evidential matrix and a matrix norm. The
evidential matrices in question are either an α-specialization matrix or an
α-generalization matrix. These matrices are a generalization of the special-
ization matrix and generalization matrix, in the sense that these two matrices
are retrieved by setting α = 1. The definition of these more general matrices
stems from a class of combination rules known as α-junctions [41].

In short, α-junctions are linear combination rules that do not depend on
the order in which mass functions are combined. This axiomatic justification
of these properties is detailed in [41]. These rules also have a meta-data de-
pendent interpretation. These meta-data characterize the truthfulness of the
sources that induced the mass functions. A source is truthful if it conveys the
pieces of information it possesses and it is untruthful if it conveys inconsis-
tent pieces of information as compared to the ones it possesses. For example,
suppose a source has inferred that {θ ∈ A}. If it is truthful it conveys the
mass function mA while it conveys mAc if it is untruthful. The α-junctions
allow to combine mass functions in several situations ranging between these
two extreme cases. This interpretation is documented in [34, 33, 26, 21].
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Concerning evidential matrices, the most important point for the present
discussion is that for each α ∈ [0; 1], there is a bijective correspondence be-

tween a given mass functionmi and an α-specialization matrixD
(α)
i . Another

bijective correspondence also exists between a given mass function mi and
an α-generalization matrix G

(α)
i . The main result in [26] states that, for any

α ∈ [0; 1], the distance induced by the L1 matrix norm of the difference be-
tween a pair of α-specialization matrices is consistent with the α-conjunctive
rule. Likewise, for any α ∈ [0; 1], the distance induced by the L1 matrix norm
of the difference between a pair of α-generalization matrices is consistent with
the α-disjunctive rule.

Evidential matrices are not the only representation of states of beliefs
induced by α-junctions. One can also define α-commonality functions [41]

q
(α)
i . Let Q(α) denote the matrix obtained by n Kronecker product as

Q(α) = Kron

([

1 1
α− 1 1

]

, . . . ,Kron

([

1 1
α− 1 1

]

,

[

1 1
α− 1 1

]))

. (98)

The vector form of function q
(α)
i is obtained as

q
(α)
i = Q(α) ·mi, (99)

with mi the vector form of some mass function mi. There is a bijective corre-
spondence between α-commonality functions and mass functions and the α-
commonality function in correspondence with the result of an α-conjunctive
combination is equal to the entrywise product of the α-commonality functions
in correspondence with the combined mass functions. Using this property,
the same reasoning as in the proof of proposition 1 applies and any Lk norm
based distance between α-commonality functions is consistent with the cor-
responding α-conjunctive rule. For the proof to hold, one also needs that
|q

(α)
i (B) | ≤ 1 for any B ⊆ Ω. Looking at equation (98), we actually have

α− 1 ≤ q
(α)
i (B) ≤ 1, ∀B ⊆ Ω. (100)

Similarly, Smets [41] also introduces α-implicability functions b
(α)
i . Let B(α)

denote the matrix obtained by n Kronecker product as

B(α) = Kron

([

1 1
1 α− 1

]

, . . . ,Kron

([

1 1
1 α− 1

]

,

[

1 1
1 α− 1

]))

. (101)
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The vector form of function b
(α)
i is obtained as

b
(α)
i = B(α) ·mi, (102)

with mi the vector form of some mass function mi. There is a bijective cor-
respondence between α-implicability functions and mass functions and the
α-implicability function in correspondence with the result of an α-disjunctive
combination is equal to the entrywise product of the α-implicability functions
in correspondence with the combined mass functions. Using this property,
the same reasoning as in the proof of proposition 3 applies and any Lk norm
based distance between α-implicability functions is consistent with the cor-
responding α-disjunctive rule. For the proof to hold, one also needs that
|b

(α)
i (B) | ≤ 1 for any B ⊆ Ω. Again, from equation (101), we actually have

α− 1 ≤ b
(α)
i (B) ≤ 1, ∀B ⊆ Ω. (103)

Computational difficulties are found when n increases for computing α-
commonality and α-implicability functions but this is also true for comput-
ing α-specialization or α-generalization matrices, therefore all the distances
evoked in this appendix section are on an equal footing from both theoretical
and practical considerations.
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