Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se2 solar cells

Mohit Raghuwanshi, Arantxa Vilalta-Clemente, Celia Castro, S. Duguay, Emmanuel Cadel, Philip Jackson, Dimitrios Hariskos, Wolfram Witte, Philippe Pareige

To cite this version:
Mohit Raghuwanshi, Arantxa Vilalta-Clemente, Celia Castro, S. Duguay, Emmanuel Cadel, et al.. Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se2 solar cells. Nano Energy, Elsevier, 2019, 60, pp.103-110. 10.1016/j.nanoen.2019.03.028. hal-02108142

HAL Id: hal-02108142
https://hal.archives-ouvertes.fr/hal-02108142
Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Healthcare ex Machina:

Are conversational agents ready for prime time in oncology?

Jean-Emmanuel Bibault, MD, PhD¹, Benjamin Chaix², Pierre Nectoux, MSc², Benoît Brouard, PharmD²

1 – Department of Radiation Oncology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France

2 – WeFight Inc., Institut du Cerveau et de la Moelle épinière, Hôpital Pitié-Salpêtrière, Paris, France

Corresponding author

Jean-Emmanuel Bibault
Radiation Oncology Department
Hôpital Européen Georges Pompidou
20 rue Leblanc
Paris, France
jean-emmanuel.bibault@aphp.fr

Conflicts of interest

Pierre Nectoux and Benoit Brouard are respectively Chief Technical Officer and Chief Executive Officer in WeFight Inc
Abstract

Chatbots, also known as conversational agents or digital assistants, are artificial intelligence–driven software programs designed to interact with people in a conversational manner. They are often used for user-friendly customer-service triaging. In healthcare, chatbots can create bidirectional information exchange with patients, which could be leveraged for follow-up, screening, treatment adherence or data-collection. They can be deployed over various modalities, such as text-based services (text messaging, mobile applications, chat rooms) on any website or mobile applications, or audio services, such as Siri, Alexa, Cortana or Google Assistant. Potential applications are very promising, particularly in the field of oncology. In this review, we discuss the available publications and applications and the ongoing trials in that setting.

Keywords

Conversational agent; digital assistant; chatbot; oncology; cancer
Introduction

In 1950, Alan Turing envisioned a future where a computer would be able to express itself with a level of sophistication that would render it indistinguishable from humans\(^1\). The famous “Turing Test” was born: a trial-by-fire where a computer and a human are asked various questions while a third party attempts to distinguish between the two. Today, chatbots can imitate human conversation by using a field of artificial intelligence (AI) known as Natural Language Processing. They are widely available as text or voice-based assistants on smartphones or computers. They provide information and create a dynamic interaction between the agent and the user, without human back-end intervention. In healthcare, the first example of a computer program used as a conversational agent was Joseph Weizenbaum’s ELIZA, a program that mimicked a Rogerian psychotherapist that was able to rephrase the patient’s sentences as questions and provide prerecorded answers\(^2\). In 1991, Dr. Sbaitso was created as an AI speech synthesis program created for MS DOS Personal Computers. In this software, Dr Sbaitso was a psychologist, with very limited possibilities\(^3\). Four years later, A.L.I.C.E (Artificial Linguistic Internet Computer Entity) included 40,000 knowledge categories that was later awarded the Loebner Prize thrice\(^4\). In 2001, SmarterChild was made available as a bot distributed across SMS networks and is now considered as a precursor to Apple’s Siri, which was released on iPhones in 2010.

Chatbots are now widely used in several forms as voice-based agents, such as Siri (Apple, Palo Alto, California, USA), Google Now (Google, Mountain View, California, USA), Alexa (Amazon, Seattle, Washington, USA) or Cortana (Microsoft, Seattle, Washington, USA). But they are not used in healthcare yet. Text-based chatbots are available as Messenger (Facebook, Menlo Park, California, USA) agents or as stand-alone mobile or web applications. Patients can now use chatbots to check for symptoms and to monitor their health\(^5\). But their relevance and validity has rarely been assessed\(^6\). In this review we examine the current landscape of the use of conversational agents, or chatbots, in oncology. We address available literature that demonstrates the power of chatbots and discuss the few examples of their applications in oncology. We also describe the ongoing trials evaluating chatbots in oncology and finally discuss the challenges that remain to be addressed for a successful implementation.
Methods

Systematic search
This review focuses on articles published in peer-reviewed journals and conference proceedings. The review is in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Search Strategy
We conducted a comprehensive search of PubMed, Embase and Google Scholar for relevant peer-reviewed publications from 1980, to October 2018. A comprehensive list of MeSH terms and keywords was used to query Medline; category 1: “conversational agents”, “chatbots”, and category 2: “healthcare”, “oncology”, “cancer”. Each term of category 1 was researched separately and as an association with the second category. The search strategy also included screening of reference lists of relevant publications (“snowball” search technique). ClinicalTrials.gov was also searched for ongoing trials using chatbots in healthcare.

Eligibility Criteria
Publications were selected if they met the following criteria: clinical studies reporting on the use of conversational agents or chatbots in healthcare, randomized studies comparing chatbots to standard interventions, ongoing studies registered on ClinicalTrials.gov. Studies reporting on the use of AI systems for image segmentation and classification, diagnosis and outcome prediction were excluded.

Results

Published studies
The search returned 25 studies that were individually screened. Six studies were included in the final analysis. The PRISMA flowchart is shown in figure 1.

Cancer screening
The iDecide chatbot is a conversational agent that delivers information about prostate cancer to patients (epidemiology, risk factors, treatment options and their side-effects). A study was designed to evaluate the effects of iDecide on prostate cancer knowledge, informed decision-making self-efficacy, technology use self-efficacy, and intention to engage in informed
decision-making among African American men7. This metrics were measured on the complete cohort before and after use of the chatbot. Participants were African American men, aged 40 years and over, without a prior prostate cancer diagnosis (n = 354). Participants experienced significant improvements in their prostate cancer knowledge (p≤0.001), informed decision-making self-efficacy (p≤0.001), and technology use self-efficacy (p≤0.001), post intervention. Sixty-seven percent of participants reported an intention to engage in informed decision-making.

\textit{Mental health}

As much as 40\% of cancer patients will face severe anxiety or depression8, 9. In that setting, chatbots could be used to engage patients and provide them support at any time. Woebot is a Web-based cognitive-behavioral therapeutic (CBT) that was evaluated by Fitzpatrick et al.10 The objective their study was to determine the feasibility, acceptability, and preliminary efficacy of a fully automated conversational agent to deliver a self-help program for people with symptoms of anxiety and depression. In an unblinded trial, 70 individuals were recruited online from a social media site and were randomized to receive either 2 weeks (up to 20 sessions) of self-help content from CBT in a conversational format with a Woebot (n=34) or were directed to the National Institute of Mental Health ebook, “Depression in College Students,” as an information-only control group (n=36). The participants completed Web-based versions of the 9-item Patient Health Questionnaire (PHQ-9), the 7-item Generalized Anxiety Disorder scale (GAD-7), and the Positive and Negative Affect Scale at baseline and 2-3 weeks later (T2). Participants in the Woebot group engaged with the conversational agent an average of 12.14 (SD 2.23) times over the study period. No significant differences existed between the groups at baseline, and 83\% (58/70) of participants provided data at T2 (17\% attrition). Patients in the Woebot group significantly reduced their symptoms of depression over the study period as measured by the PHQ-9 (F=6.47; P=.01), in an intent-to-treat univariate analysis, while those in the information control group did not. Another chatbot, Koko, was designed to express empathy, which could be positively leveraged in cancer-patients11. In this study, Morris et al report on the design of a conversational agent that could express empathic support in ways that might approach, or even match, human capabilities. The authors also assessed how users might appraise this system. The authors used responses from an existing pool of online peer support data that were repurposed by the chatbot and presented to the user. Information retrieval techniques and word embeddings were used to select historical responses that best matched a user's concerns. Ratings from
37,169 users were collected to evaluate the system. A controlled experiment (N=1284) to test whether the alleged source of a response (human or machine) might change user perceptions was performed: the majority of responses created by the agent (2986/3770, 79.20%) were deemed acceptable by users. But, users still made the difference between the chatbot’s and the human answers and significantly preferred the efforts of their peers (p<0.001). This effect was maintained in a controlled study (p=0.02). Only one randomized controlled trial has been published12. In this study, Ly et al assessed the effectiveness and adherence to a smartphone app delivering strategies used in positive psychology to improve happiness and reduce negative symptoms, via an automated chatbot (Shim) for a non-clinical population. A total of 28 participants were randomized to either receive the chatbot intervention (n = 14) or to a wait-list control group (n = 14). Findings revealed that participants who adhered to the intervention (n = 13) showed a significant interaction effects with the chatbot compared to the wait-list control group.

Expression of caring and understanding is valued in supportive human communications. A study recently published by Liu et al. assessed whether humans could perceive empathy from a chatbot: in the first group of people (N = 158), participants simply read a dialogue between a chatbot and a human user. In a second group, participants (N = 88) interacted with a real chatbot. Three types of empathic expression were tested: sympathy, cognitive, and affective empathy, on the individuals' perceptions of the service and the chatbot. Data revealed that expression of sympathy and empathy is favored over unemotional provision of advice, in support of the Computers are Social Actors (CASA) paradigm13.

\textit{Lifestyle change}

FitTrack was developed to assess the ability of an Embodied Conversational Agents (ECA) called “Laura” to establish a long-term therapeutic alliance with users, and to determine if these relationships could be used to induce health behavior change14. In the FitTrack system, the ECA used nonverbal behavior to convey information in addition to the speech channel. Laura played the role of an exercise advisor who motivated sedentary persons to obtain the minimum level of physical activity recommended by current public health guidelines15 over a two-month period of time. The system ran on standard home desktop computers so that participants could interact with the system on a daily basis. The system used the BEAT text-to-embodied-speech translator16 to generate nonverbal behavior for the agent. FitTrack was successfully used in two randomized clinical trials, one involving MIT students and the second an urban, older adult population17, 18.
Ongoing trials

A search on ClinicalTrials.gov returns four trials evaluating chatbots in healthcare. In the United Kingdom, a non-randomized trial is being performed by the National Health Service to compare the Babylon chatbot to the non-emergency 111 telephone number. Patients can interact with an automatic agent in order to describe their symptoms. Advices and information are given in return by the chatbot. Randomized studies demonstrating the superiority (or at least non-inferiority) of chatbots, compared to an intervention performed by a physician, do not exist. If chatbots are to be safely used by a large number of patients, they must be evaluated like a medical device, or even a drug.

The Buddy Study (NCT02742740) evaluates an ECA Oncology Trial Advisor for Cancer Trials that acts as an advisor to patients on chemotherapy regimens, promoting protocol adherence and retention, providing anticipatory guidance and answering questions. The chatbot also serves as a conduit to capture information about complaints or adverse events. Usability metrics will include session time, satisfaction, and error rates. Subjects will be identified from among patients on chemotherapy regimens at the Boston Medical Center. All subjects will be enrolled for 2 months and randomized to the chatbot group or control group. Baseline data will be collected after enrollment and before randomization and will include: sociodemographic data, mental and social health, medical diagnosis (cancer type and stage), the Short Assessment of Health Literacy and the Short Portable Mental Status Questionnaire (SPMSQ) for cognitive impairment. The exit interview will be conducted 2 months after baseline. Data collected at the exit interview will include: mental and social health and the satisfaction with ECA Review of the subject's medical chart will be performed bi-weekly while the subject is enrolled. Chart review will be performed by a staff member who is blinded to the subject's group (intervention vs control). Primary outcome will be treatment protocol adherence, defined by the number of treatment visits attended/number of treatment visits scheduled. The secondary outcome will measure: subject satisfaction, number of adverse events as reported through the ECA and directly to clinic by patient, time to detect and resolve adverse events as reported through the ECA and directly to clinic by patient, adverse event false alarm rate, as reported through ECA and directly to clinic by patient.

A third study, the RAISE project (NCT01458002), is designed to promote exercise and sun protection. The primary aims are to develop and assess the effectiveness of a tailored internet intervention on a national sample, to develop and assess the effectiveness of the
internet intervention enhanced by a relational agent, and to determine if the intervention with the relational agent can outperform the regular tailored internet intervention. The study will include three groups (Control, Internet, Internet plus Relational Agent). A representative national sample of 1639 individuals at risk for both behaviors will be recruited.

A fourth study, INCASE, a randomized, controlled, blind study will be launched in France, comparing the information given by the Vik chatbot vs a multidisciplinary group of physicians (from medical, radiation and surgical oncology) to breast cancer patients (NCT03556813). One hundred and forty patients will be randomized in this non-inferiority trial. The EORTC QLQ-INFO25 questionnaire, that was validated to assess cancer patients’ information22, will be used to compare the quality of the information provided to the two groups of patients by the physician or the chatbot.

Applications in radiation oncology

In the field of Radiation Oncology (RO), chatbots could be leveraged in each step of the process: from cancer screening, diagnosis to patient information on treatment modalities and potential toxicities. They could also be used to seamlessly collect patient-reported outcomes (PRO) during and after treatments in a convenient manner. Algorithms could then be used on curated data to analyze in real-time PRO in order to red-flag the most at-risk patients or trigger an additional consultation with the physician and adapt supportive care treatments. Considering the documented discrepancies in available RO professionals in Europe, this kind of tool could have a significant interest23, 24.
Conclusion

The scarcity of clinical trials evaluating conversational agents in healthcare in general and oncology in particular is in sharp contrast with their potential benefits for the patients and the healthcare system. Health chatbots will need to be used by many and have access to rich data sets in order to increase their knowledge of medical terms, symptoms, and treatments. These systems will not replace the physicians and should be considered as a resource to enhance the efficacy of healthcare interventions25. If chatbots are shown to be effective and safe, they could be prescribed like any drug to improve patient information, monitoring, or treatment adherence. The best conversational agents may save patients with minor health concerns from a visit to the doctor. This could allow clinicians to spend more time to treat patients who need a consultation the most. Consultations for whose symptoms that don’t necessitate an actual consultation could be avoided, potentially saving a significant amount of money and resources. But if the quality of these computer programs is not rigorously assessed, they could be unable to actually detect the difference between minor and major symptoms, without anyone knowing. The lack of objective evidence for the relevance and efficacy of this kind of applications is concerning since they are poised to be used by more patients. There are several differences between a conversational agent and a drug. For example, a standard drug formulary is locked down, evaluated, and then distributed. Conversational agents can effectively learn and adapt while deployed such that a conversational agent today deployed to millions of users will likely be vastly different in response to its operation within weeks. Significant hurdles currently exist in the widespread application of chatbots at this time. One major limitation stems from noncompliance of many commercially available systems with the Health Insurance Portability and Accountability Act.
References

10. Fitzpatrick KK, Darcy A, Vierhile M: Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Mental Health 4:e19, 2017

14. Bickmore TW: Relational Agents: Effecting Change through Human-Computer Relationships

Tables

<table>
<thead>
<tr>
<th>Tool</th>
<th>Intervention</th>
<th>Inclusion criteria</th>
<th>Number of patients</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDecide</td>
<td>Population information to all cohort</td>
<td>- African-American
- Men
- 40 years-old or older
- With or without prostate cancer diagnosis</td>
<td>354</td>
<td>- Prostate cancer knowledge,
- Informed decision-making self-efficacy,
- Intention to engage in informed decision-making</td>
</tr>
<tr>
<td>Woebot (Web-based cognitive-behavioral therapeutic)</td>
<td>2 weeks of self-help content from CBT in a conversational format with a Woebot (n=34) or National Institute of Mental Health ebook, “Depression in College Students,” as an information-only control group (n=36)</td>
<td>Online recruitment on social media</td>
<td>70</td>
<td>Feasibility, acceptability, and preliminary efficacy of the tool</td>
</tr>
<tr>
<td>Koko</td>
<td>Answers from a database of 37169 real users vs answers from the conversational agent</td>
<td>Online recruitment on Koko platform</td>
<td>1284</td>
<td>User perceptions of a response depending on the alleged source of a response (human or machine)</td>
</tr>
<tr>
<td>Study</td>
<td>Intervention Details</td>
<td>Methodology</td>
<td>Sample Size</td>
<td>Research Focus</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Shim</td>
<td>Chatbot intervention (n = 14) or wait-list control group (n = 14)</td>
<td>Online recruitment on Shim platform</td>
<td>28</td>
<td>Effectiveness and adherence to a smartphone app delivering strategies used in positive psychology to improve happiness and reduce negative symptoms</td>
</tr>
<tr>
<td>Chatfuel</td>
<td>Group 1 (N = 158) participants simply read a dialogue between a chatbot and a human user. Group 2: participants (N = 88) interacted with a real chatbot</td>
<td>Online recruitment through Amazon Mechanical Turk</td>
<td>246</td>
<td>Empathy perception through the use of a conversational chatbot</td>
</tr>
<tr>
<td>FitTrack</td>
<td>Exercise advisor who motivated sedentary persons to obtain the minimum level of physical activity recommended by current public health guidelines</td>
<td>Students recruited from Massachusetts Institute of Technology</td>
<td>101</td>
<td>Working alliance inventory questionnaire (physical activity score)</td>
</tr>
</tbody>
</table>

Table 1. Studies evaluating conversational agents