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ABSTRACT

Convolutional neural networks (CNN) have recently
achieved state-of-the-art results in various applications. In
the case of image recognition, an ideal model has to learn in-
dependently of the training data, both local dependencies be-
tween the three components (R,G,B) of a pixel, and the global
relations describing edges or shapes, making it efficient with
small or heterogeneous datasets. Quaternion-valued convo-
lutional neural networks (QCNN) solved this problematic
by introducing multidimensional algebra to CNN. This pa-
per proposes to explore the fundamental reason of the suc-
cess of QCNN over CNN, by investigating the impact of
the Hamilton product on a color image reconstruction task
performed from a gray-scale only training. By learning inde-
pendently both internal and external relations and with less
parameters than real valued convolutional encoder-decoder
(CAE), quaternion convolutional encoder-decoders (QCAE)
perfectly reconstructed unseen color images while CAE pro-
duced worst and gray-scale versions.

Index Terms— Quaternion convolutional encoder-decoder,
convolutional neural networks, heterogeneous image process-
ing

1. INTRODUCTION

Neural network models are at the core of modern image
recognition methods. Among these models, convolutional
neural networks [1](CNN) have been developed to consider
both basic and complex patterns in images, and achieved top
of the line results in numerous challenges [2]. Nonetheless,
in the specific case of image recognition, a good model has
to efficiently encode local relations within the input features,
such as between the Red, Green, and Blue (R,G,B) channels
of a single pixel, as well as structural relations, such as those
describing edges or shapes composed by groups of pixels.
In particular, traditional real-valued CNNs consider pixels as
three different and separated values (R, G, B), while a more
natural representation is to process a pixel as a single multi-
dimensional entity. More precisely, both internal and global
hidden relations are considered at the same level during the
training of CNNs.

Thereby, and strong of many applications [3, 4, 5], quater-
nion neural networks [6, 7, 8] (QNN) have been proposed to
encapsulate multidimensional input features. Quaternions are
hyper-complex numbers that contain a real and three separate
imaginary components, fitting perfectly to three and four di-
mensional feature vectors, such as for image processing. In-
deed, the three components (R,G,B) of a given pixel are em-
bedded in a quaternion, to create and process pixels as enti-
ties. With the purpose to solve the above described problem of
local and global dependencies, deep quaternion convolutional
neural networks [9, 10, 11] (QCNN) have been proposed. In
the previous works, better image classification results than
real-valued CNN are obtained with smaller neural networks
in term of number of parameters. The authors claim that such
better performances are due to the specific quaternion algebra,
alongside with the natural multidimensional representation of
a pixel. Nonetheless, and despite promising results, no clear
intuitions of QCNN performances in image recognition have
been demonstrated yet. Moreover, these studies employ color
images for training and validation sub-processes.

Therefore, the paper proposes: 1) to explore the impact of
the Hamilton product (Section 2.1), which is at the heart of
the better learning and representation abilities of QNN; 2) to
show that quaternion-valued neural networks are able to per-
fectly learn color features dependencies (R,G,B). Quaternion
and real-valued neural networks are therefore compared on a
gray-scale to color image task that highlights the capability
of a model to learn both internal (i.e. the relations that ex-
ist inside a pixel) and external relations of an image. In this
extent, a quaternion convolutional encoder-decoder (QCAE)
(Section 3) 1 and a real-valued convolutional encoder-decoder
[12] (CAE) are trained to reconstruct a unique gray-scale im-
age from the KODAK PhotoCD dataset (Section 4.1). During
the validation process, an unseen color image is presented to
both models, and reconstructed pictures are compared visu-
ally and with the peak signal to noise ratio (PSNR) as well as
the structural similarity (SSIM) metrics (Section 4.3). To vali-
date the learning of internal dependencies, these models must
reconstruct the color image without prior information about

1Code is available at https://github.com/Orkis-Research/Pytorch-
Quaternion-Neural-Networks



the color space given from the training phase. The experi-
ments show that QCAE succeeds to produce an almost per-
fect copy of the testing image, while the CAE fails, by recon-
structing a slightly worst and black and white version. Such
behavior makes quaternion-valued models a better fit to image
recognition in heterogeneous conditions. Indeed, quaternion-
valued are less harmed by smaller and heterogeneous data,
due to their ability to dissociate internal and global dependen-
cies trough the Hamilton product, and convolutional process
respectively. Finally, it is worth noticing that these perfor-
mances are observed with a reduction of the number of neural
parameters of four times for QCAE compared to CAE.

2. QUATERNION ALGEBRA

The quaternion algebra H defines operations between quater-
nion numbers. A quaternion Q is an extension of a complex
number defined in a four dimensional space as:

Q = r1 + xi + yj + zk, (1)

where r, x, y, and z are real numbers, and 1, i, j, and k are
the quaternion unit basis. In a quaternion, r is the real part,
while xi + yj + zk with i2 = j2 = k2 = ijk = −1 is the
imaginary part, or the vector part. Such a definition can be
used to describe spatial rotations.

2.1. Hamilton product

The Hamilton product (⊗) is used in QNN to replace the stan-
dard real-valued dot product, and to perform transformations
between two quaternions Q1 and Q2 following:

Q1 ⊗Q2 =(r1r2 − x1x2 − y1y2 − z1z2)+

(r1x2 + x1r2 + y1z2 − z1y2)i+

(r1y2 − x1z2 + y1r2 + z1x2)j+

(r1z2 + x1y2 − y1x2 + z1r2)k. (2)

The Hamilton product allows quaternion neural network to
capture internal latent relations within the features of a quater-
nion (see Figure 1). In the case of a quaternion-valued neu-
ral network, the quaternion-weight components are shared
through multiple quaternion-input parts during the Hamilton
product , creating relations within the elements. Indeed, Fig-
ure 1 shows that, in a real-valued neural network, the multi-
ple weights required to code latent relations within a feature
are considered at the same level as for learning global rela-
tions between different features, while the quaternion weight
w codes these internal relations within a unique quaternion
Qout during the Hamilton product (right).

3. QUATERNION CONVOLUTIONAL
ENCODER-DECODER

The QCAE is an extension of the well-known real-valued
convolutional networks (CNN) [2] and convolutional encoder-

decoder [13] to quaternion numbers. Encoder-decoder mod-
els are simple unsupervised structures that aim to reconstruct
the input feature at the output [12]. In a CAE or QCAE,
encoding dense layers are simply replaced with convolutional
ones, while decoding dense layers are either changed to trans-
posed or upsampled convolutional layers [14]. In this extent,
let us recall the basics of the quaternion-valued convolution
process [10, 9]. The latter operation is performed with the
real-number matrix representation of quaternions. There-
fore, a traditional 1D convolutional layer, with a kernel that
contains K × K feature maps, is split into 4 parts: the first
part equal to r, the second one to xi, the third one to yj and
the last one to zk of a quaternion Q = r1 + xi + yj + zk.
The backpropagation is ensured by differentiable cost and
activation functions that have already been investigated for
quaternions in [15] and [16]. As a result, the so-called split
approach [8, 6, 9, 17] is used as a quaternion equivalence
of real-valued activation functions. Then, let γlab and Sl

ab ,
be the quaternion output and the pre-activation quaternion
output at layer l and at the indexes (a, b) of the new feature
map, and w the quaternion-valued weight filter map of size
K ×K. A formal definition of the convolution process is:

γlab = α(Sl
ab), (3)

with

Sl
ab =

K−1∑
c=0

K−1∑
d=0

wl ⊗ γl−1
(a+c)(b+d), (4)

where α is a quaternion split activation function [8, 6, 9, 17].
The output layer of a quaternion neural network is commonly
either quaternion-valued such as for quaternion approxima-
tion [7], or real-valued to obtain a posterior distribution based
on a softmax function following the split approach. Indeed,
target classes are often expressed as real numbers.

4. EXPERIMENTS AND RESULTS

This section details the experiments (Section 4.1), the models
architectures (Section 4.2), and the results (Section 4.3) ob-
tained with both QCAE and CAE on a gray to color task with
the KODAK PhotoCD dataset.

4.1. From gray-scale to the color space

We propose first to highlight the ability of a model to learn
the internal relations that compose pixels (i.e. the color
space), and ensures the robustness of the model in heteroge-
neous training/validation conditions. In this extent, models
are trained to compress and reproduce a unique gray-scale
image in an encoder-decoder fashion, and are then fed with
two different color images at validation time. Models are
expected to reproduce the exact same colors than the orig-
inal test samples. Experiments are based on the KODAK



Fig. 1. Illustration of the impact of the Hamilton product in a quaternion-valued neural network layer, compared to a traditional
real-valued neural network layer

PhotoCD data-set 2. A random image (See Figure 2) is
converted to gray-scale following the basic luma formula
[18] and used as the training sample, while the others orig-
inal color images are used as a validation subset. There-
fore, training is performed on a single gray-scale image of
512 × 768 pixels with the gray value of a given pixel px,y
repeated three times to compose a quaternion Q(px,y) =

0 + GS(px,y) i + GS(px,y) j + GS(px,y) k. For a fair
comparison, the gray value is also concatenated three times
for each pixel in the real-valued CNN. Finally, the quaternion
Q(px,y) = 0 + R(px,y) i + G(px,y) j + B(px,y) k based
on color images is composed and processed at validation
time, while R,G,B components are concatenated for CNN.
Reconstructed pictures are evaluated visually and with the
peak signal to noise ratio (PSNR) [19] as well as structural
similarity (SSIM)[20] metrics.

4.2. Models architectures

QCAE and CAE have the same topology. It is worth noticing
that the number of output feature maps is four times larger
in the QCAE due to the quaternion convolution, meaning 8
quaternion-valued feature maps correspond to 32 real-valued
ones. Therefore, each model has two convolutional encoding
layers and transposed convolutional decoding layers that deal
with the same dimensions, but with different internal sizes.
Indeed quaternion features maps are of size 8 and 16 to deal
with an equivalent size of 32 and 64 for the CAE. Such di-
mensions ensure an encoding dimension slightly smaller than

2http://r0k.us/graphics/kodak

the original picture size. Kernel size and strides are set to
3 and 2 across all the layers respectively. Training is per-
formed during 3, 000 epochs with the Adam optimizer [21],
vanilla hyper-parameters and a learning rate of 5e−4. The
hardtanh [22] activation function is used in both convolutional
and transposed convolutional layers, and for both QCAE and
CAE. Finally, quaternion parameters are initialized following
the proposal of [23].

4.3. Results and discussions

The results are reported in Figure 2. It is first important to
notice that quaternion-valued CAE produced almost perfect
color images w.r.t. to the test, while CAE completely failed
to capture colors by outputting a black and white version. As
motivated in Section 2, the quaternion representation along-
side with the Hamilton product force the QCAE to consider
and preserve the internal latent relations between the compo-
nents of a quaternion (i.e. a pixel). Consequently, QCAE eas-
ily captures the color space from a gray-scale image since it
learns to produce the exact same values from the input at the
output, while real-valued CAE learns a gray-scale mapping
by generating three identical components.

Other numerical measures are obtained based on the
PSNR and SSIM of the reconstructed pictures. Due to the
fact that CAE fails to learn colors, we propose to compare
CAE results to the gray-scale equivalent of the test pic-
tures. QCAE results are compared to the true color images.
Consequently, we can measure how good each model is to
reconstruct testing images, without being biased by the fact
that CAE fails to learn colors. QCAE obtains a PSNR of



Fig. 2. Results on the gray-scale to color task with the KODAK data-set. A gray-scale training picture (Train) and two coloured
original test images (Original Test) are randomly selected on the KODAK data-set and reproduced by both QCAE and CAE.

31.68dB and 28.06dB compared to 29.95dB and 27.01dB
obtained with the CAE for the parrots and women images
respectively. Nonetheless, while PSNR measures the amount
of noise contained in an image, SSIM reports the structural
and visual correlation of two pictures. SSIM of 0.96 and 0.93
are reported for QCAE compared to 0.87 and 0.86 for the
CAE on the parrots and women images respectively. QCAE
offered a better reconstructed image quality in both PSNR
and SSIM metrics, even considering the inability of CAE to
learn the color space. Moreover, the QCAE is composed of
6.4K parameters compared to 25K for the CAE. It is easily
explained by the quaternion algebra. In the case of a dense
layer with 1, 024 input values and 1, 024 hidden units, a real-
valued model will have 1, 0242 ≈ 1M parameters, while to
maintain equal input and output nodes (1, 024) the quaternion
equivalent has 256 quaternions inputs and 256 quaternion-
valued hidden units. Therefore the number of parameters for
the quaternion model is 2562 × 4 ≈ 0.26M.

Discussions. In the one hand, the size reduction offered by
QNN turns out to produce better results with an higher gen-
eralization capacity and may have other advantages such as
a smallest memory footprint while saving models. Then, the
natural internal relation representation induced by the Hamil-
ton product, alongside with the convolution process provides
an important step toward better performances of models that
operate in heterogeneous contexts, or with very small data-
sets. The small number of neurons allows the QCAE to ob-
tain “robust” and “compact” memory that build a robust hid-
den representations of the image content in the latent space.

Indeed, QCAE are not altered by heterogeneous color spaces
(e.g. corpus of boats with a predominating blue spectrum),
and are able to learn internal relations with very few exam-
ples trough the Hamilton product.

5. CONCLUSION

This paper proposes to clarify the recent better performances
observed on image recognition with quaternion-valued neu-
ral networks, through a investigation of the impact of the
Hamilton product. The conduced experiments demonstrate
that quaternion convolutional encoder-decoders are able to
perfectly learn the color-space with a training performed on
a unique gray-scale image, while real-valued CAE fail, prov-
ing that the Hamilton product allows QNN to encode local
dependencies such as the RGB relation of a pixel. Moreover,
QCAE produce better quality reconstructions with respect to
the PSNR and SSIM metrics than CAE, even with consid-
ering the unability of CAE to learn colors. Moreover, the
quaternion representation offers more compact and expres-
sive models. Thereby, the experiments have validated the
initial intuition that the Hamilton product, alongside with the
convolution process, allows QCAE to better separate both
local and global dependencies of color images. These results
are an important step forward for a more robust image recog-
nition system in heterogeneous conditions. Future work will
attempt to introduce the efficient quaternion representation to
image compression and image recognition.
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