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Abstract. Since Atom Probe Tomography reconstruction is based on ion back projection onto the emitter
surface, understanding of the evolution dynamics of the tip shape is essential to get an accurate picture
of the initial sample. In this article, an analytical approach is presented to dynamically describe the
morphology evolution of complex multilayer structures during field evaporation. The model is mostly
founded on the common continuity hypothesis, except for the classical hemispherical description of the tip
apex, which is extended to a wider class of a constant mean curvature surface of revolution, the Delaunay
surfaces. The results obtained from this approach are comparable with standard numerical simulations, but
the analytical character of the model gives more insight into the principles driving the emitter morphology.
In particular, a complete picture of curvature evolution during the transition from one layer to another is
provided. Additionally, a field evaporation threshold for tip fracture in a bilayer sample is highlighted.

1 Introduction

Atom probe tomography has proven to be a unique
characterization tool for a wide range of applications, and
especially in the field of microelectronics [1–3]. The out-
standing depth resolution, revealing atomic planes, makes
it an ideal candidate for the analysis of thin layers. How-
ever, it is known that many artefacts are present in the
reconstruction of such a structure, due to inhomogeneous
evaporation fields, which in turn result in complex emit-
ter morphology [4]. Indeed, ion back projection onto a
hemispherical surface is at the core of every reconstruc-
tion protocol [5–10].

While great efforts have been made in the field of
numerical simulation to understand the surface shape
evolution of such a sample [4,11–17], there is presently
no theoretical framework accounting for this phenomenon.
In a previous study, we demonstrated that a few simple
ingredients were necessary to reproduce common artefacts
in the reconstruction [18]. Here, we present a model in the
same vein based on an original mathematical definition of
the emitter surface shape. Indeed, we extent the classical
hemispherical representation to a larger class of constant
mean curvature surfaces of revolution, the Delaunay sur-
faces [19]. Those surfaces, which are usually used to model
the surface of a liquid film [20], are perfectly suited to
the description of field evaporated surfaces if one assumes
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the common relationship between an electric field and the
mean radius of curvature (F ∝ 1/R).

The modeling is applied to a complex multilayer struc-
ture in order to compare the computed shape of the emit-
ter with results obtained from state-of-the-art numerical
simulation. Both methods give quite similar results, but
the analytical character of the present approach makes it
possible to highlight precisely the mechanisms governing
the shape evolution dynamics. In particular, we show that
it is relatively incomplete to state that during the transi-
tion from one layer to another the radius of curvature of
the phase with higher evaporation field decreases, while it
increases for the phase with the lower evaporation field.
Eventually, we highlight a field ratio threshold between
layers, above which we might expect tip fracture.

2 Modeling

2.1 Hypothesis

The present modeling deals with the evolution of the field
emitter shape during atom probe analysis, when the
sample is made up of several phases stacked in layers
perpendicular to the tip axis, in the optimum configu-
ration to analyze layers. In contrast, layers parallel to the
tip axis lead to major trajectory overlaps due to local
magnification effects and more biased composition data.
Similar to the approaches used in APT reconstruction
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algorithms, the atomic details of the surface are ignored in
the present approach and the surface has been represented
at a mesoscopic scale by a smooth continuous mathemat-
ical function. Basically, the initial sample prior to field
evaporation is then depicted as a hemispherical cap of
radius R0 seated on a truncated cone with shank angle α.
As a specific adaptation for our model, we now introduce
N interfaces delimiting N +1 layers stacked in the emitter
tip (Fig. 1a). Each interface i is labelled with its depth zi
and its field ratio fi. This field ratio is define as follows:
considering an interface separating a layer of material B
seated on a layer of material A, the interface is assigned
with the field ratio f = FE

B /FE
A where FE

B and FE
A are the

zero-barrier evaporation fields of material B and A respec-
tively (Fig. 1b). Note that this field ratio can be tuned to
take into account specific operating conditions, as shown
in reference [18]. Now, the aim of this study is to describe
the emitter shape evolution when material is removed by
field evaporation.

To this end, we introduce the basic relationship
between the emitter mean radius of curvature R and the
surface field F [21]:

F =
V

kfR
, (1)

where V is the electric potential applied to the tip and
kf is a geometrical factor known as the field factor (note,
this formula is only valid for positive R). In the following,
we assume that this formula can be applied locally over
any surface point, with a constant factor kf . From this
consideration, one can infer several rules governing the
emitter shape evolution:

1. There is tangential continuity all over the emitter sur-
face. Otherwise R would be locally null and F infinite:
the surface residence time of such a point (i.e., atom)
is null.

2. Each phase of the sample develops a constant mean
curvature surface (e.g., the hemispherical cap when
the sample is homogeneous). Indeed, the progressive
removal of atoms with high evaporation probability
results in a surface with a constant evaporation prob-
ability, and thus a constant electric field.

3. For the same reason, the mean radii of curvature of two
different phases A and B compensates the evaporation
field differences as follows:

RA

RB
=

FE
B

FE
A

. (2)

Actually, these simple rules have been known for many
decades: in particular, statements (1) and (2) form the
cornerstone of the original reconstruction algorithm
developed at the early stage of APT [5].

However, no reconstruction method has been proposed
to account for sample heterogeneities according to equa-
tion (2). In a recent article, we have already tried to
establish the foundations of such a method for a bilay-
ered tip [18]. Here, we present a more general and reliable
model based on an original mathematical representation
of the emitter surface.

2.2 Delaunay surfaces

According to rule (2), and pointing out that the stud-
ied geometry exhibits rotational symmetry, the Delaunay
surfaces appear as a natural representation of the emit-
ter shape. Indeed, those surfaces obtained by rotating the
roulettes of the conics are the only surfaces of revolution
with constant mean curvature [19]. They can be divided
into six distinct groups, according to the nature of the
original conics: the plane, the catenoid, the cylinder, the
sphere, the unduloid and the nodoid. The first two groups
are not of interest for the present study since their mean
curvature is zero. In addition, the cylinder and the sphere
can be obtained as particular cases of the onduloid class;
thus we only have to deal with the onduloid and nodoid
surfaces. The latter are obtained by rotating the roulettes
of the ellipse and the hyperbola respectively, and are
entirely determined by the half-axes a and b of the corre-
sponding conics as depicted in Figure 2.

From the well-defined procedure represented in
Figure 2a to compute an unduloid, one can infer the con-
struction of the cylinder and the sphere as particular cases
of the unduloid. Indeed, if a = b the ellipse turns into a
circle, and the resulting curve gives a cylinder. If b = 0, the
ellipse turns into a segment and the resulting curve gives
a series of spheres. Also, note that the nodoid presents a
self-intersection, rendering the inner part of the surface
unusable.

Figure 3 is a diagram outlining the principles of the
present model. At each stage of evaporation, layers sub-
jected to field evaporation are assigned with a specific
Delaunay surface. This translates into a set of N + 1
trios of parameters (ai, bi, εi) representing the associated
conics. Indeed, on the one hand εi = 1 for an unduloid,
obtained from the rotation of an elliptic roulette and
εi = −1 for a nodoid, obtained from the rotation of a
hyperbolic roulette. On the other hand, ai and bi are the
half-axes of the conics.

We now make use of rules (1) and (3) to set those
parameters. At this stage of the discussion, it is impor-
tant to recall the expression of the local mean radius of
curvature R for a surface of revolution [19]:

1
R

=
1
2

(
1

RC
+

1
N

)
, (3)

where RC is the local radius of curvature of the generatrix
(the curve rotated around the revolution axis) and N is
the distance between the generatrix and the revolution
axis, in the direction of the local surface normal (Fig. 4).

Fortunately, it is quite straightforward to express those
values for a Delaunay surface. For a surface point at a
distance r from the revolution axis, it writes as:

N = εi
2air

2

b2i + εir2

RC = −εi
2air

2

b2i − εir2

R = 2ai. (4)
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=
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Fig. 1. (a) Classically, the initial tip shape is modelled by a hemispherical cap with radius R0 seated on a truncated cone with
shank angle α. The sample is made up of several layers stacked in layers perpendicular to the tip axis. They are separated by
interfaces, that are assigned with their depth z and their field ratio f , (b) a layer of material B seated on a layer of material A.
The field ratio is defined as the ratio of the evaporation fields: f = FE

B /FE
A .

a
b

a

b

(a) (b)

Fig. 2. (a) The roulette of the ellipse is found by tracing out a focus of an ellipse, rolling without friction on an axis. Rotating
this roulette around the same axis gives the constant mean curvature surface called unduloid, (b) the roulette of the hyperbola
is found by tracing out a focus of a hyperbola rolling without friction on an axis. Green lines are the hyperbola. The second
hyperbola (dashed line) is obtained by rolling the first hyperbola toward the left side. The dashed brown lines point toward
the focus of each hyperbola, which generate the roulette. The asymptotes of the first hyperbola are shown as a black line to
evidence the semi-axes a and b as indicated by black arrows. Rotating this roulette around the red axis gives the constant mean
curvature surface called a nodoid. In practice, the inner part of the nodoid in the dotted frame is unused since the normal is
oriented toward the revolution axis.
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Fig. 3. The field evaporated surface is modelled by a set of Delaunay surfaces. Each layer, i.e., each different material, is
modelled by a specific surface, parametrized by the trio of parameters (ai, bi, εi).
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Outward normal

Osculating circle to
the generatrix 

r

Fig. 4. The mean curvature of a surface of revolution equates
to the average of the curvature 1/RC of the generatrix and of
the inverse normal length 1/N .

Now consider layers i and i + 1, separated by the
interface i. Equation (2) together with the geometrical
formulae of equation (4) immediately yields:

ai+1 = ai
Ri+1

Ri
=

ai

fi
. (5)

And since there is tangential continuity over the tip sur-
face (rule (1)), there is equality across the normal, N , on
both sides of the interface at a distance rc from the revo-
lution axis. Thus one can infer:

εi+1
2ai+1r

2
c

b2i+1 + εi+1r2c
= εi

2air
2
c

b2i + εir2c
. (6)

Injecting equation (5) and rearranging leads to:

b2i+1 = εi+1

(
b2i + r2C

(
1
fi

− 1
))

. (7)

The role of this equation is two-fold. First, it defines
unambiguously the sign of εi+1, and thus the nature of

the i + 1th Delaunay surface. Also, it gives an expression
for bi+1 in relation to bi.

2.3 Dynamic shape evolution

In the previous section, we introduced a set of expressions
establishing a link between the parameters of layer i + 1
and i. We shall now explain how one can compute the
emitter shape evolution during evaporation. In practice,
the parametrization of the roulettes is rather complicated,
and this makes it impossible to obtain an analytical for-
mula describing this dynamic evolution. Thus, a numerical
resolution of the problem was adopted.

The progressive evaporation of the emitter is described
as a step by step process. Each of those step correspond
to the evaporation of a material of thickness dze at the
tip apex. Figure 5 depicts the principles of the algorithm
used to solve the problem, with only two layers for the
sake of simplicity. The initial emitter shape is the black
line. The first step of the algorithm is to find the emit-
ter shape after removal of a material of thickness dze.
This shape is denoted by ©2 on Figure 5 (red and blue
thick lines). It is worth mentioning that the top layer of
the tip (red thick line) is necessarily a truncated sphere.
Indeed, this is the only Delaunay surface that crosses the
revolution axis and one can infer εtop = 1 and btop = 0.
In addition, it was demonstrated in the previous section
that parameters of layer i + 1 (ai+1, bi+1, εi+1) can be
deduced from the knowledge of parameters of layer i (ai,
bi, εi). Therefore, the value of atop, the half radius of cur-
vature of the hemispherical cap (red thick line), sets the
shape of all the underlying layers (blue thick line). In par-
ticular, one can see that the solution we are looking for
(surface ©2 ) ensures the tangential continuity of the sur-
face at the base of the field evaporated area. So, we end
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Layer 1

Layer 2Layer 2

dze

z

r

zk, rk

zk+1, rk+1

ds

dzk, drk

Interface 1

r
C

a2, b2, ε2

a1 = atop, b1 = 0, ε1 = 1

Fig. 5. Numerical resolution of the geometric problem. The green frame illustrates the use of equation (8) to compute the
surface of one of the layers. The orange frame illustrates the use of equations (5) and (7) to compute how the surface parameters
change across the interface. Surface ©2 corresponds to the solution for atop, resulting in a tangential continuity at the base
of the field evaporated area. Surface ©1 corresponds to the crossing with the previous surface: atop,t has to be decreased.
Surface ©2 corresponds to a surface which never crosses the initial surface: atop,t has to be increased.

up with the problem of finding value atop corresponding
to the removal of a material of thickness dze on the tip
axis, such that there is tangential continuity at the base
of the field evaporated area.

To solve this geometric problem, several values of atop

are tried and the tangential continuity condition is checked
for each of them. In practice, the continuity is checked by
computing a discrete representation of the emitter shape.
With this aim, we introduce a small ds (corresponding to
the curvilinear abscissa step) and the shape is computed
step by step. Indeed, the following formulae hold for the
roulettes of the conics:

dz = ds
b2i + εir

2

2air

dr = dz

√
4a2

i r
2

(r2 + εib2i )
2 − 1, (8)

where dr and dz are respectively the radial and in-depth
infinitesimal displacements along the surface (see axes r
and z in Fig. 5). Thus, from a point (rk, zk) on the surface,
the point (rk+1, zk+1) is easily obtained as rk+1 = rk +dr
and zk+1 = zk + dz (green frame in Fig. 5). The whole
surface computation proceeds as follows. We shall denote
atop,t a test value for atop, and ds the curvilinear abscissa
step. Considerer that atop,t corresponds to surface ©1 in
Figure 5. The first point (r0, z0) of the surface is (0, dze).
The first layer shape (red dashed line) is computed step
by step from (8) (a1 = atop,t, b1 = 0 and ε1 = 1). When
interface 1 is reached at rc, (5) and (7) are used to com-
pute the parameters (a2, b2, ε2) (orange frame in Fig. 5).
Again, we make use of (8) with those new parameters to
compute the shape of the second layer (blue dashed line).
In this particular case, one can see that the computed

shape crosses the initial surface, and thus the continuity
condition is not fulfilled. Indeed, atop,t is too large com-
pared to the solution we are looking for (surface ©2 ).

Based on this remark, the test values atop are chosen
following a binary search algorithm. This algorithm
consists of searching the solution atop in an interval
[atop,min, atop,max]. Obviously, the interval has to be large
enough to ensure that the solution is in between the
boundaries. The first test value for atop is chosen as the
mean value of the interval boundaries: atop,t = (atop,min +
atop,max)/2. The corresponding shape is then computed
as explained in the previous paragraph. If the surface
crosses the initial surface (surface ©1 in Fig. 5), atop,t is
too large compared to the solution (surface ©2 ). Therefore,
the search interval becomes [atop,min, atop,t]. On the con-
trary, if the surface never crosses the initial surface
(surface ©3 ), atop,t is too small compared to the solution
and the search interval becomes [atop,t, atop,max]. A second
test value for atop is then chosen as the mean value of the
new interval boundaries and the corresponding shape is
computed. The interval is subsequently modified accord-
ing to the rules mentioned above. The process is repeated
until the interval size is below a given threshold Δa (which
turns to be the accuracy of the solution). atop is then the
mean value of the last interval boundaries.

Eventually, the shape of the emitter is known after
removal of a material of thickness dze on the tip axis. This
surface becomes the “initial surface”, and a new surface
is computed following the same process after removal of a
total material of thickness 2dze. Step by step, this algo-
rithm provides a dynamic picture of the emitter morphol-
ogy all along the field evaporation process.

This semi-analytical approach provides a fast way to
compute the dynamic evolution of the emitter shape,
which is of special interest in order to understand
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artefacts due to local magnification: indeed, the mean
radius of curvature of each phase is known all through the
evaporation process. In the following section, we will com-
pare our semi-analytical approach with finite-differences
numerical simulations, with a special focus on the emitter
curvature evolution during field evaporation of multilayer
structures. For this purpose, one needs to compare the
emitter morphology at the same “moment” of evapora-
tion. From the present modelling, it would appear natural
to consider the depth of evaporation on the tip axis as
a scale of the evaporation progress. However, it is much
more common in the literature to evaluate this progress
from the number of evaporated atoms, or similarly, from
the evaporated volume. Note, it is also in this form that
atom probe experimental raw datasets are collected. Con-
sequently, to each step of the present algorithm, corre-
sponding to the removal of a material of thickness dze, we
associate an evaporated volume on the emitter surface.
This computation is done once the dynamic evolution of
the emitter has entirely been computed. As mentioned
previously, our modelling provides a discrete representa-
tion of the surface at successive instants of evaporation
(corresponding to successive removal of thickness dze).
Figure 6 depicts the output of such a computation. The
points contained in orange cells delimit the initial emitter
shape (note that only half of the emitter has to be consid-
ered due to symmetry). All the others are points computed
from the application of our algorithm. Consider the points
contained in green cells. Those points delimit the emitter
surface at the same step of the algorithm, after removal
of a total thickness 4dze on the tip axis. In order to
associate an evaporated volume to this surface, a Voronöı
partition of the whole set of surface points obtained from
the modeling is computed: it results in the cell partition
that one can see in Figure 6. Each point is then assigned
with a virtual atomic volume Vat = 2πrAcell, where r is
the distance from the point to the revolution axis and Acell

is the area of the corresponding Voronöı cell. Eventually,
the evaporated volume corresponding to the green surface
is obtained by summing the atomic volumes of the points
being part of it. Thus, we are able to discuss the emit-
ter morphology evolution as a function of the evaporated
volume of matter, as in Figure 7 for instance.

3 Basic properties of the modeling

In this section, we demonstrate that the simple ingredients
introduced previously are sufficient to reproduce the basic
features of field evaporation usually highlighted by finite-
difference numerical simulations. Additionally, we discuss
common assumptions related to the curvature evolution
during the transition from one layer to the other. We thus
identify a field ratio threshold above which the tip fracture
is expected.

3.1 A complete description of curvature evolution

Numerous studies have been conducted to understand the
shape evolution of multilayer structured emitters by the

Surface area: Acell

Atomic volume: 2   .r.Acell

r

π

Fig. 6. Voronöı partition of the whole set of points obtained
from the modeling. Cells filled in orange delimit the initial
emitter shape. Cells filled in green correspond to one specific
surface obtained from the modelling. The evaporated volume
corresponding to this surface is obtained by summing all the
individual atomic volumes of green cells.

mean of atomic scale numerical simulation. They consis-
tently found that during the transition from one layer to
the other, the radius of curvature of the phase with higher
evaporation field decreases, while it increases for the phase
with the lower evaporation field [12,17]. In order to clarify
this point, we have modeled the evaporation of an emit-
ter structure similar to that presented in reference [17]
since the modification of the apex curvature was rigor-
ously tracked. This structure is made up of three layers
with different evaporation fields stacked in a cylindrical
shaft with a radius of 25 nm. The stack consists of a high
field top layer (blue), a low field intermediate layer (red),
and a high field bottom layer (green), see Figure 7. The
field ratio of the first interface is set to f = 1.5 while it
is set to f = 0.25 for the second interface. The evolution
of the emitter shape is presented together with the mean
curvature evolution of each layer (Fig. 7). Note here that
we plotted the mean curvature, which is simply the inverse
of the mean radius of curvature.

The computed shapes agree well with the results pre-
sented in reference [17]. In particular, the unduloid sur-
face modeling the intermediate red layer is ideally suited
to represent the formation of a cone like shape (2nd pic-
ture of Fig. 7a), a characteristic feature of the transi-
tion from a high evaporation field layer (top blue layer)
to a low evaporation field layer (intermediate red layer).
Also, the nodoid surface modeling the bottom green layer
makes it possible to depict the retention of higher evap-
oration field atoms at the emitter apex (3rd picture of
Fig. 7a). With regards to the mean curvature evolution
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Fig. 7. (a) Emitter shape during field evaporation. The top blue layer is a high field material, the intermediate red layer is a
low field material and the bottom green layer is again a high field material. The field ratio of the first interface (between blue
layer and red layer) is set to f = 1.5 while it is set to f = 0.25 for the second interface (between red layer and green layer),
(b) mean curvature evolution for each layer of the structure. The color code corresponds to (a).

during evaporation, there is again good qualitative agree-
ment with numerical simulation studies. However, we are
not entirely happy with the finding stating that the radius
of curvature of the phase with higher evaporation field
decreases (blue and green curves), while it increases for the
phase with the lower evaporation field (red curve). Indeed,
it is clear from the plot in Figure 1b that during the tran-
sition from the top blue layer (high field) to the interme-
diate red layer (low field), mean curvatures of both phases
are increasing (mean radii of curvature of both phases are
respectively decreasing). Note that this evolution is also
quite unambiguous in the plots reported in reference [17].
The evolution is more subtle for the transition from the
intermediate red layer (low field) to the bottom green layer
(high field). When the first atoms of the bottom layer
are evaporated, there is a sharp rise of the mean cur-
vature of the corresponding surface (green curve around
100 000 nm3, Fig. 7b), followed by a slower decrease.
Indeed, one can see that once the high evaporation field
surface curvature has reached its maximum value, both
layer curvatures decrease and this is what drives the emit-
ter morphology. Note that the sharp rise of the curvature
from the value of the cylindrical shaft curvature
(0.02 nm−1) to a higher value also happens during the
first transition from the top layer to the intermediate layer
(red curve around 20 000 nm3, Fig. 7b), showing that

this is not a characteristic feature of the low on high
transition. The curvature evolution during the transition
from one layer to another is summarized as follows:

– when the bottom layer started to evaporate, there was
a sharp evolution of its curvature toward a value of
γ/f , where γ is the top layer mean curvature and f is
the field ratio of the interface, as a direct consequence
of equation (2). This evolution can be an increase or
a decrease depending on the field ratio and the initial
bottom layer curvature (preset by the cylindrical or
conical shaft);

– then, either both layer mean curvatures increase (high
on low case) or decrease (low on high case) together
to ensure that γtop/γbottom = f throughout the
evaporation.

3.2 A field ratio threshold for tip fracture

We now consider a structure made up of a layer, B, seated
on a layer, A, and separated by an interface with field
ratio f . Although it has been known for a long time that
large values of f can lead to tip fracture, we shall now
highlight a quantitative value for the stability limit.
In a previous study, we demonstrated that below a critical

21001-p7



The European Physical Journal Applied Physics

Fig. 8. Evaporation sequence of a bilayer structure. The field ratio at the interface is 2.5. The low evaporation field red layer
is evaporating while the blue layer is not, eventually resulting in a fracture of the tip.

value of field ratio f = 2, the bottom layer will develop a
negative meridian radius of curvature RC,A at the inter-
face [18]. This is directly seen by injecting equation (3) in
equation (2):

1
RC,B

+ 1
NB

1
RC,A

+ 1
NA

= f. (9)

Noting that there is tangential continuity of the surface at
the interface and that the top layer is forced to be mod-
elled by a hemispherical cap as explained in the modeling
section, one can infer that NA = NB = RC,B and thus,
rearranging equation (9) leads to:

RC,A =
RC,B
2
f − 1

. (10)

Note this expression is only valid at the interface. Never-
theless, since RC,B is the positive meridian radius of the
hemispherical cap, one can note that f > 2 implies that
RC,A is negative. This in turn, forces the bottom layer to
be modeled by an unduloid surface since this is the only
Delaunay surface with negative meridian radius of cur-
vature. Let us now assume that the emitter structure is
confined in a cylindrical shaft of mean radius of curvature
Rcyl. Thus, the mean radius of curvature of the hemi-
spherical cap is Rcyl/2 before the evaporation of the bot-
tom layer has started. From equation (1), one can see that
the electric field above the hemispherical surface is 2Fcyl,
where Fcyl is the electric field above the cylindrical surface.
But the field ratio is strictly superior to 2, and therefore
the bottom layer starts to evaporate before the top layer.
The former develops an unduloid shape confined in the
cylindrical shaft. Unfortunately, this evolution decreases
the mean radius of curvature of the bottom layer surface.
Indeed, the cylinder is a particular case of unduloid, and
more precisely this is the unduloid that maximizes the
mean radius of curvature of the surface. Thus, the field
surface above the bottom layer is even higher, and even-
tually the whole bottom layer evaporates before the top
layer starts to evaporate: it might results in a tip fracture.
In order to confirm this unexpected behavior highlighted
by the present modeling, we simulated the evaporation
of a bilayer structure with a field ratio f = 2.5, using
the numerical simulation code presented in reference [14].
As predicted, the bottom low evaporation layer is evapo-
rating while the tip layer is not (Fig. 8), eventually
resulting in tip fracture. Also, an unduloid shape is clearly
seen, validating the use of Delaunay surfaces to model the
field emitter shape.

4 Conclusion

A semi-analytical model has been presented to describe
the field evaporation of complex multilayer structures. The
cornerstone of the approach is the use of Delaunay surfaces
to model the surface of the emitter. Indeed, those constant
mean curvature surfaces of revolution are naturally suited
to model constant field evaporation probability surface.
Assuming the basic relationship between electric field and
curvature (F ∝ 1/R), the model exhibits comparable fea-
tures to those obtained from conventional numerical sim-
ulations. We modeled the dynamic shape evolution of a
complex multilayer structure and demonstrated that the
transition from one layer to another is a two steps process.
First, there is a sharp evolution of the bottom layer cur-
vature toward a value compensating the field evaporation
difference between both layers. Then, both layer mean cur-
vatures increase or decrease together to keep their ratio
constant throughout the evaporation. Additionally, we
highlighted a field ratio threshold f = 2, corresponding to
a top layer field evaporation amounting to twice the value
of the bottom layer, above which we might expect a tip
fracture. Note that the present approach is easily general-
izable to any emitter structure with revolution symmetry.
Further work will focus on the integration of an ion pro-
jection law in the modeling to get a complete picture of
multilayer structure evaporation. We hope this analyti-
cal approach will eventually lead to improvements of the
reconstruction method.
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(Gauthier-Villars, Paris, 1873)

21. R. Gomer, Field Emission and Field Ionization (Harvard
University Press, Cambridge, Massachusetts, 1961)

21001-p9


	ap150233-web.pdf
	1 Introduction
	2 Modeling
	3 Basic properties of the modeling
	4 Conclusion
	References


