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Abstract 1 

Studies on invertebrates and small vertebrates demonstrated the underappreciated importance 2 

of the non-consumptive effects (NCE) of predators on their prey. Recently, there has been a 3 

growing interest for such effects in large vertebrates. Here, we review the empirical literature 4 

on large carnivore-ungulate systems to map our knowledge of predation NCE (from trait 5 

modification to the consequences on prey populations), and identify the gaps in our 6 

approaches that need to be fulfilled to reach a comprehensive understanding of these NCE. 7 

This review reveals (i) biases in the studies towards North American (and to a lesser extent 8 

African) ecosystems, protected areas, and investigation of NCE by wolf Canis lupus (and to a 9 

lesser extent African lion Panthera leo); (ii) a diversification of the systems studied in the past 10 

decade, which led to contrasted conclusions about the existence of NCE; (iii) that most 11 

existing work studied the effects caused by one predator only, even in ecosystems 12 

characterized by a rich carnivore community; and (iv) that the majority of the literature on 13 

NCE focused on the anti-predator behavioural responses of prey, whereas this is only the tip 14 

of the iceberg of NCE. Indeed, little is known on the other NCE components (energetic costs, 15 

stress, reproduction, survival, and population dynamics) and the links between the different 16 

components. Linking anti-predator behavioural responses to demography is thus the key 17 

challenge ahead of us to fully understand the NCE of predators on their prey in large 18 

mammals. 19 

 20 

Keywords: anti-predator responses, lethal effects, predator-prey interactions, risk effects, 21 

ungulates.  22 

  23 
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1. Introduction 24 

Predation is one of the most important interspecific interactions that shape communities 25 

(Paine, 1992). Predators have two kinds of effects on prey populations. First, by killing prey, 26 

predators affect the survival of prey individuals, and may ultimately affect prey population 27 

dynamics if the mortality is additive and not compensatory (i.e. predators kill individuals that 28 

are not weak or expected to die from another cause soon). This is referred to as the lethal 29 

effects or consumptive effects (this is the term we will use in this review - CE hereafter) of 30 

predators on their prey populations (Schmitz et al., 1997; Preisser et al., 2005; Creel and 31 

Christianson, 2008). Second, the mere presence of predators in the landscape represents a 32 

threat that leads prey to develop anti-predator responses, which often entail modifications of 33 

morphological, physiological or behavioural traits (Lima and Dill, 1990; Boonstra et al., 34 

1998). These anti-predator responses should incur costs (food-mediated or stress-mediated), 35 

which may lead to a decrease in prey performance (growth, reproduction, survival), and 36 

ultimately affect prey population dynamics. This is referred to as the non-lethal effects or risk 37 

effects or non-consumptive effects (this is the term we will use in this review - NCE 38 

hereafter) of predators on their prey populations (Schmitz et al., 1997; Preisser et al., 2005; 39 

Creel and Christianson, 2008).  40 

Historically, CE of predation were the most studied aspect of predation. NCE were not 41 

considered (Roughgarden and Feldman, 1975; Lima, 1998) or thought to have a negligible 42 

impact on prey population dynamics (Sih et al., 1985). However, studies on the trade-off 43 

between foraging and predation risk avoidance in invertebrates and small vertebrates revealed 44 

that anti-predator behavioural responses lead to a reduction in activity (Peacor and Werner, 45 

1997; Peacor, 2002) or a spatial/temporal avoidance of the predator associated with a shift to 46 

foraging areas/times where resource quality is lower (Abrams, 1984; McNamara and Houston, 47 

1987; Lima and Dill 1990; Peckarsky et al., 1993; Brown, 1999; Brown and Kotler, 2004; 48 
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Fraser et al., 2004). Besides, studies on stress in snowshoe hares (Lepus americanus) showed 49 

that exposure to high predation risk leads to chronic stress, which has an impact on variables 50 

such as the quantity of leucocytes and the body mass, and ultimately leads to smaller and 51 

lighter litter (Boonstra et al., 1998; Sheriff et al., 2009). These studies suggested that anti-52 

predator behavioural responses carry costs for prey, and ultimately have consequences on 53 

population parameters such as survival and reproduction, which may affect prey population 54 

dynamics similarly to the CE of predation (Peckarsky et al., 1993; Nelson et al., 2004; 55 

Preisser et al., 2005). For instance, in the Lake Erie (USA-Canada), the NCE of an invasive 56 

species (Bythotrephes logimanus) on its prey populations (Daphnia mendotae and Daphnia 57 

retrocurva) was ten times greater than CE (Pangle et al., 2007). This importance of NCE was 58 

made clear in a meta-analysis mostly based on invertebrate predator-prey systems, which 59 

revealed that predators can have a greater effect on prey demography through NCE than 60 

through CE, with NCE that can reach 85% of the total predator effect (Preisser et al., 2005).  61 

In large mammals, observations and experiments are more difficult to carry out than in 62 

invertebrate and small vertebrates, and the study of the NCE of predation is more recent. 63 

However, in a context of rapidly changing large carnivore populations (Chapron et al., 2014; 64 

Ripple et al., 2014), there is a growing interest in understanding large carnivore effects on 65 

prey behaviour, physiology and abundance, as well as the cascading effects on ecosystem 66 

functioning (Estes et al., 2011). The widespread existence and diversity of anti-predator 67 

responses suggest that NCE are likely to occur in large mammals. However, there is a dearth 68 

of comprehensive studies on NCE that encompass the impact of a predator on its prey, from 69 

trait modification to the consequences on the prey population dynamics. Whether large 70 

mammalian carnivores affect their prey populations through NCE is thus debated (Creel and 71 

Christianson, 2008; White et al., 2011; Middleton et al., 2013). 72 
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In this review, we synthetize the existing knowledge on the NCE of predation in large 73 

carnivore-ungulate systems (studies on non-ungulate prey, such as kangaroos and capybaras, 74 

were excluded from this review). We review the empirical studies on large carnivore-ungulate 75 

systems to map our knowledge of the NCE of predation (from trait modification to the 76 

consequences on the prey populations), and identify the gaps in our approaches that need to 77 

be fulfilled to reach a comprehensive understanding of these NCE.  78 

 79 

2. Methods 80 

This literature review focused on large terrestrial mammalian carnivores (>15kg, Ripple et al., 81 

2014) and their ungulate prey. We further included the coyote (Canis latrans, 7-18 kg, Way, 82 

2007) since it is the top predator of ungulates in several ecosystems. We conducted a 83 

literature search using the Web of Science Core Collection database (WoS hereafter). We 84 

searched all publications for the following key words: “antipredator strategy” (we also 85 

checked with the word “anti-predator” throughout), “antipredator behaviour (or behavior)”, 86 

“antipredator responses”, “risk of predation”, ‘predation risk”, “risk effect”, “non-lethal 87 

effect”, “non-consumptive effect”, “ecology of fear”, and “landscape of fear”. All of these 88 

keywords were combined (with the Boolean connector AND) with the three following 89 

keywords: “large mammal”, “large herbivore” and “ungulate”. We then performed a search 90 

with the keyword “predation risk” combined with the 29 species of large terrestrial carnivores 91 

(Appendix A(a)). Based on titles and abstracts, we excluded publications that were not 92 

empirical studies of NCE in a large carnivore-ungulate system. 266 publications were selected 93 

for a full and comprehensive reading. Studies that were either reviews or modelling works (n 94 

= 55) were excluded at this stage. We then excluded studies that quantified predation risk by 95 

using habitat data only (n=53), studies that focused on the CE of predators on juvenile prey (n 96 

= 9), and studies that looked at the effect of prey on their predator (n = 14). At the end of this 97 
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selection process, we retained 135 publications (see Appendix B for the summary of the 98 

selection process of the publications kept for this review, and see Appendix C for the list of 99 

publications). 100 

Only a few studies existed between 1992 and 2004, and since then the number of 101 

publications has kept increasing (Fig. 1). This increase is due to the growing interest for NCE 102 

in the study of predator-prey interactions in large mammals but also to the improved 103 

technology (e.g. GPS technology, camera trapping) that makes these studies possible to 104 

conduct. During our literature search, we realized that most of the studies before the 1990s are 105 

not properly referenced electronically in WoS (missing keywords, abstract…). Thus, for this 106 

systematic review, we only considered studies from 1992 onwards. We are aware that a few 107 

pioneering studies took place before 1992, particularly with regard to vigilance behaviour, but 108 

we favoured maintaining a systematic approach based on the post-1992 WoS database over 109 

including pre-1992 studies that we were aware of, and therefore likely missing others. As our 110 

study shows, the study of NCE in large terrestrial mammals is relatively recent, and we 111 

believe including these few studies would not alter our conclusions. 112 

In this review, we will use the term “NCE studies” for all studies dealing with at least 113 

one aspect of NCE, from anti-predator responses to the consequences on the prey population 114 

dynamics. 115 

 116 

3. Where is our knowledge from? 117 

 3.1. Location of studies and species studied 118 

Before 2007 (n = 33 publications), almost all studies were carried out in North America (28 119 

publications), with a few studies in Southern and Eastern Africa (4 publications) (Fig. 2a). 120 

This dominance of North American ecosystems led to a focus on the North American 121 

carnivores in the first NCE studies, with 20 studies on wolf (Canis Lupus), 6 on coyote (Canis 122 
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latrans), 3 on puma (Puma concolor), and 3 on grizzly bear (Ursus arctos; Appendix A(b)). 123 

Since 2008 (n = 102 publications), we note a diversification of the locations of the studies 124 

(Fig. 2b). Most studies still come from North America (48 publications). However, African 125 

ecosystems have been the focus of a growing number of studies (33 publications), a trend also 126 

noted for Europe (15 publications) where large predators have recolonized large parts of the 127 

landscape (Chapron et al., 2014). This resulted in a diversification of the predator species 128 

studied (Appendix A(b)) even though the most studied carnivore is still the wolf (48 129 

publications), followed by the African lion (Panthera leo; 28 publications) and the coyote (11 130 

publications). Overall, the Yellowstone National Park (n=19; 14% of the publications) is the 131 

ecosystem the most studied for NCE in large carnivore-ungulate systems. The total number of 132 

prey species studied was high (n=52). Studies on elk (Cervus elaphus) were dominant during 133 

the period 2005-2010, and studies on plains zebra (Equus quagga) increasingly contributed to 134 

NCE studies in the last years, but overall the literature was very heterogeneous in terms of the 135 

prey species studied (Appendix A(c)).  136 

 137 

3.2. Assessment of predation risk in the study systems 138 

Our knowledge on NCE is clearly dominated by studies that considered one predator species 139 

only (79% of the publications; n = 107; Fig. 1a). However, only 10% of the studies (n = 13) 140 

were carried out in a system with one predator species (Fig. 1a). Predator communities are 141 

often composed of several predator species and predation risk faced by a prey can thus come 142 

from different predators. For the systems with two or more predator species (n=122), we 143 

calculated an index of predator community completeness as the number of large predators 144 

studied divided by the number of large predators present in the ecosystem (extracted from 145 

Ripple et al., 2014 – we could not extract this information for 17 studies). This index ranged 146 

from values very close to 0 (0 is excluded as it would mean that no predator species was 147 
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studied and hence this is out of the scope of this review) to 1 (meaning that the study 148 

considered the whole predator community). For the 105 studies for which we could calculate 149 

the index of predator community completeness, the average index value was 0.41 (SD = 0.25) 150 

and 61% (n = 64) of the studies had an index value lower than 0.5, highlighting that most 151 

studies focused on one or a couple of predator species in ecosystems with a richer predator 152 

community. However, 11% (n = 12) of the studies had an index value of 1, i.e. studied the 153 

whole predator community. The studies focusing on several predator species are becoming 154 

more common (Fig. 1a).  155 

 156 

3.3. Level of anthropization of the study systems  157 

Only 15% of terrestrial lands and inland water are protected areas (World Database on 158 

Protected Areas). However, 62% of the 135 studies reviewed here were in protected areas. 159 

Basing our understanding of NCE from studies conducted in protected areas only would lead 160 

to biased predictions about the strength of NCE in contexts where human and their activities 161 

may interact with predator-prey interactions (Smith et al., 2015; review in Kuijper et al., 162 

2016). Here, we used the human footprint index (from Sanderson et al., 2002, dataset from 163 

SEDAC, WCS and CIESIN) to evaluate the level of anthropization of the systems studied. In 164 

our dataset, 96 studies (out of the 135 selected for this review) reported GPS coordinates and 165 

we were able to collect the geographic position of an additional 37 studies (we encourage 166 

future studies to consistently report the GPS coordinates of the study systems). Studies were 167 

located in ecosystems with a human footprint index ranging from 0 (no human influence) to 168 

78 (high level of anthropization), but a majority (73%; n=99) was characterized by a low 169 

human footprint index (between 0 and 20). It is interesting to note however that there is a 170 

recent diversification in the human footprint values characterizing NCE studies with several 171 

studies in ecosystems with rather high human footprint indices in the past five years (Fig. 1b).  172 
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 173 

3.4. Methodology used in NCE studies 174 

A wide array of methodologies were used to assess predation risk on the one hand, and prey 175 

responses to predation risk on the other hand. The type of data used to assess predation risk 176 

can be classified into six categories: GPS or VHF telemetry, direct observation, camera trap, 177 

census (e.g. transect sampling), sign of predator presence (e.g. scat or carcass of prey), and 178 

simulated (olfactory or auditory) cue (Fig. 3). The many ways of assessing predation risk 179 

from these different types of data are presented in details in Moll et al. (2017). The type of 180 

data used to assess prey responses to predation risk can be classified into seven categories: 181 

GPS or VHF telemetry, direct observation, camera trap, census (e.g. transect sampling), sign 182 

of prey presence, biological sample (e.g. blood or faecal sample), and capture-mark-recapture 183 

(CMR) monitoring (Fig. 3). There is a link between the type of response studied and the type 184 

of methodological approach used. For instance, telemetry data, camera trap data and census 185 

data were mainly used for studying the proactive responses of prey (when prey modify their 186 

behaviour in response to an a priori assessment of the risk level), such as shifts in habitat use 187 

or in temporal patterns of activity. Direct observations were mainly used for studying the 188 

reactive responses of prey (when prey modify their behaviour as a response of the detection of 189 

an immediate threat), such as freeze, fly, fight responses (Fig. 3). Biological samples, such as 190 

blood or faecal samples, were the main source of information for the study of energetic costs, 191 

stress and reproduction (Fig. 3). CMR was the only approach used to assess prey survival 192 

(Fig. 3). 193 

 194 

4. What have we learnt? 195 

In this review, we decomposed the different components of NCE (Fig. 4; see also Creel, 196 

2018), and quantified to which extent each component of NCE has been studied so far. 197 
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 198 

4.1. Behavioural responses of prey to predation risk 199 

Figure 4 reveals that the behavioural responses of prey to predation risk are, and by far, the 200 

most studied NCE components (85% of the publications reviewed, n = 115). Both proactive 201 

and reactive anti-predator responses were relatively well represented (82 and 63 publications 202 

respectively; with some publications investigating both), and we identified seven behavioural 203 

responses to predation risk: habitat shift, temporal shift, grouping, vigilance, freeze, fly, and 204 

fight (Fig. 4).  205 

The most studied behavioural response was habitat shift (either a shift to a different 206 

geographical area or a shift to a different vegetation type) (Fig. 4, 67 publications), whereby 207 

prey relocate from a habitat that they perceive risky to a safer habitat when exposed to an 208 

increase in predation risk. The majority of the publications on habitat shift took into account 209 

past variations in the presence of the predator so habitat shift was mainly studied as a 210 

proactive response (48 publications; e.g. Atwood et al., 2009; Valeix et al., 2009b). Habitat 211 

shift can also be an efficient reactive response (16 publications; e.g. Valeix et al., 2009b; 212 

Courbin et al., 2016). Courbin et al. (2016), for instance, demonstrated that a few hours after 213 

an encounter with a lion, zebras move several kilometres away from the location of the 214 

encounter.  215 

The second most studied anti-predator response is the increase of prey vigilance level 216 

(Fig. 4, 38 publications; e.g. FitzGibbon, 1994; Laundré et al., 2001; Creel, et al. 2014). 217 

Indeed, vigilant prey have a better chance to detect an approaching predator before it launches 218 

an attack, which will often lead the predator to abort the hunt. This response has been mainly 219 

investigated as a reactive mechanism (25 publications), even though proactive vigilance in 220 

response to a priori knowledge of long-term variations in risk exists too (11 publications; Fig. 221 

4).  222 
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Another well-studied aspect of anti-predator behaviour is how individuals modify their 223 

social dynamics when faced with increased predation risk (Fig. 4, 23 publications; e.g. Lima, 224 

1995; Roberts, 1996; Creel and Winnie, 2005; Creel et al. 2014). Most studies (n=18) found 225 

an increase of the group size due to predation risk. Indeed, larger groups are often associated 226 

with a reduced predation risk because of an improved detection of approaching predators 227 

thanks to collective detection (the “many eyes effect” (Powell, 1974)), and because of a 228 

“dilution effect” whereby the probability of an individual to be targeted by the predator 229 

decreases as group size increases (Bertram, 1978). However, a few studies found a negative 230 

correlation between predation risk and group size. This could arise because smaller groups are 231 

more difficult to detect for predators (Creel and Winnie, 2005), or because of interactions 232 

between vigilance and other anti-predator behaviours (Patin et al. 2019). The numbers of 233 

publications that looked at changes in group size as a proactive and reactive response are 234 

balanced.  235 

Temporal shift in activity is the fourth anti-predator response investigated (Fig. 4, 18 236 

publications; e.g. Creel et al., 2008; Valeix et al., 2009a; Courbin et al., 2018). Risky places 237 

cannot always be avoided and their use during safer periods (when the predator is the least 238 

active) is an anti-predator strategy that has been commonly reported. For instance, Valeix et 239 

al. (2009a) demonstrated that, when lions are in the vicinity of a waterhole, buffaloes avoid 240 

drinking at that waterhole at times when lions are known to be active and hunting (a case of 241 

short-term proactive response). The majority of the publications (13 publications) looked at 242 

prey temporal shift as a proactive response (Fig. 4).  243 

The three other anti-predator responses are exclusively reactive responses: freezing, 244 

flying and fighting (Fig. 4). They are the anti-predator responses that have been the least 245 

studied (Fig. 4). However, the study of prey fighting when exposed to a predator is a growing 246 



11 

 

part of the literature (Mukherjee and Heithaus, 2013), especially because the dangerousness of 247 

prey influences prey preference by predators (Tallian et al., 2017).  248 

 249 

4.2. A focus on the studies that went beyond anti-predator behavioural responses 250 

This literature review reveals that very little is known on (i) the components of NCE other 251 

than the anti-predator behavioural responses of prey, and (ii) the links between the different 252 

components of NCE (Fig. 4). In order to grasp the full picture of NCE, it is interesting to look 253 

at the few publications that studied components of NCE other than anti-predator behavioural 254 

responses (17% of the publications reviewed; 23 publications in total including 15 255 

publications that found an effect, all are listed in Table 1). Seventeen studies looked at the 256 

costs of predation risk on prey individuals, through the study of stress (anti-predator 257 

behavioural responses can be induced by stress but in Figure 4 we simplified and focused on 258 

stress as a consequence of anti-predator responses as in Creel, 2018) and energetic costs (6 259 

and 11 publications respectively). No publication studied both effects at the same time. 260 

Three studies on stress used experiments simulating predator’s presence and 261 

concluded that prey stress level strongly increased as a response to an immediate predation 262 

risk (reactive response; Chabot et al., 1996; Christensen and Rundgren, 2008; Cooke et al., 263 

2013). However, the three other studies measured fGCM (faecal Gluco-Corticoid Metabolite) 264 

in natural environments to investigate how prey stress levels vary with longer-term variations 265 

in predation risk (proactive response), and concluded that prey do not have higher baseline 266 

stress hormone level in risky areas (Creel et al., 2009; Périquet et al., 2017; Zbyryt et al., 267 

2018).  268 

Eleven publications attempted to assess the energetic costs of predation risk through 269 

prey foraging behaviour (Altendorf et al., 2001; White and Feller, 2001; Kluever et al., 2009; 270 

Creel et al., 2014), foraging patch quality (Harvey and Fortin, 2013), measures of prey body 271 
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condition (body fat: Middleton et al., 2013; chest size: Bourbeau-Lemieux et al., 2011), or 272 

faecal samples to evaluate diet quality (Hernández and Laundré, 2005; Christianson and 273 

Creel, 2008; Creel and Christianson, 2009; Christianson and Creel, 2010; Barnier et al., 274 

2014). Most studies demonstrated correlations between the level of predation risk and the 275 

proxies used to assess energetic costs (Table 1). Of these 11 publications, four were 276 

associated with the study of habitat shift (Altendorf et al., 2001; White and Feller, 2001; 277 

Hernández and Laundré, 2005; Middleton et al., 2013) and two found an effect of habitat shift 278 

when predation risk was higher: reduction in diet quality (Hernández and Laundré, 2005) and 279 

reduction in browsing activity (White and Feller, 2001). Five publications on the energetic 280 

costs of predation risk were associated with the study of vigilance (Altendorf et al., 2001; 281 

White and Feller, 2001; Kluever et al., 2009; Middleton et al., 2013; Creel et al., 2014). Four 282 

of these studies found that an increase in prey vigilance level was linked to a decrease in the 283 

prey foraging rate (or higher giving-up densities) under high predation risk (Altendorf et al., 284 

2001; White and Feller, 2001; Kluever et al., 2009; Creel et al., 2014). However, one study 285 

found no change in prey body condition associated to increased vigilance levels (Middleton et 286 

al., 2013). Finally, one study focused on the link between group size changes and energetic 287 

costs, but found no effect (Creel et al., 2014).  288 

Only six publications looked at the effects of predation risk on prey individual 289 

performance: reproduction (4 publications that showed an effect; Table 1) or survival (2 290 

publications that showed an effect; Table 1). The effect of predation risk on prey reproduction 291 

was assessed through the pregnancy status of individuals harvested by people (Proffitt et al., 292 

2014; Cherry et al., 2016), blood concentration of progesterone (Hayes et al., 2003) or 293 

concentration of progesterone from faecal samples (Creel et al., 2007). Two publications 294 

studied the effect of predation risk on survival (Bourbeau-Lemieux et al., 2011; Eacker et al., 295 

2016). For the first time in large mammals, Bourbeau-Lemieux et al. (2011) showed that 296 
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during years of high puma predation, bighorn sheep Ovis canadensis lambs also suffered 297 

mortality through reduced growth (lambs would have been larger without predation and 298 

survival is a function of lamb body size), contributing a third of the total impact of predation 299 

on lamb survival (NCE: 8% decrease of survival; CE: 20%). Eacker et al. (2016) looked at the 300 

effect of predation risk by multiple carnivores on wapiti (Cervus canadensis) calf survival and 301 

showed that different predator species have contrasted effects and hat season matters. 302 

However, they could not disentangle the role of CE and NCE. No study investigated the 303 

consequences of NCE for prey population dynamics. Overall, the links between the different 304 

components of NCE have been seldom studied (Fig. 4).  305 

 306 

5. Discussion 307 

 308 

5.1. The importance of diversifying the systems studied 309 

The geographical repartition of NCE studies on large mammals is tightly linked to the 310 

presence of emblematic species and good research opportunities (e.g. reintroductions, 311 

protected areas), as suggested by the dominance of studies from the Yellowstone ecosystem 312 

(wolves) and African protected areas (lions). Yellowstone in particular has been the most 313 

studied ecosystem as it offered a unique opportunity to study NCE due to the reintroduction of 314 

wolves in certain parts of the park in 1995-1996. This allowed for spatial and temporal 315 

comparisons between risk-free and risky periods/areas (e.g. Ripple and Larsen, 2000; Laundré 316 

et al., 2001; Fortin et al., 2005; Mao et al., 2005; Lung and Childress, 2007; Creel and 317 

Christianson, 2009; Creel et al. 2009; Barnowe-Meyer et al. 2010; Middleton et al. 2013). It is 318 

noteworthy that the population-level effects of NCE are still debated in this well-studied 319 

ecosystem (Creel and Christianson, 2008; White et al., 2011; Middleton et al. 2013). These 320 

studies have been key in our awareness of the role of the NCE of predation in large mammals 321 
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and in our understanding of these NCE. However, conducting studies in a diversity of systems 322 

is critical to assess whether we can generalize the findings from studies on predation risk by 323 

wolves in the Yellowstone, and whether NCE are generally an important aspect of predator-324 

prey relationships. As shown in this review, this is slowly being achieved (Fig. 1, 2, Appendix 325 

A), and this correlates with an increase in the proportion of studies that reported no effect of 326 

predation risk on prey (Fig. 1c). This suggests that, as the study systems diversify, there are 327 

more contexts where NCE are not operating. The challenge is now to identify the factors that 328 

can modulate the strength of NCE.  329 

One important future direction relies on comparative approaches across different 330 

predator and prey characteristics to identify which species characteristics are important for the 331 

strength of NCE in large mammals (Creel, 2011; Creel et al., 2019; Owen-Smith, 2019). For 332 

example, in invertebrates, general rules about the role of the predator hunting mode have 333 

emerged, with sit-and-wait and sit-and-pursue hunters causing stronger NCE than active 334 

hunters (Preisser et al., 2007; Schmitz, 2008). Wolves are cursorial predators (i.e. they chase 335 

down their prey over long distances). It will thus be important to accumulate evidence on the 336 

NCE of other cursorial predators (e.g. spotted hyaenas (Crocuta crocuta)) but also of ambush 337 

predators (i.e. predators that rely on concealment to hunt by surprise prey moving within a 338 

chasing distance; this is the case of most Felids) to assess whether the predator hunting mode 339 

influences the strength of NCE in large mammals too. Recent works have also suggested that 340 

prey characteristics may play the most important role for the strength of NCE in large 341 

mammals (Creel et al., 2019; Owen-Smith, 2019). Diversifying the systems studied will also 342 

allow covering a range of densities of predator and prey populations. This is important as prey 343 

density-dependent mechanisms will affect the trade-off between food and safety, and predator 344 

and prey population densities are key proxies for the frequency of predator-prey encounters, a 345 

key parameter to understand the magnitude of NCE (Middleton et al., 2013). 346 
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Other important factors that can modulate the strength of NCE are the characteristics 347 

of the environment where predator-prey interactions occur (Brown and Kotler, 2004; Laundré 348 

et al., 2014). In a context of increasing overlap between human-dominated and carnivores’ 349 

habitats (Chapron et al., 2014; Ripple et al., 2014), it is of particular importance to understand 350 

how people and their activities may interact with predator-prey interactions (see Kuijper et al., 351 

2016 for a review of the mechanisms involved). For example, carnivores may increase their 352 

kill rate when they approach human settlements because of the fear of people (Smith et al., 353 

2015), or prey may use human infrastructures as a shield against carnivores (Berger, 2007). 354 

Hence, human presence may influence the perceived predation risk by prey and hence affect 355 

the level of their anti-predator responses. 356 

 357 

5.2. The importance of considering the complexity of the systems studied 358 

By considering one prey and one predator only in often multi-prey multi-predator systems, 359 

interspecific interactions other than the predator-prey interaction studied are omitted. 360 

However, these interactions can modulate the NCE of predation on prey (Wootton, 2002; see 361 

also Montgomery et al., 2019). For example, in the Madison Valley (Montana, USA), it has 362 

been shown that elk shift to habitats that have more complex structure to reduce predation risk 363 

from wolves, but this significantly increases the predation risk from puma (Atwood et al., 364 

2009). In that case, considering wolves only would minimize the overall NCE of predation 365 

suffered by elk. In natural ecosystems, it is difficult to study all large carnivore species but the 366 

development of GPS-technology, animal-borne video, and camera trapping in ecological 367 

studies provides increased possibilities to address this complexity (Prugh et al., 2019). This 368 

review has revealed a growing number of studies focusing on multiple predators when 369 

studying NCE. This effort needs to continue to understand how species interactions can 370 

modulate NCE. It is an important corner stone in future research of NCE to grasp the full 371 
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picture of NCE in natural ecosystems. The role of interactions between prey or of dilution 372 

effects in multi-prey systems, even though not addressed in this review, is important to 373 

consider when assessing the NCE of predation (Montgomery et al., 2019).  374 

 375 

5.3. Anti-predator behavioural responses of prey: the tip of the iceberg 376 

Figure 4 clearly shows that behavioural responses are the most studied NCE components in 377 

large mammals, and that little is known on the other NCE components (energetic costs, stress, 378 

reproduction, survival, and population dynamics) and the links between the different 379 

components. We acknowledge that there could be studies on NCE using a different 380 

terminology than the key words selected for our literature search, and that are consequently 381 

missing from this review.  382 

It is easier to measure stress, energetic costs, reproduction and survival and to design 383 

experiments to disentangle the role of CE and NCE of predation in invertebrates or small 384 

vertebrates, which are short-lived species often easy to manipulate. In such systems, we have 385 

learnt a lot from experiments where predators were caged (e.g. Peacor, 2002) or the presence 386 

of the predator was simulated over critical periods for the reproduction and survival of prey 387 

(e.g. Zanette et al, 2011). In large mammalian systems, where species are long-lived and 388 

difficult to manipulate, this is more challenging. It is possible to carry out experiments where 389 

the presence of the predator is simulated (visual, olfactory or auditory cues). So far, this has 390 

been done over short periods to assess prey behavioural responses or stress responses. 391 

However, this will need to be done over much longer periods (if this is ethically possible) to 392 

assess the impact of predation risk on prey population dynamics. In any case, in natural 393 

ecosystems, it will be impossible to exclude the CE of predators that roam naturally in the 394 

landscape. The best way forward therefore lies in approaches similar to the one used by 395 

Bourbeau-Lemieux et al. (2011) who studied the impact of contrasting periods of puma 396 
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predation on bighorn sheep body condition and survival over 27 years to disentangle the 397 

impacts of CE and NCE. The unique insights provided by this study rely on two important 398 

aspects: the long-term monitoring of the prey population and the handling of prey individual 399 

to measure individual performance proxies. Long-term studies are indeed crucial to assess the 400 

effect of predation on a prey population dynamics and the scarcity of such studies explains the 401 

knowledge gap on the effect of predation risk on prey reproduction and survival. Additionally, 402 

the capture of individual prey is needed to take biological samples and body measurements. 403 

People around the world harvest wild ungulate populations, and this could be considered as a 404 

useful source of information to evaluate the NCE of predators on prey population parameters. 405 

The studies that estimated energetic costs and stress due to predation risk made the implicit 406 

assumption that it would affect survival and reproduction of prey and that it would ultimately 407 

affect prey population dynamics. Even though this has been demonstrated in invertebrates 408 

(Peckarsky et al., 1993; Peacor and Werner, 2004), nearly nothing is known for large 409 

terrestrial mammals and this is a major challenge for future studies if we want to 410 

comprehensively understand NCE, from the behavioural responses of prey individuals to the 411 

modification of prey population dynamics. Behavioural anti-predator responses are just the tip 412 

of the NCE’s iceberg. 413 

 414 

6. Implications for conservation 415 

Populations of large carnivores are characterized by major changes in their abundance and 416 

distribution worldwide with declines in many ecosystems (Ripple et al., 2014), recolonization 417 

of human-dominated habitats in Europe (Chapron et al., 2014), and reintroduction in many 418 

reserves (Hayward and Somers, 2009). These changes mean the loss or appearance of CE but 419 

also NCE of predators on ungulate populations, which will have cascading effects down the 420 

food chain and for the whole ecosystem functioning (Estes et al., 2011). While CE are well 421 
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understood and can be easily quantified, our review reveals that, in spite of the widespread 422 

evidence of anti-predator behavioural responses in ungulates, current knowledge prevents us 423 

for predicting the population-level consequences of NCE in large mammals (Fig. 4). Studies 424 

on invertebrates and small vertebrates demonstrated the underappreciated importance of NCE. 425 

For example, Zanette et al. (2011) demonstrated that predation risk (simulated with predators 426 

calls) reduced by 40% the number of offspring produced per year by songbirds. In large 427 

mammals, evidence of population-level consequences of NCE is extremely scarce. Bourbeau-428 

Lémieux et al. (2011) were the first to demonstrate that NCE can account for a third of the 429 

total impact of predation on prey population survival. If NCE can have such an important 430 

impact, they need to be taken into account and anticipated in the management of large 431 

mammal populations (e.g. for the reintroduction of large carnivores; see also Allen et al., 432 

2019 for animal welfare considerations). However, in natural environments, many factors 433 

may affect the strength of NCE (predator and prey attributes, landscape characteristics, and 434 

the complexity of large mammal communities) and NCE may be negligible under some 435 

circumstances (Fig. 1c; e.g. Middleton et al. 2013). Linking anti-predator behavioural 436 

responses to demography in different contexts is thus the key challenge ahead of us to fully 437 

understand the NCE of predators on their prey in large mammals. This information is crucial 438 

for a sound management and conservation of large mammals worldwide. 439 

 440 
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Table 1: Publications that studied NCE components other than anti-predator behavioural 724 

responses. 725 
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Outcome Reference 

Stress  
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Coyote 

Elk 

Cougar and wolf faeces 

increased significantly the 

heart rate and oxygen 

consumption. 

Chabot, D., Gagnon, P., Dixon, E. A. (1996). Effect 

of predator odors on heart rate and metabolic rate of 

wapiti (Cervus elaphus canadensis). Journal of 

Chemical Ecology, 22(4), 839–868.  

Wolf 

Lion 

Horse 

There is an increased of heart 

rate when exposed to wolf 

urine only if prey 

simultaneously exposed to an 

additional stimulus such as a 

plastic bag. 

Christensen, J. W., Rundgren, M. (2008). Predator 

odour per se does not frighten domestic horses. 

Applied Animal Behaviour Science, 112(1–2), 136–

145.  

Wolf 
Elk 

There is no correlation 

between faecal 

glucocorticoid concentrations 

and predator-prey ratios. 

Creel, S., Winnie, J. A., Christianson, D. (2009). 

Glucocorticoid stress hormones and the effect of 

predation risk on elk reproduction. Proceedings of 

the National Academy of Sciences, 106(30), 12388–

93.  

Wolf 
Cattle 

The exposure to wolf urine 

and sounds increased cow 

temperature and plasma 

cortisol concentration. 

Cooke, R. F., Bohnert, D. W., Reis, M. M., 

Cappellozza, B. I. (2013). Wolf presence in the 

ranch of origin: Impacts on temperament and 

physiological responses of beef cattle following a 

simulated wolf encounter. Journal of Animal 

Science, 91(12), 5905–5911.  

Lion 
Zebra 

Zebras did not have higher 

stress hormone levels in area 

with lions. 

Périquet, S., Richardson, P., Cameron, E. Z., 

Ganswindt, A., Belton, L., Loubser, E., Dalerum, F. 

(2017). Effects of lions on behaviour and endocrine 

stress in plains zebras. Ethology, 123(9), 667–674.  

Wolf 

Eurasian 

Lynx 

Roe deer 

Red deer 

Faecal glucocorticoid 

metabolites levels were 

lower and less variable in 

areas with carnivore than in 

areas without. 

Zbyryt, A., Bubnicki, J. W., Kuijper, D. P. J., 

Dehnhard, M., Churski, M., Schmidt, K. (2018). Do 

wild ungulates experience higher stress with 

humans than with large carnivores? Behavioral 

Ecology, 29(1), 19–30.  

Energetic costs 

Mountain 

lion 
Mule deer 

Mule deer had higher GUDs 

in riskier habitats. 

Altendorf, K. B., Laundré, J. W., Pez, C. A. L., Lez, 

G., Brown, J. S. (2001). Assessing effects of 

predation risk on foraging behaviour of mule deer. 

Journal of Mammalogy, 82(2), 430–439. 

Wolf Elk 

Elk decreased their browsing 

on aspen in high predation 

risk areas. 

White, C. A., Feller, M. C. (2001). Predation risk 

and elk-aspen foraging patterns. Sustaining Aspen 

in Western Landscapes: Symposium Proceedings,  

Wolf Elk The faecal concentration of 

nitrogen for elk was 

Hernández, L., Laundré, J. W. (2005). Foraging in 

the ‘landscape of fear’ and its implications for 
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Bison significantly lower in areas 

where wolves were present 

than in areas without wolves. 

habitat use and diet quality of elk Cervus elaphus 

and bison Bison bison. Wildlife Biology, 11(3), 

215–220.  

Wolf Elk 

Both sexes decreased their 

grazing when wolf were 

present. 

Christianson, D., Creel, S. (2008). Risk effects in 

elk: sex-specific responses in grazing and browsing 

due to predation risk from wolves. Behavioral 

Ecology, 19(6), 1258–1266.  

Wolf Elk 

Willow consumption was 

more strongly affected by 

snow conditions than by the 

presence of wolves. 

Creel, S., Christianson, D. (2009). Wolf presence 

and increased willow consumption by Yellowstone 

elk: implications for trophic cascades. Ecology, 

90(9), 2454–2466.  

Wolf 

Mountain 

Lion 

Cattle 

Wolf stimuli significantly 

decreased cattle foraging rate 

but had no effect on giving 

up densities and time spent 

on high quality forage 

locations. Mountain lion had 

no significant effect on any 

cattle variable. 

Kluever, B. M., Howery, L. D., Breck, S. W., 

Bergman, D. L. (2009). Predator and heterospecific 

stimuli alter behaviour in cattle. Behavioural 

Processes, 81(1), 85–91.  

Wolf Elk 

Urine analysis of 

nitrogen:creatinine ratios 

showed a reduction of energy 

intakes and deficiencies of 

nitrogen when wolves were 

present. 

Christianson, D., Creel, S. (2010). A nutritionally 

mediated risk effect of wolves on elk. Ecology, 

91(4), 1184–1191.  

Wolf Bison 
Bison foraged less in areas of 

high predation risk. 

Harvey, L., Fortin, D. (2013). Spatial heterogeneity 

in the strength of plant-herbivore interactions under 

predation risk: the tale of bison foraging in wolf 

country. PLoS ONE, 8(9), e73324.  

Wolf Elk 
Elk body fat did not correlate 

with wolf predation risk. 

Middleton, A. D., Kauffman, M. J., McWhirter, D. 

E., Jimenez, M. D., Cook, R. C., Cook, J. G. et al. 

(2013). Linking anti-predator behaviour to prey 

demography reveals limited risk effects of an 

actively hunting large carnivore. Ecology Letters, 

16(8), 1023–1030.  

 

Lion 

 

Zebra 

Zebra that foraged in areas 

with lions around had a 

lower diet quality (measure 

of faecal crude protein). 

Barnier, F., Valeix, M., Duncan, P., Chamaillé-

Jammes, S., Barre, P., Loveridge, A. J. et al. (2014). 

Diet quality in a wild grazer declines under the 

threat of an ambush predator. Proceedings of the 

Royal Society B, 281(1785), 20140446–20140446.  

Lion  

Spotted 

hyaena 

Zebra 

Wildebeest 

Gazelle 

Impala 

Giraffe 

Increased vigilance caused a 

large reduction in foraging 

for some species (but not all). 

There was no clear 

relationship between 

predation rates and the 

foraging costs of anti-

predator responses. 

Creel, S., Schuette, P., Christianson, D. (2014). 

Effects of predation risk on group size, vigilance, 

and foraging behavior in an African ungulate 

community. Behavioral Ecology, 25(4), 773–784.  

Reproduction 
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Wolf 

Grizzly 

bear 

Elk 

Lactation rates (indicator of 

calf survival) decreased as 

the grizzly bear:elk ratio 

increased.  

Proffitt, K. M., Cunningham, J. A., Hamlin, K. L., 

Garrott, R. A. (2014). Bottom-up and top-down 

influences on pregnancy rates and recruitment of 

northern Yellowstone elk. The Journal of Wildlife 

Management, 78(8), 1383–1393.  

Wolf Elk 

Faecal progesterone 

concentration were 

negatively correlated with 

higher predation risk, as well 

a calf recruitment of the 

following year that was 

correlated with faecal 

progesterone concentrations. 

Creel, S., Christianson, D., Liley, S., Winnie, J. A. 

(2007). Predation risk affects reproductive 

physiology and demography of elk. Science, 

315(5814), 960.  

Coyote 
White-

tailed deer 

Lactation (indicator of 

reproductive success) and 

ovulation (indicator of 

fecundity) increased with the 

diminution of predation risk 

from coyote (declining 

population). 

Cherry, M. J., Morgan, K. E., Rutledge, B. T., 

Conner, L. M., Warren, R. J. (2016). Can coyote 

predation risk induce reproduction suppression in 

white-tailed deer? Ecosphere, 7(10), e01481.  

Wolf 

Woodland 

caribou 

Moose 

Dall sheep 

The pregnancy rate of 

woodland caribou was not 

correlated with the 

diminution of wolf 

abundances. 

Hayes, R.D., Farnell, R., Ward, R.M.P., Carey, J., 

Dehn, M., Kuzyk, G.W., Baer, A.M., Gardner, C.L., 

Donoghue, M.O., 2003. Experimental reduction of 

wolves in the Yukon: ungulate responses and 

management implications. Wildlife Monographs 67, 

1–35. 

Survival 

Puma 
Bighorn 

sheep 

Lamb survival decreased 

with years of high predation 

rates through a decrease of 

individual growth rate 

(reduced chest size in years 

of high predation). 

Bourbeau-Lemieux, A., Festa-Bianchet, M., 

Gaillard, J.-M., Pelletier, F. (2011). Predator-driven 

component Allee effects in a wild ungulate. 

Ecology Letters, 14(4), 358–363.  

Puma 

Wolf 

Black 

bear 

Coyote 

Elk 

Mountain lion predation risk 

has a negative effect on calf 

survival (this includes both 

CE and NCE) 

Eacker, D. R., Hebblewhite, M., Proffitt, K. M., 

Jimenez, B. S., Mitchell, M. S., Robinson, H. S. 

(2016). Annual elk calf survival in a multiple 

carnivore system. The Journal of Wildlife 

Management, 80(8), 1345–1359.  
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Figure legends 728 

 729 

Figure 1: The number of publications per year according to a) whether the study was about 730 

one predator species or more (ecosystems with one predator only are represented with 731 

hatches), b) the human footprint index (index ranging from 0 to 100; from Sanderson et al., 732 

2002), c) whether the study showed an effect of predation risk on the study NCE component. 733 

The total number of publications reviewed is 135. The length of the bars may differ as we 734 

could not extract the human footprint index for all study systems and as some studies tested 735 

several effects (all conclusions are reported in c). 736 

 737 

Figure 2: Number of publications per region a) between 1992 and 2007, b) between 2008 and 738 

2018. The countries where the studies took place are coloured according to the number of 739 

publications per continent. The colour legends are not homogenized between the two periods 740 

not to reflect just the overall increase in the number of studies. Note that this review focuses 741 

on carnivore-ungulate systems, which explains why there is no publication in Australia. 742 

 743 

Figure 3: Proportion of the different types of data used to assess predation risk and the prey 744 

response to predation risk depending on the NCE component studied (n=135 publications). 745 

 746 

Figure 4: a) Conceptual diagram of NCE components and the links between the different 747 

components. b) Representation of our empirical knowledge. Rectangle size and link width are 748 

proportional to the number of studies that focused on the different NCE components and on 749 

the links between the different components. Brown colour represent the proportion of studies 750 

that found a proactive effect of predation risk, orange colour represents the proportion of 751 

studies that found a reactive effect of predation risk, and white colour represents the 752 
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proportion of studies that investigated the component and found no effect. Anti-predator 753 

behavioural responses can be induced by stress but in this figure, we simplified and focused 754 

on stress as a consequence of anti-predator responses.  755 
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Figure 4: 816 
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APPENDICES 828 

Appendix A: a) Number of publications per large carnivore species (body weight > 15kg as 829 

defined in Ripple et al., 2014), and according to the taxonomic group. The graph shows that 830 

NCE studies focused on a small proportion of large predator species. b) Number of 831 

publications per year according to the predator species studied (the “other species” category 832 

refers to the carnivore species listed in (a) and not detailed in (b)). c) Number of publications 833 

per year according to the prey species studied. The length of the bars in (b) and (c) is 834 

sometimes different from that of the corresponding bars in figure 1 because of the multi-835 

predator or multi-prey species studies.  836 
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Appendix B: Schema of the literature reviewing process. The research process was done with 870 

Web of Science Core Collection database, and was stopped the 12th of April 2018.  871 
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