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*Institut de Biologie Intégrative et des Systémes (IBIS), Département de Biologie, Université Laval, Québec (Québec) Canada,
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des sciences de la mer de Rimouski (ISMER), Université du Québec a Rimouski (UQAR), Rimouski (Québec) Canada, G5L 3A1,
and 8institut du Littoral et de I'Environnement, LIENSs UMR6250, 2 rue Olympe de Gouges, 17000 La Rochelle, France

ABSTRACT A linkage map of 40 linkage groups (LGs) was developed for brook charr, Salvelinus fontinalis,
using an F; interstrain hybrid progeny (n = 171) and 256 coding gene SNP developed specifically for brook
charr and validated from a large (>1000) subset of putative SNP, as well as 81 microsatellite markers. To
identify quantitative trait loci (QTL) related to reproduction functions, these fish were also phenotyped at six
physiological traits, including spermatozoid head diameter, sperm concentration, plasma testosterone, plasma
11-keto-testosterone, egg diameter, and plasma 173-estradiol. Five significant QTL were detected over four
LGs for egg diameter and plasma 17B-estradiol concentration in females, and sperm concentration as well as
spermatozoid head diameter in males. In females, two different QTLs located on LG 11 and LG 34 were
associated with the egg number, whereas one QTL was associated with plasma 17B-estradiol concentration
(LG 8). Their total percent variance explained (PVE) was 26.7% and 27.6%, respectively. In males, two QTL were
also detected for the sperm concentration, and their PVE were estimated at 18.58% and 14.95%, respectively.
The low QTL number, associated with the high PVE, suggests that the variance in these reproductive physi-
ological traits was either under the control of one major gene or a small number of genes. The QTL associated
with sperm concentration, plasma 17B-estradiol, and egg diameter appeared to be under a dominance effect,
whereas the two others were under a negative additive effect. These results show that genes underlying the
phenotypic variance of these traits are under different modes of action (additive vs. dominance) and may be
used to predict an increase or a decrease in their phenotypic values in subsequent generations of selective
breeding. Moreover, this newly developed panel of mapped SNP located in coding gene regions will be useful
for screening wild populations, especially in the context of investigating the genetic impact of massive stocking
of domestic brook charr to support the angling industry throughout eastern North America.
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Linkages maps have numerous applications in evolutionary and com-
parative genomics (Gharbi et al. 2006, Jaari et al. 2009). Namely, one
of the main applications of linkage maps relies on the mapping of
quantitative trait loci (QTL), which allows localizing genomic regions
responsible for the variations in continuous phenotypic traits of in-
terest. To this end, the number and the variety of molecular markers
developed for linkage-mapping have been associated with technological
advances, namely new marker development such as microsatellites and
single nucleotide polymorphisms (SNPs). Also, compared with previ-
ous methods based on cloning and Sanger sequencing, next-generation
sequencing technologies now allow the more rapid development of in
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Table 1 Description of the 40 LGs with the number and size of markers composing each LG (in cM) obtained for the

consensus (sex-average) linkage map in brook charr

LG Size of the LG, in cM

No. Markers in the LG

Average Spacing,

No. SNP No. SSR

in cM
LG1 132.2 16 11 5 8.26
LG2 130.2 16 1 5 8.14
LG3 95.7 15 10 5 6.38
LG4 73.2 8 6 2 9.15
LG5 95.2 11 6 5 8.65
LG6 77.5 11 9 2 7.04
LG7 46.6 9 6 3 5.17
LG8 81.2 1 8 3 7.38
LG9 82.3 10 9 1 8.23
LG10 63.6 9 8 1 7.06
LG11 70.1 8 4 4 8.76
LG12 78.4 6 4 2 13.06
LG13 74 7 5 2 10.57
LG14 68.5 6 4 2 11.41
LG15 52.6 6 5 1 8.76
LG16 42.8 4 1 3 10.70
LG17 30.3 6 4 2 5.05
LG18 24.9 5 2 3 4.98
LG19 61.1 4 3 1 15.27
LG20 67.2 5 3 2 13.44
LG21 60.7 6 5 1 10.11
LG22 45.8 5 2 3 9.16
LG23 29.2 4 3 1 7.30
LG24 49.3 5 4 1 9.86
LG25 29.8 4 4 0 7.45
LG26 11.5 3 2 1 3.83
LG27 27.8 3 2 1 9.26
LG28 3.9 4 4 0 0.97
LG29 42.3 2 1 1 21.15
LG30 63.9 3 2 1 21.30
LG31 72.3 17 13 4 4.25
LG32 59.1 3 2 1 19.70
LG33 1.4 2 2 0 0.70
LG34 41.8 3 3 0 13.93
LG35 24 3 3 0 0.80
LG36 291 3 2 1 9.70
LG37 6.5 3 3 0 2.16
LG38 12.9 11 5 6 1.17
LG39 4.5 5 5 0 0.90
LG40 5.6 4 4 0 1.40
Max 132.25 17 13 6 21.3
Min 1.40 2 1 0 0.70
Average 51.18 6.65 4.75 1.90 8.31
Total 2047.45 266.00 190.00 76.00 -

LG, linkage group; SNP, single nucleotide-polymorphism; SSR, simple sequence repeat.

silico SNP markers (Hudson 2008). Yet, SNP marker development and
in silico validation remain particularly challenging in polyploid species
as the result of recent whole-genome duplication events, such as in
salmonids (Seeb et al. 2011).

Salmonids are of considerable economic, social, and conservation
value (Davidson et al. 2010). The salmonidae family contains 11 gen-
era and 68 species, including salmon, trout, charr, freshwater white-
fishes, ciscos, and graylings (for review, see Davidson et al. 2010) and
has experienced a whole-genome duplication approximately 25 to 100
million years ago (e.g., Phillips and Rab 2001). More is known about
the biology and genetics of salmonids than in any other groups of fish
(Koop and Davidson 2008), which has led to the development of
important genomic tools in recent years. For example, linkage maps
have been successively developed in the Atlantic salmon Salmo salar to
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include up to 5650 markers (Danzmann et al. 2008; Moen et al. 2008;
Lorenz et al. 2010, Lien et al. 2011). In rainbow trout (Onchorynchus
mykiss), multiple generations of linkage maps have been developed
using various types of molecular markers, including amplified frag-
ment length polymorphisms (Young et al. 1998; Nichols et al. 2003),
single-sequence repeats, or SSR (Rexroad et al. 2008), and SNP (Miller
et al. 2011; Lien et al. 2011). Lower resolution linkage maps have also
been developed in Arctic charr Salvelinus alpinus (Woram et al.
2004, Moghadam et al. 2007), coho salmon Oncorhynchus kisutch
(McClelland and Naish 2008), brown trout Salmo trutta (Gharbi et al.
2006), lake whitefish Coregonus clupeaformis (Rogers et al. 2007), and
recently, in brook charr, Salvelinus fontinalis (Timusk et al. 2011).
All these maps exhibit a large number of linkage groups, or LG
(>28), because the diploid ancestor of salmonids possessed a karyotype

= G3-Genes | Genomes | Genetics



with 48 acrocentric chromosomes (Phillips and Rab 2001) and
a span of 390 to 5548 cM with a genome size estimated at 3.3 x
10° bp (Davidson et al. 2010). The investigation of the evolution of
the structural genome within the salmonidae family, highlighting
chromosomal rearrangements notably between Salvelinus and
Onchorynchus species (Timusk et al. 2011). From the available link-
age maps, recent QTL investigations were performed for phenotypic
traits of interest for production such as hatching time (Robison et al.
2001, Nichols et al. 2007, Miller et al. 2011, Easton et al. 2011),
spawning date (O’Malley et al. 2003), length (McClelland and Naish
2010), growth (Nichols et al. 2008; McClelland and Naish 2010;
O’Malley et al. 2010; Wringe et al. 2010), early male maturation
(Fotherby et al. 2007; Haidle et al. 2008), resistance to pathogens
(Moen et al. 2009; for review, see Palti 2009 and Nichols et al.
2010), thermal tolerance (Perry et al. 2001), and swimming behavior
(Rogers and Bernatchez 2007).

Brook charr, Salvelinus fontinalis, is one of the most economi-
cally important species for freshwater aquaculture in Canada, where
it is farmed both for food production and enhancing the sport
fishery industry (Page and Burr 1991). In Québec (Canada), approx-
imately 1200 tons are produced annually, which represents approx-
imately 55% of the total aquaculture production. In this context, the
aims of the present study were (1) to develop a set of validated SNP
markers located in coding genes using RNA-seq, and thus provide
the first SNP markers for the genus Salvelinus; (2) to build a linkage
map for this species combining these newly developed SNPs and
previously published microsatellites; and (3) to identify QTL de-
tection for reproductive physiological traits of interest for aquacul-
ture production. We also compare our genetic map with that
recently published by Timusk et al. (2011).
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MATERIAL AND METHODS

Biological material and fish crosses

The QTL population was created using two different populations of
brook charr. The first one (D) is a domestic population used in
aquaculture for more than 100 years in Québec (Canada). The other
(L) is an anadromous population originating from the Laval River
near Forestville (North of the St. Lawrence River, Québec, Canada).
Breeders from the L population were kept in captivity for three
generations at the Station aquicole de 'TSMER (Québec, Canada,
48°31'N, 68°28'W) whereas breeders from the D population were
obtained from the Pisciculture de la Jacques Cartier (Cap-Santé,
Québec, Canada). In 2005, 10 sires of each population (L and D;
Fy generation) were crossed with 10 dams (L and D) to generate 10
full-sib outbreed hybrid families (LD) crosses (F; generation). Then,
three F, families were obtained from the biparental cross of six F;
individuals. The selected F, family used in the present study for
both phenotyping and genotyping was chosen according to its low-
est mortality rate (<2%) compared with the other ones and its
greater number of individuals.
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M
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Plasma Testosterone,
N, number of observations, Min, minimum mean value obtained; Max, maximal mean value obtained, mean + SD, mean + SD of the mean.
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Fish-rearing conditions

Fish from the F, hybrid population hatched in January 2008 and
were reared in indoor circular tanks in fresh water at the Station
aquicole de 'ISMER (Québec, Canada, 48°31'N, 68°28'W), under
natural photoperiod and temperature. The density was maintained
< 35 kg of fish per m>. Fish were fed daily with commercial pellets
with the percent weight per day adjusted according to fish age and
water temperature (from 5.3% to 1.5% of body weight). They were
individually identified with PIT-tags at the age of 5 months.

Head Diameter,
wm
M
42
2.57
2.92
2.86 £ 0.05

Table 2 Descriptive statistics of phenotypic traits measured in male (M) and female (F) brook charr from the QTL population (F, progeny)
Spermatozoid

Mean *+ SD.

Sex
N
Min
Max

£ G3-Genes | Genomes | Genetics Volume 2 March 2012 | Linkage Mapping and QTL Detection in the Brook Charr | 381



DNA library preparation and cDNA sequencing for

8 9 SNP development
S | %,;) N In September 2008, liver tissue was collected from 22 fish, including
i é g g' &I = eight individuals from the freshwater Rupert River population
g 5 % 'g § 8 (Québec, 48°44'N, 68°05'W), eight individuals from the Laval River
g é xXee I population (Québec, 51°05'N, 73°41'W) (Audet and Bernatchez
2004), and the six parents used to create the three F, families. Tissue
samples were kept at —80° at all times and total RNA was extracted
w § g ﬁ B) g using the Purelink Micro to Midi total RNA purification system
e g e g g (Invitrogen, Inc., ON, Canada). Two micrograms of mRNA were
used to perform a full-length cDNA amplification and normalization
(Evrogen, Moscow, Russia). The cDNA was synthesized and ampli-
§ Jegye 9 fied following the SMART approach (Zhu et al. 2001) and normal-
2 328 8LRY I ized using the duplex-specific nuclease method (Zhulidov et al.
Euw ?ecee 9 2004). A total of 5 pg of double-stranded cDNA was sequenced
o (half plate) on a GS-FLX Titanium sequencer at the Genome Québec
Innovation Center (McGill University, Montréal, QC, Canada).
BnBL @
h|3388 8 Data assembly
ccoco o< Base calling was performed using PyroBayes software according to
Quinlan et al (2008). Primer tag sequences were removed, and
2. 8935 Q sequence data were assembled into contiguous sequences using CLC
E= t&g 2838 & Genomic Workbench v3.7 (CLC Bio, Denmark). Assembly param-
IH|gecee T eters were set at 97% of similarity between two sequences showing

an overlap of 0.6. Because of the duplicated genome of salmonids,
such stringent assembly criteria were necessary to reduce probabil-
ities of assembling paralogous genes (Renaut et al. 2010). Nonspe-
cific reads (matching in different contigs) were discarded. Sequences
that did not assemble into contigs were removed from further anal-
yses to reduce the impact of sequencing errors. Raw pyroreads are
publicly available under the accession number SRX037496 (http://

P Value (F)
0.044
0.043
0.049
0.052
0.029

Table 3 Descriptive statistics, including the LOD score, the position, 95% Cl, PVE (%), the associated P-value, and the specific additive, and dominance effects of each QTL linked to

Additive and dominance effect give insight in the mode of action of the genes underlying the variance of the traits. Moreover, direction (—/+) of the dominance or additive effects indicates which parent contributes to

decrease the trait the phenotypic values in the studied trait. LOD, Logso of the odd ratio; 95% Cl, 95% confidence interval; PVE, percent variance explained; QTL, quantitative trait loci; SE, standard error.

s Ny © www.ncbinlm.nih.gov/sra). Contig sequences, obtained from 454
f Isoe o data assembly, are provided in supporting information, Table S1.
SNP detection, validation, genotyping,
W82y 2 and annotation
ZS|od~w o . . .
—-Q - < Assembled contigs were screened for SNPs using cLc Genomic
Workbench v3.7 with the following criteria: minimum SNP cover-
Alosas o age at 10x and minor allele frequency at 20%; the remaining param-
o|=®=® & eters were left as default. To validate the markers in the mapping
e Vo RN o B oo B oo T} . .
population, a large subset of putative SNP (~1000) was selected
from the whole set of putative SNP detected in the contigs accord-
eS|ley o & ing to the following parameters: (1) polymorphic sites had to be
E;Q erTony v surrounded by a fragment of 60 bp to allow the design of poly-
.% Olecox & merase chain reaction (PCR) primers and the genotyping assay; (2)
b= polymorphic sites were not linked to other polymorphic loci in the
g contig (may reveal the assembly of paralogous sequences).
g 5 We then applied four steps to validate a subset (>300) of these
B |Z Z 22 1000 putative markers. (1) A pair of PCR primers surrounding each
oy & oy SNP of interest was designed using Primer 3 software (Rozen and
° Skaletsky 2000) to generate an amplicon of 250 to 400 bp. PCR ampli-
hat cons were then ran and visualized on a 1.5% agarose gel. Primer pairs
% 9locgd®e>o 2 that showed an amplicon size greater than 400 bp were removed to
© avoid the amplification of intronic regions in subsequent genotyping
3 c . steps. (2) Amplicons meeting step 1 requirements were sequenced on
%’ ol5 = 2 . i the six F; mapping parents in forward and reverse sense using the Big
_és g: g g g ° 5 Dye Terminator v3 chemistry (Applied Biosystems, Foster City, CA)
ol @8 R Z e g2 2 to confirm every polymorphic site. Chromatograms were inspected by
% é > &5 § % E eye and every monomorphic site was removed from subsequent anal-
F 2 & & ysis. (3) iPlex Gold assays for the Sequenom MassARRAY (Sequenom,
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Table 4 Comparison of putative LGs in salvelinus (in cM) between the present study and Timusk et al. (2011); homologies with the

rainbow trout LGs also are given

LG from Timusk LG from Putative Homology
et al. (2011) Present Study No. of Shared Markers Markers with Rainbow Trout LG?
BC-1 LG24 1 OMM1201 RT-2p; RT-12q; RT-16q; RT-21q; RT-29p; RT-29¢
BC-5 LG18 1 OMIT79TUF RT-8p; RT-19¢; RT-19q
BC-6 LG5 2 CA378164, OMM1211 RT-3c; RT-3q; RT-6p
BC-8 LG15 1 OMM-5061 RT-2p; RT-3q; RT-7q; RT-10q
BC-9 LG9 1 SSA0072BSFU RT-14q; RT-19q
BC-10 LG14 1 OMI30TUF/i RT-10qg; RT-18
BC-11 LG29 1 BHMS7.011 RT-10p; RT-12c; RT-12q; RT-19¢
BC-13a and LG7 2 OMM5312/i, OMM5312/ii RT-8c; RT-14p; RT-14c; RT-20p; RT-20q;
BC-13b RT-21q; RT-22p; RT-24p; RT-24c
BC-15 LG2 4 OMI30TUF/ii, OMM1197/i, RT-10p; RT-10c; RT-10q; RT-18
OMM1197/ii, OMYRGT2TUF/ii
BC-19 LG11 1 CA350064 RT-13; RT-22¢; RT-23q; RT-27q
BC-20 & BC-43 LG3 2 BX311224, OMM5007 RT-2q; RT-5q; RT-8¢; RT-9p; RT-9q; RT-12p;
RT-16p; RT-20p; RT-31¢; RT-31q
BC-23 LG17 1 BX873441 RT-3q; RT-9p; RT-9q; RT-20p
BC-25 UNA 1 SalD39SFU RT-6c; RT-6q; RT-11; RT-12p; RT-16c; RT-26
BC-30 LG22 2 OMM3015/i, OMM5147 RT-3p; RT-6p
BC-32 LG13 1 OMM5176 RT-13; RT-23p; RT-23q
BC-34 LG34 1 BX319411/i RT-14p; RT-14c; RT-20q
BC-36 LG10 1 SAL5UoG RT-5p; RT-5¢

@ Based on the Oxford grid of Timusk et al. (2011) presented in Table S9. LG, linkage group.

San Diego, CA) genotyping technology were designed. Sites that did not
respect the Sequenom assay the following technical requirements were
removed: flanking sequences of 50 bp around the site of interest, no other
polymorphic site within these flanking sequences, and a GC content
greater than 40% (See File S2).

For each validated SNP, we searched for functional annotation and
the nature of the polymorphism (transition vs. transversion, synony-
mous vs. nonsynonymous mutation). BlastX similarity searches were
performed with the NCBI protein database (nr) using the consensus
sequences of each contig containing a validated SNP. Only e-values
lower than 1 x 10~ were considered significant. Then, open reading
frame (ORF) predictor (Min et al. 2005) was used to predict the most
probable OREF for contigs that exhibited a significant Blast hit. Finally,
SNPs were characterized as synonymous or nonsynonymous from the
deduced ORFs. (For details, see File S3.) (4) Only SNP that met all
requirements were multiplexed for genotyping the F, parents and
their F, progeny using the iPlex Gold assays on the MassARRAY
platform (Sequenom, San Diego, CA) according to the manufacturer’s
instructions at the Genome Québec Innovation Center (McGill Uni-
versity, Montréal, QC, Canada).

DNA extraction and microsatellite genotyping in the

F» progeny

Genomic DNA was extracted from fin tissues (n = 191) of the selected
F, hybrid progeny using the QIAGEN DNeasy kit according to the
manufacturer’s specifications (QIAGEN, Valencia, CA). DNA was
quantified using the Quant-iT PicoGreen assay (Invitrogen, Inc., ON,
Canada). For microsatellite genotyping, we first selected a set of 101
microsatellite markers that were available from the literature and pre-
viously used in the development of a linkage map in the brook charr
(see Timusk et al. 2011). These markers cross-amplify in several sal-
monid species, including Salmo salar, Onchorynchus mykiss, Salvelinus
alpinus, and Salmo trutta (Olsen et al. 1998; Sakamoto et al. 2000; Palti
et al. 2002; Rexroad et al. 2003; McGowan et al. 2004; Rise et al. 2004;
Coulibaly et al. 2005; Thorsen et al. 2005; Gharbi et al. 2006; Phillips
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et al. 2009). In addition, we included 25 additional microsatellites
(Angers et al. 1995; O’Reilly et al. 1996; Scribner et al. 1996; Dehaan
and Ardren 2005; Perry et al. 2005; see File S1 for details).

Only the informative markers were kept, that is, heterozygote for at
least one of the two F; parents. These were then multiplexed and
amplified by PCR on a ABI 7900HT thermocycler (Applied Biosys-
tems, Foster City, CA) according to the following cycling conditions:
initial denaturation of 15 min at 95°, then 35 cycles of 30 sec of
denaturation at 94°, 3 min of annealing at 60°, and 1 min of elongation
at 72°, followed by a final extension step of 10 min at 72°. The reaction
mixture was composed of 2 pL of gDNA (20—50 ng pL™1), 5 pL of
Taq PCR Master Mix (QIAGEN, Inc., ON, Canada), and 0.2 pL of
each primer (forward and reverse), for a final reaction volume of 8 L.
Forward PCR primers were FAM and HEX labeled with a fluorescent
dye and multiplexed according to the size of the PCR products to
avoid any overlap in the markers size ranges. PCR products from each
sample were diluted 50-fold, and 1 wL of diluted PCR product was
mixed with 0.25 pL of ROX GS500 size ladder (Applied Biosystems)
and 10 pL of HiDi formamide. Samples were denatured at 95° for
3 min and kept on ice until loading on an ABI 3130 automatic se-
quencer (Applied Biosystems) according to the manufacturer’s recom-
mendations. GeneMapper software V4.1 (Applied Biosystems) was
used to analyze output data and collect microsatellite genotypes.

Sampling and phenotyping

F, progeny (1+ year-old fish) were first collected in August (n = 91;223.9
*+ 5.5 g) and then in November 2009 (n = 100; 276.7 = 6.4 g) on 24-
hour—fasted fish. After capture, fish were immediately placed in an
anesthetic solution (3-aminobenzoic acid ethyl ester, 0.16 g L!) with
constant aeration. They were identified using a pit-tag reader, measured
(= 0.1 cm), and weighed (£ 0.1 g). In November 2009, blood was
sampled for each fish (0.3 mL) by caudal puncture using heparinized
syringes. Plasma was obtained by centrifugation (5 min, 5000 rpm,
8500g), and then stored at —80° until analysis. Sperm and eggs were
collected from sexually mature animals by stripping. At both sampling
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Figure 1 Linkage map in the brook charr: graphical representation of the consensus linkage map (sex-average) built using 266 markers (187 SNPs and
79 microsatellites), on the basis of 40 LGs, spanning 2047.5 cM. Significant QTL associated with reproduction traits are represented with their 95%
confidence interval. LGs were named randomly. Genetic distances are indicated on the left of the LG, whereas marker names are reported on the right.

periods, adipose fin was cut on all anesthetized fish for genotyping of
markers. Fins were individually stored in ethanol (> 95%) until DNA
extraction. Anesthetized fish were killed by decapitation according to
regulations of Canadian Council of Animal Protection recommenda-
tions and protocols approved by the University Animal Care Committee.

Seven phenotypic traits were measured in November 2009 for males
and females sampled that were successfully genotyped (n = 86; as
discussed in the section SNP detection, validation, genotyping, and func-
tional characterization). Plasma sexual steroids (testosterone in males
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and females; 17B-estradiol in females; 11-ketotestosterone in males)
were measured using commercial kits validated in fish [Testosterone
125] RIA kit (De Montgolfier et al. 2009) and 173 -estradiol 12°I RIA kit
Ria Kit (Davis et al. 2009), Immuchem Inc, Biomedicals, OH; 11-keto
testosterone EIA kit (de Montgolfier et al. 2009), Cayman Chemical
Compagny, MI]. The diameter of 10 eggs per female (38 females mature
on a total of 40%-95%) was measured using a caliper (* 0.1 mm) under
binocular microscope. Sperm from sexually mature males (42 sexually
mature males on a total of 46, i.e., 91.3%) was diluted (1:2 X 10°) in NaCl
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Figure 1 Continued.

0.9%. Sperm counts and mean spermatozoid head diameter (um) were
measured in triplicates for each male using a Z Series Coulter Counter
Cell and Particle Counter (Beckman Coulter Canada Inc., ON, Canada).

Phenotype data analyses

Data normality was checked for each trait using a Shapiro-Wilk test.
Phenotypic traits that were not normally distributed were Log; trans-
formed. The relationships among phenotypes were tested using a cor-
relation matrix Spearman Rho test on both males and females data
after removing of outliers (n = 6 and n = 4 for males and females,
respectively) using the scatterplot box-plot function of the Statistica
software (StatSoft Inc., Tulsa, OK). Statistical significance was consid-
ered when P < 0.05. All statistical tests were performed using [R] (v.
2.10.1; The R Foundation for Statistical Computing , 2009, 3-900051-
07-0), unless specified otherwise.

Genetic linkage map construction

Before performing linkage mapping, deviation from Hardy-Weinberg
Equilibrium (HWE) was tested for every marker using a Pearson’s x test
implemented in the SNPassoc [R] package (v.1.6.0) (Gonzalez et al.
2007). Markers that deviated from HWE equilibrium (P < 0.05) were
removed from subsequent linkage analyses. Remaining SNP and micro-
satellite genotype data were formatted in the Crimap input format using
a homemade python script (available upon request), and linkage between
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markers was evaluated using the ‘two points’ option implemented in
Crimap. A decreasing LOD (Log;, of the odd ratio) score approach (from
6 to 3, step = 1) was used to reveal the most significant linkages (LOD =
6) to the weakest linkages (LOD = 3) and was used to group linked
markers in LGs. This allowed mapping markers showing pseudo-linkage
to different LG without any misassociation to another LG. Finally,
markers that failed to be assigned with confidence to only one LG were
not considered in further analysis. Chromosomal distances were evalu-
ated according to the Kosambi formula (in cM) and estimated using the
“build” option. Most probable order of marker inside each LG was esti-
mated using the “flipsn” option. Double recombination events and gen-
otyping errors were revealed using the “chrompic” option. Three linkage
maps were built: two sex-specific maps and one consensus map combin-
ing information from both sexes. LGs were visualized using Mapchart
(http://www.joinmap.nl). The linkage map was compared with the brook
charr map recently published by Timusk ef al. (2011) that comprises 37
LGs built with 139 microsatellites genotyped in three F, families. Shared
markers between both studies were used to assess homology between
linkage groups. Maps were also then compared in terms of length, inter-
marker distance, and recombination differences between sexes.

QTL detection
QTL analysis was carried out using the [R] package R/qtl [v. 1.18-7,
August 2010, http://www.rqtlorg/ (Broman et al. 2003)] on the sex-specific
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Figure 1 Continued.

linkage maps. (1) A single QTL analysis was performed using
the Haley-Knott regression method (10,000 permutations) to reveal
which LGs were carrying QTL. The most probable position of the
QTL was defined at the position giving the largest LOD score and this
QTL was fixed. (2) A two QTL model based on the Haley-Knott
regression was used to refine the QTL detection across the genome
with a resolution of 5 cM and eventually to detect two QTL on a single
LG linked to a particular trait. (3) The best model fitting our data was
used to compute the percent variance explained (PVE expressed in %)
by the QTL. The chromosome-wide and the genome-wide thresholds
were calculated for each LG using 10,000 permutations. The 1.5 LOD
confidence intervals were determined for all analyses following the
Bayesian method implemented in the “bayesint” function in R/qtl.
The bayesint function calculates an approximate interval (end points
around the maximum LOD) for a given chromosome using the ge-
nome scan output. Allele effects were determined using the effect plot
function in R/qtl with the QTL peak marker or marker nearest to the
peak as the reference marker. Additive effects were estimated as half of
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the differences between two homozygous genotypic values whereas
dominance effects were estimated as the deviation of the heterozygous
from the average value between two homozygous genotypic values
(Lynch and Walsh 1998).

RESULTS

454 data assembly

A total of 388,395 pyroreads with a median length of 237 bp, totaling
~123 Mb, were obtained from sequencing the cDNA library. A total
of 61.2% of these reads were assembled into 6317 contigs of minimal,
mean, and maximal sizes of 200, 423, and 2250 bp respectively, with
N50 contig size estimated at 673 bp.

SNP detection, validation, genotyping, and
functional characterization

A total of 4841 putative SNPs was detected in 1682 contigs (2.87 SNPs/
contig) with an average, minimal, and maximal coverage of 18.2, 10,
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Figure 1 Continued.

and 411x. Proportions of transitions were A/G - 27.9% and C/T - 28.2%
and those of transversions were A/C - 12.9%, G/T -12.3%, A/T -, 12.1%
and C/G - 6.6%. Among these 4841 putative SNPs, 1134 were selected
with the objective of validating a subset of 300 markers. Amplicon of
expected size was obtained for 46% (522/1134) of these, and Sanger
sequencing revealed that 42.1% (220/522) of the amplified markers were
false positive (no polymorphism). On the remaining 302 markers, 96.3%
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(291/302) met the technical requirements of the iPlex Gold assays, and
280 of these were successfully multiplexed in nine panels. Each panel
contained 28 to 32 SNP markers (Table S2).

Genotype data were obtained for 171 (n = 85 fish sampled in
August and n = 86 fish sampled in November) of the 191 F, progenies
(89.5%), and on 96.4% (270/280) of the markers as 10 of these failed to
amplify or had >50% of missing data. The overall percentage of
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missing data for the SNP genotyping was 2.2%. Among the 270 vali-
dated SNPs, 45.5% (123/270) exhibited a significant blast hit (e-value <
1x107%0), among which, ORF predictor identified 118 ORFs (95.9%;
118/123). Within these 118 ORFs, 23 ORFs (19.5%; 23/118) showed
a frame shift that was introduced during the assembly of raw data into
contigs. These 23 ORFs were ignoredm and the SNP characterization
was performed on the 95 remaining ORFs. Among these 95 ORFs, 92
SNPs (96.8%) were assigned to coding regions. Finally, 35 loci (38.0% -
35/92) were characterized as nonsynonymous mutations and 57 loci
(61.9%; 57/92) as synonymous mutations (details in Table S3).

Microsatellite genotyping

The preliminary genotyping tests performed on a subset of eight
individuals (the two mapping F; parents and six F, progenies) revealed
that 84 markers were polymorphic in at least one of the two F; parents
allowing their mapping. Markers that showed complex banding pattern or
that failed to amplify in more than 80% of the progeny were removed. The
missing percentage of data (missing genotypes) was estimated at 6.4%.

Linkage map

Seventeen markers (three microsatellites and 14 SNP) were removed
because they heavily deviated from the HWE. Thus, the dataset used
to build the linkage maps included 81 microsatellites and 256 SNPs,
for a total of 337 markers. Six markers (1.8%; 6/337) remained
unlinked, and a total of 40 LGs was generated. The consensus (sex-
averaged) map contained 266 markers (187 SNPs and 79 micro-
satellites) distributed among the 40 LGs (see Table 1 for details). The
LG length ranged from 1.4 to 132 cM, for a total consensus map
length of 2047.5 cM. The average marker spacing per LG ranged from
0.7 to 21.3 cM and was estimated at 8.3 cM over the whole genome.
The size of each LG was correlated to the number of markers within
each LG (R? = 0.516, P < 0.001), as well as to the average spacing
between two markers within the LG (R? = 0.182, P < 0.01). The
recombination rate was approximately 2.19-fold greater in females
than in males. The exact position and order of the 266 markers among
the 40 LGs are given in Table S5. The sex-specific linkage maps were
very similar to the consensus linkage map and included almost the
same number of markers (n = 263 in females and n = 261 in males).
Markers were generally ordered similarly in the two maps except for
eight LGs (LG 2, 6, 10, 14, 17, 24, 31, and 38) when compared to the
consensus one. For each sex-specific map, a total of 40 LGs was also
obtained.

Phenotyping and QTL identification

The detailed description of the seven phenotypic traits measured is
reported in Table 2. In brief, mean egg diameter (= D) was 3.96 *
0.173 mm, mean spermatozoid head diameter was 2.86 * 0.05 pwm,
and mean sperm concentration was 12.20 = 3.20 10° mL!. Plasma
testosterone was about 1.4-fold greater in males than in females at the
time of sampling (20.23 * 14.46 and 14.49 * 13.69 ng mL™! respec-
tively). Mean plasma 11-ketotestosterone and 1783-estradiol were
76.85 = 167.84 and 18.35 ng mL! respectively.

In the female progeny, three significant QTL were detected at the
chromosome wide level: two were detected for the egg diameter in LG
11 and LG 34, and one QTL was detected for the plasma 17§3-estradiol
in LG 8 (Table 3). For each of these traits, total PVE of the QTL
detected was estimated at 26.7% (10.6% and 16.1% for each QTL) and
27.6% for egg diameter and plasma 17(B-estradiol, respectively. The
most probable positions of these QTL, their respective 95% CI, the
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closest linked molecular markers (one per QTL) as well as additive
and dominance effects are presented in Table 3.

In the male progeny, two QTL were detected, at the chromosome
wide level, one for the sperm concentration on LG 6 and one for the
average spermatozoid head diameter on LG 16. The PVE associated
with these two traits were estimated at 18.58% and 14.95%, respectively.
The most probable positions (in cM) of the QTL, their respective 95%
CI, and additive and dominance effects are presented in Table 4. All
significant QTL regions are depicted in Figure 1. No significant QTL
were detected for plasma testosterone neither in male nor in female
progeny, neither for the 11-keto-testosterone traits in the male progeny.

In both sexes, the 95% CI surrounding the most probable QTL
positions were highly variable and ranged from 5.9 ¢cM for the QTL
linked to the spermatozoid head diameter (LG 16) to 46 cM for the
QTL linked to the sperm concentration (LG 6). Two of the five QTL
detected (on LG 8 and 6) were linked to the SNP sf000754_AC and
sf000891_2AC. These markers were both transversions (A/C), but no
significant annotation (or gene name) was found for them. The three
remaining QTL (LG 11 and LG 34 for egg diameter and LG 16 for
spermatozoid head diameter) were linked to SSR markers (BX870052i,
BX319411i, and SfoD91).

The five QTL identified for the four phenotypic traits displayed
different and significant additive and dominance effects. Additive effects
ranged from —1.226 = 0.033 (QTL on LG 16 associated with sperma-
tozoid head diameter) to 0.363 = 0.049 (QTL on LG 34 associated with
egg diameter) and dominance effects ranged from —0.803 * 0.134
(QTL on LG 11 associated with egg diameter) to 0.956 * 0.125
(QTL on LG 8 associated with plasma 17B-estradiol concentration).

DISCUSSION

The main objective of this study was to identify QTL associated with
reproductive physiological traits that have not or rarely been in-
vestigated in previous studies. To this end, we first developed new
SNP markers specific to brook charr in coding gene regions and used
them in combination with previously published microsatellite markers
to build a linkage map. We also phenotyped seven physiological traits
for which we searched for QTL association. Thus, for the first time in
salmonids, five significant QTL for four reproductive physiological
traits were detected, including for egg number, plasma 173-estradiol
in female and sperm concentration, and spermatozoid head diameter
in males. Results suggest that these four traits may be under the
control of one major gene or a small number of genes, explaining
an important variance of these traits. Moreover, results also indicate
that genes underlying the phenotypic variance of these traits are under
different mode of action (additive vs. dominance) and may be used to
predict an increase or a decrease in their phenotypic values in sub-
sequent generations of selective breeding. Admittedly, as for any gene
mapping study, increasing the average marker density to detect QTL
with a greater accuracy and thus dissecting the genetic architecture of
the traits of interest may improve the results of this first-generation
linkage map. Finally, this newly developed panel of mapped SNP
located in coding gene region will be useful for screening wild pop-
ulations, especially in the context of investigating the genetic impact of
massive stocking of domestic brook charr to support the angling in-
dustry throughout eastern North America.

SNP development

Using RNA-seq, a total of 280 SNP markers located in coding regions
and annotated for about half of them were identified for the first time
in the genus Salvelinus. High-throughput sequencing technologies are
increasingly applied for numerous purposes, including developing SNP
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markers for building linkage maps (e.g., rainbow trout) (Sanchez et al.
2009). To this end, a major constraint when working on nonmodel
species is that, although de novo assembly approaches are routinely
used (Kumar and Blaxter 2010), the absence of a reference genome
makes discerning paralogous genes very difficult. This is particularly
challenging in species with complex duplicated genomes also compris-
ing numerous repeated elements such as salmonids (Davidson et al.
2010). To minimize the orthologous/paralogous problem in this study,
each putative SNP was resequenced using the Sanger method. This
stringent approach (261 SNPs validated >1000 putative sites) was
necessary to overcome uncertainties associated with contig assembly.
The low validation rate is likely a consequence of the following factors:
(1) the greater sequencing error rate of the 454 technology compared
to Sanger sequencing; (2) the assembly of paralogous sequences (even
if we used restrictive parameters in the assembly); (3) the design of
primers over an exon/intron junction for the validation step leading to
the amplification of intronic regions, and (4) the technical require-
ments for the Sequenom assay. Low SNP validation rate similar to
what we obtained here has been previously reported in other salmo-
nids, including chum salmon, O. keta (validation success rate of 13.3%;
37/202, Seeb et al. 2011), and rainbow trout (validation success rate of
28.9%; 139/480 for Abadia-Cardoso et al. 2011 and 48%; 183/384 of
validation success for Sanchez et al. 2009). Clearly, such a low valida-
tion rate is a major constraint to the efficient development and appli-
cation of SNP markers using the method we used here, and alternative
approaches may be better suited in future steps toward densifying the
brook charr genetic map.

Indeed, during the time course of this study, new methods
allowing the genotyping of thousands of SNP directly from next-
generation sequencing sequences have been developed and recently
applied (Elshire ef al. 2011, also reviewed in Davey et al. 2011). How-
ever, the application of such “genotype by sequencing” methods for
genetic mapping has been limited to very few species thus far (e.g.,
Baxter et al. 2011; Chutimanitsakun et al. 2011). As the first applica-
tion to genetic mapping in fishes, the so-called “RAD-sequencing”
approach has been used to build a linkage map comprising 8400
SNP markers in the longnose gar (Lepisosteus osseus) (Amores et al.
2011). Also, Miller et al. (2012) have recently produced the first ge-
netic map for salmonids (rainbow trout) using this same method. One
potential drawback with these new methods as currently applied is
that, unlike the approach we used that specifically targeted coding
regions, most detected SNPs are located in noncoding regions and
thus remain anonymous, although new protocols are being adapted
for cONA RAD-sequencing (Davey et al. 2011). Also, the challenge
posed by the recently duplicated genome of polyploidy salmonids
remains the same, although the number of markers from which
high-quality ones can be validated is substantially increased. Thus,
there is little doubt that future development in brook charr genetic
mapping and QTL detection will benefit from these new methods, as
it will likely be the case for any other species.

QTL detection for reproductive physiological traits

Up to now, QTL analyses linked to reproductive traits in salmonids
mainly focused on age at sexual maturation (e.g. Moghadam et al.
2007). Here, five significant QTL were detected for other traits related
to reproduction, including two QTL associated with egg number, as
well as with plasma 17B-estradiol and spermatozoid head diameter.
The 17B-estradiol is synthesized from the aromatization of testosterone
in the ovarian granulosa cells (Kagawa et al. 1983). It is subsequently
released into the bloodstream and is responsible for growth and mat-
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uration of oocytes (Peter and Yu 1997). In particular, it triggers hepatic
synthesis of vitellogenin, the yolk precursor protein (Patino and
Sullivan 2002). For each of the five QTL, the closet underlying mo-
lecular marker has been identified. Three of them are microsatellites
(BX870052i, BX319411i, and SfoD91) and two are SNP markers
(sf000754 and sf000891) associated with plasma 17B-estradiol and
sperm concentration. Unfortunately, these two SNPs were not asso-
ciated with any significant annotation. Clearly, the availability of
a fully sequenced and annotated genome in other salmonids such
as Atlantic salmon (Davidson et al. 2010) and rainbow trout (Palti
et al. 2011) will be of paramount importance to refine the annotation
of the SNP markers developed here and to investigate the potential
functional role of SNP underlying QTL in salmonid species.

The PVE for identified QTL ranged from moderate to large effects
(10.6%-27.6%). The low number of QTL identified per trait, com-
bined to the high PVE may suggest that the expression of these traits
is under the control of one major or a limited number of genes.
However, this should be interpreted cautiously because the limited
number of QTL may also reflect a lack of power because of the limited
number of progeny and markers that could be analyzed here. Namely,
the limited number of progeny may influence QTL detection experi-
ments by underestimating the QTL number and overestimating their
respective effects (Beavis 1998; Xu 2003). Also, most likely because of
the limited of markers, the most probable location of the five QTL was
identified with relatively large 95% confidence intervals.

Comparison with other linkage maps

Our brook charr linkage map comprises 40 LGs, which is very close to
the haploid number of chromosome in the species (2n = 84). With
171 genotyped individuals, and based on the linkage map previously
published for this species (Timusk et al. 2011), we expected a maximal
mapping resolution of 0.58 ¢cM (100/171) and an average marker
spacing ranging from 8 to 10 cM (total length of the map estimated
from 2400 cM to 3000 cM /300 markers) This expectation was
reached with a marker spacing average per LG that ranged from 0.7
to 21.3 cM and a marker spacing average estimated at 8.3 cM over the
whole genome. The marker spacing also reached the minimal expec-
tation estimated at a spacing average of 10 cM over the whole genome
that is needed for an accurate QTL detection (Darvasi et al. 1993).

As mentioned previously, the present map is composed of 40 LGs,
including a total of 266 markers (both SNP and SSR), whereas Timusk
et al. (2011) reported a map composed of 37 evident LGs determined
by the mapping of 139 SSR loci. In both studies also, significant
differences in recombination rates between sexes were identified,
resulting in a female/male ratio of 2.19:1 in this study vs. 3.47:1 in
Timusk et al. (2011). Such strong differential recombination rates
between sexes are typical of all salmonid species investigated thus
far. Sakamoto et al. (2000) were the first to report this phenomenon
in salmonids with a ratio of 3.25:1 ratio observed in rainbow trout.
Subsequently, a 1.38:1 female/male ratio was reported in Atlantic
salmon, (Lien et al 2011), 6.4:1 in brown trout, (Gharbi et al.
2006), and 2.6:1: in Arctic charr (Woram et al. 2004).

Such large differences in female/male recombination rates could be
explained by the differential sex-specific alignment of chromosomes
during meiosis (Lee and Wright 1981). This could also result in seg-
regation distortion (non-Mendelian segregation of markers), which
was observed in this study (17 markers comprising 3 SSRs and 14
SNPs) as well as by Timusk et al. (2011) (33 loci in 9 LGs). Although
the number of markers shared between this study and that of Timusk
et al. (2011) was relatively modest, comparison between the two maps
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was possible. Thus, a total of 18 LGs sharing 24 SSR markers was
apparently homologous between both studies (Table 4). Also, the
comparison between brook charr, Arctic charr, and rainbow trout
genetic maps done by Timusk et al. (2011) allowed us to assign
homology within this triplet of species for the 18 common LGs. How-
ever, direct comparison of linkage maps has to be interpreted cau-
tiously, given the low number of shared SSR markers between studies.
Further comparison with other available maps that were developed
with SNP markers (e.g., Atlantic salmon and zebrafish Danio rerio)
proved impossible given the very low number of shared markers
(<5%) between brook charr and Atlantic salmon as well as the high
level of divergence between zebrafish and brook charr. Clearly, further
investigation of the synteny within the salmonid family using gene-
based markers will be of prime interest while the complete genome
sequence of the Atlantic salmon and rainbow trout genome soon
become available (Davidson et al. 2010; Lien et al. 2011).
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