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ABSTRACT

Plastoglobules are lipoprotein particles contained in chloroplasts

and other plastids. They have long been regarded as lipid storage

droplets. New results now indicate that plastoglobules actively

participate in prenylquinone and other metabolic pathways.

Structural work shows physical attachment of plastoglobules to

the thylakoid membrane probably enabling the exchange of lipid

molecules between the membrane compartments. This review will

give a summary of research, past and present, attempting to

elucidate the role of plastoglobules in the context of plastid

function.

INTRODUCTION

The chloroplast, the green organelle of plants, hosts photo-
synthesis and many biosynthetic pathways. Based on struc-
tural and biochemical comparisons as well as phylogenetic

analyses, it is generally accepted that chloroplasts and other
plastid types originate from cyanobacteria. In a process
referred to as endosymbiosis the prokaryote became the

eukaryotic organelle. Endosymbiosis involves the transfer of
the majority of the genetic material of the cyanobacterial
chloroplast precursor to the host cell nucleus (1–3). The

nuclear-encoded chloroplast proteins acquired targeting
sequences (transit sequences) allowing for their import into
the organelle. By importing specific sets of proteins, higher
plants obtained the capacity to produce highly specialized

plastid types such as amyloplasts and chromoplasts.
Plastids (Fig. 1) are delimited by a double membrane

envelope controlling the exchange of metabolites with the

cytosol as well as the import of nuclear-encoded proteins. The
thylakoids, the internal photosynthetic membrane system, are
contained in the soluble phase, the stroma. Chloroplasts also

contain a rudimentary genetic apparatus and protein synthesis
machinery. The primary photosynthetic assimilate is deposited
in starch granules. In addition to these aforementioned

structural elements the chloroplasts also contain plasto-
globules (4). Generally the chloroplast and its functions have
been well described, but the plastoglobules have remained a

white spot on the organellar map. Plastoglobules, at first
termed ‘‘osmiophilic globules’’ (5), are low density lipoprotein

bodies, with an average diameter of 50–100 nm in vegetative
leaf cells. Plastoglobules consist of an outer polar lipid
monolayer containing neutral lipids such as prenylquinones,

carotenoids and others. In addition to the lipid components
plastoglobules were known to harbor protein (Fig. 2) (6,7).
Plastoglobule dimensions may vary from 30 nm to several

micrometers (8) depending on developmental stage and
environmental conditions. A series of studies have reported
an increase in plastoglobule size and number under biotic and

abiotic stress conditions. These findings suggested an implica-
tion of plastoglobules in plant stress response. Nevertheless,
plastoglobules have widely been considered passive lipid
storage droplets.

Historically, the plastoglobule protein discovered first was
fibrillin. Fibrillin coats the plastoglobule-related carotenoid-
containing color fibrils in red pepper chromoplasts (9). These

fibrils are known to originate from plastoglobules and are
structurally related (10). Later, fibrillin and its homologs were
also demonstrated to associate with plastoglobules in leaf

tissue and also termed plastid-lipid associated proteins (PAP)
or plastoglobulins (11,12). For some time the fibrillins ⁄
PAPs ⁄ plastoglobulins remained the only known plastoglobule
components. Due to their common localization at plastoglo-

bules or related structures (13), ‘‘plastoglobulin’’ appears the
most appropriate name to qualify the members of this protein
family.

In an effort to discover the composition and functions of
plastoglobules, the Arabidopsis plastoglobule proteome has
recently been determined (14,15). A total of 34 candidate

plastoglobule proteins were present in the proteome. The 34
proteins form three groups: plastoglobulins, known metabolic
enzymes and proteins of unknown function. Eight of the 13

homologs constituting the Arabidopsis plastoglobulin family
(16) were present in the plastoglobule proteome. The
six known enzymes include the three isoforms of fructose-
bisphosphate-aldolase, the allene oxide synthase involved in

jasmonate biosynthesis, the tocopherol cyclase AtVTE1 and
the carotenoid cleavage dioxygenase AtCCD4. The proteins of
unknown function consist largely of predicted enzymes

presumably involved in lipid metabolism. In addition to the
three groups, known thylakoid proteins were also present in
the proteome but were not considered to be bona fide

plastoglobule proteins.
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In summary, the protein composition suggests that plasto-

globules function in diverse metabolic pathways. Importantly,
the data indicate that plastoglobules do not simply store lipids
but actively participate in their metabolism. Interestingly,

metabolic activity in lipoprotein particles is an emerging
general concept in a move away from the more static storage
models (17–19).

PLASTOGLOBULES PARTICIPATE IN
STRESS RESPONSES

Plastoglobules contain a large proportion of an important
prenylquinone compound, a-tocopherol (also known as vita-
min E) (14). The tocopherols protect plastid membrane lipids

against peroxidative damage and Photosystem II against
photoinhibition (20). Moreover, the presence of tocopherol
also suggests a role for plastoglobules in protecting the

thylakoid membrane against oxidative stress. Most of the
enzymatic activities of the tocopherol biosynthetic pathway
were localized to the inner membrane of the chloroplast
envelope. However, the tocopherol cyclase (VTE1, for Vitamin

E defective) catalyzing the conversion of 2,3-dimethyl-5-
phytyl-1,4-hydroquinol into c-tocopherol was identified in
the plastoglobule proteome (14,15). Several lines of evidence

show that VTE1 is specifically attached to plastoglobules
and may be completely absent from envelope membranes
(14,21). Thus, the available data suggest that the tocopherol

biosynthesis pathway passes through plastoglobules. In agree-
ment with metabolic activity, plastoglobules may thus not just

Figure 1. Electron micrograph of an Arabidopsis cell. Chloroplasts are composed of the dual membrane envelope, thylakoids, stroma, starch
granules and plastoglobules. Diverse compartments of the plant cell are indicated in bold lettering.

Figure 2. Model of plastoglobule structure. Plastoglobules are com-
posed of neutral lipids surrounded by a polar lipid monolayer and
coated with proteins.
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store this prenylquinone compound but participate in its
synthesis.

In 1971, Taylor and Craig (22) reported that ‘‘the number of
osmiophilic droplets (...) appeared to increase in chloroplasts

of the upper mesophyll’’ in Sorghum after 3 days of 12 h light
at 25�C ⁄ 12 h dark at 10�C, compared to 25�C day ⁄night
controls. Hall et al. (23) observed that ‘‘large osmiophilic

globules are present’’ in calcium- or magnesium-deficient
maize plants, while in sulfur-deficient plants ‘‘Osmiophilic
globules (...) appear to be smaller and more numerous than in

chloroplasts from the full-nutrient plants.’’ Exposure to heavy
metals such as cadmium has been shown to increase the size
and number of plastoglobules in a number of species such as

pea (24) or the Cd-hyperaccumulating Sedum alfredii ecotype
Hance (25). Size and number of plastoglobules also respond to
osmotic stress: in drought-stressed potato plants, plasto-
globules are bigger and more numerous than in well-watered

ones (26); a salt-adapted tobacco cell line grown in the
presence of 429 mMM NaCl accumulated plastoglobules of
different sizes (27). As in most of these examples, changes or

reduction in the thylakoid system also took place, it is
tempting to hypothesize that the increase in size and number
of plastoglobules is linked to the accumulation of products

from thylakoid catabolism. Under high light stress or nitrogen
starvation, size and number of plastoglobules also increase
(23,28). Under such abiotic stress as well as during senescence,
a large part of the chlorophyll is degraded, resulting in the

release of phytol and chlorophyllide. Chlorophyllide which has
phototoxic properties is rapidly catabolized (for a review, see
Hortensteiner [29]). Two recent studies (28,30) demonstrated

that part of the released phytol, considered potentially toxic
due to its detergent-like properties, is incorporated into fatty
acid phytyl esters (FAPEs). A significant proportion of the

FAPEs accumulate in plastoglobules (28). This finding vali-
dates the concept of accumulation of thylakoid catabolites in
plastoglobules. In this case, plastoglobules may provide a

means to protect thylakoid membranes from free phytol by
esterification and FAPE sequestration.

Additional evidence for the implication of plastoglobules in
plant abiotic stress responses stems from the study of the

characteristic plastoglobule proteins: the plastoglobulins.

PLASTOGLOBULINS AND THEIR
POTENTIAL FUNCTIONS

Immunogold electron microscopy experiments located plasto-
globulins at the chloroplast plastoglobule and pepper chromo-

plast fibril perimeters, respectively (9,11,12,14,21). When
incubating purified bell pepper fibrillin (the prototypical
plastoglobulin) with polar and isoprenoid lipids (carotenoids),

reconstituted color fibrils formed (9). Similarly, while the
pepper plastoglobulin has been shown in tobacco to partition
between thylakoids and stroma, the overproduction of the

protein increases the number of plastoglobules per chloroplast
in planta (31). These results suggest a role for plastoglobulins
in the formation and maintenance of fibril as well as

plastoglobule structure.
Proteomic studies demonstrate an implication of plasto-

globulins in stress responses. A plastoglobulin has been
identified having one of the 12 ‘‘low abundant’’ proteins that

are significantly induced by cold treatment in rice leaves (32).

Furthermore, the plastoglobulin AtPGL30.4 (At3g23400) has
also been identified among five of the Arabidopsis proteins
phosphorylated during the defense response to Pseudomonas
syringae pv. tomato DC3000 (33). A comparative proteome

analysis has shown that four members of the Arabidopsis
plastoglobulin family accumulate in response to a 1 to 5 day
high-intensity light treatment (34).

The mRNA expression patterns of plastoglobulin homologs
also support their implication in resistance to stress. For
instance, transcript of a bell pepper plastoglobulin accumu-

lates within 24 h after mechanical wounding and in drought-
stressed leaves in a light-dependent way (35). The promoter of
this plastoglobulin is induced by wounding, drought, salt or

oxidant stresses under light but not dark conditions, suggest-
ing an induction by photo-oxidative stress, putatively via
reactive oxygen species production by photosystems (35,36). In
potato, the plastoglobulin CDSP34 (Chloroplastic Drought-

induced Stress Protein 34) was identified as one of the proteins
accumulating during the early stages of drought stress, and
later found to be induced by high-light and various oxidative

stresses (37–39). Abscisic acid (ABA), a plant hormone
responsible for the integration of several stress responses
(40), induces the expression of at least some of the plasto-

globulins (37,41). Furthermore, Yang et al. (41) demonstrated
that the expression of the Arabidopsis plastoglobulin
AtPGL35 (At4g04020) is regulated by ABA response regula-
tors ABI1 and ABI2. As described above, under such stress

conditions plastoglobule size and ⁄ or number generally
increase. Thus, the maintenance of plastoglobule structure
and the regulation of their size and number is probably linked

to the structural action of plastoglobulins that accumulate
under these stress conditions.

Plastoglobulin C40.4 was identified as a transcript strongly

upregulated in leaves of tuberizing Solanum demissum (42).
Antisense plants with reduced level of C40.4 transcript showed
retarded growth and reduced tuberization rate compared with

wild-type plants. These results suggest that plastoglobulins
participate, directly or indirectly, in a developmental regula-
tory mechanism. Such an implication has also been docu-
mented by Rey et al. (31): transgenic tobacco plants with

higher level of pepper plastoglobulin proteins exhibit acceler-
ated floral development and enhanced growth under high light
conditions, and better growth rate than wild-type plants after

9 days of drought treatment. The mode of action of these
plastoglobulins on development still needs to be elucidated,
but it has been suggested that the proteins exert a protective

effect on photosystems or thylakoid membranes, leading to
better photosynthetic efficiency (42).

PLASTOGLOBULES ARE PHYSICALLY AND
FUNCTIONALLY LINKED TO THYLAKOIDS

Plastoglobules are often observed in close proximity to

thylakoids in electron micrographs, mostly localized at the
highly curved thylakoid margins. The location of plastoglo-
bules at the curves of the thylakoid margins may favor their

formation—or ‘‘blistering.’’ Using electron tomography, Aus-
tin et al. (21) obtained detailed insight into the ultrastructure
of plastoglobules. The tomographic study demonstrates that
the outer leaflet of the lipid bilayer of thylakoids is contiguous

with the polar lipid half-bilayer surrounding plastoglobules

1390 Claire Bréhélin and Felix Kessler



(Fig. 3). Plastoglobules may form extensive networks: clusters

of plastoglobules not directly connected to thylakoids but
linked to other plastoglobules in a kinked configuration. These
observations support a model in which plastoglobules are

physically coupled to thylakoids in a way possibly allowing the
bidirectional channeling of lipid metabolites (Fig. 3).

Plastoglobules and thylakoids are not only structurally but
also functionally linked. This is evident in their sharing of

metabolites such as tocopherol or FAPEs (see above).
Lohmann et al. (43) recently analyzed the distribution in
chloroplast membranes of phylloquinone (vitamin K1), a

prenylquinone that participates in the photosynthetic electron
transfer chain of Photosystem I. Two molecules of phyllo-
quinone are present at each Photosystem I complex. However,

the overall stoichiometry has been estimated at 3 mol of
phylloquinone for 1 mol of Photosystem I. This estimation
suggests that phylloquinone is not exclusively associated with

Photosystem I but exists in an additional pool. Part of the
phylloquinone pool is localized at the plastoglobules (43,44).
Additional evidence for a function of plastoglobules in
phylloquinone metabolism stems from the analysis of the

Arabidopsis methyl transferase menG mutant. Much of
2-phytyl-1,4-naphthoquinone, the precursor of phylloquinone
accumulated in the menG mutant, is present in plastoglobules.

The MenG enzyme, responsible for the conversion of 2-phytyl-
1,4-naphthoquinone into phylloquinone, was characterized in
the same study (43). Interestingly, the transient production of

AtMenG-GFP fusions in Arabidopsis leaves resulted in a
spotty fluorescence pattern resembling that of plastoglobule
localized GFP-fusion proteins. While AtMenG was not
present in the plastoglobule proteome, we speculate it may

be a loosely associated component which is lost during the
purification procedure. We therefore hypothesize that the

precursor of phylloquinone may not only accumulate but

may also be converted to phylloquinone in plastoglobules.
Phylloquinone may then diffuse to Photosystem I through the
physical connection between plastoglobules and thylakoids,

while any excess remains in plastoglobules. Photosystem I
preferentially localizes to the appressed granal domains, that is
stroma lamellae, grana endmembranes and grana margins
(45,46). Thus the colocalization of Photosystem I and

plastoglobules at thylakoid margins may facilitate distribution
of phylloquinone between the two membrane compartments.

Plastoquinone (PQ-9) is a small diffusible electron carrier

that participates in the photosynthetic electron transfer chain
between Photosystem II and the cytochrome b6 ⁄ f complex.
Two molecules of PQ-9 are present at the QA and QB sites of

Photosystem II, respectively. In addition, mobile plasto-
quinone molecules, forming the plastoquinone pool, are
present in thylakoid membranes and electronically couple

Photosystem II to the cytochrome b6 ⁄ f complex (47,48). The
presence of plastoquinone in plastoglobules has been reported
earlier (44,49,50) and suggests that a part of the pool may
disengage from photosynthetic electron transfer and relocate

to the lipid particles. However, the exact distribution of
plastoquinone between plastid membranes remains to be
determined.

PLASTOGLOBULES ARE INVOLVED
IN CHROMOPLASTOGENESIS
AND SENESCENCE

During senescence plastoglobule size and number increase
while thylakoid membranes disintegrate and disappear. Pre-

sumably, plastoglobules accumulate some of the catabolites
originating from thylakoid degradation (51–55). Plastoglobules

Figure 3. Model of coupling of plastoglobules to thylakoids. The physical link between plastoglobules and thylakoids may allow the bidirectional
channeling (double arrows) of lipid metabolites.
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reportedly contain triacylglycerol (TAG) but little galactolipid
(28,50). It has been proposed that TAG accumulating in
plastoglobules originates from thylakoid galactolipid mobili-
zation and represents an intermediate step in the conversion of

thylakoid fatty acids to phloem-mobile sucrose (52). Padham
et al. (56) identified a putative TAG lipase that could mobilize
the TAG accumulated in plastoglobules. By confocal micro-

scopy the putative TAG lipase was shown to colocalize with
neutral lipids suggesting its localization at the plastoglobule.
Antisense Arabidopsis plants with reduced content of TAG

lipase exhibit stunted growth and a delay in the onset of
senescence in rosette leaves. In addition, chloroplasts of these
transgenic plants have fewer and deformed thylakoids and

smaller but more numerous plastoglobules. The delay in rosette
senescence suggests that the deformed thylakoids are loose but
not yet disintegrating. Therefore, the repression of the TAG
lipase may delay the initiation of a senescence program, thus

explaining the absence of enlarged plastoglobules in these
deformed but not senescent chloroplasts.

Plastoglobulins and plastoglobules are also believed to

participate in carotenoid sequestration (6,50). Indeed, screen-
ing for proteins mainly present in chromoplasts led to the
identification of plastoglobulins ⁄PAP ⁄fibrillins in cucumber

flowers (57) and bell pepper fruits (9,12). Furthermore, a
proteomic study (58) identified a plastoglobulin as one of the
most abundant proteins in bell pepper chromoplast. The
implication of plastoglobulins in carotenoid sequestration and

chromoplast genesis has recently been further demonstrated by
two independent studies. Suppression of the plastoglobulin
LeCHRC expression by RNAi leads to a 30% reduction in

carotenoid level per unit protein in tomato flowers (59).
However, the carotenoid level accumulation in leaves of these
transgenic plants was similar to the one in wild-type plants.

This suggests that plastoglobulin LeCHRC is implicated in
accumulation of chromoplast carotenoids essential to color
flowers and fruits, but not of chloroplast carotenoids involved

in light-harvesting antennae or dissipation of excess light
energy (60). Moreover, it is interesting to note that the down-
regulated tomato plants exhibit higher susceptibility to Botry-
tis cinerea than wild-type plants, highlighting an additional

role for this plastoglobulin in biotic stress response.
In a complementary approach, Simkin et al. (61) showed

that the overexpression of a pepper plastoglobulin in tomato

plant induces an increase in carotenoid and carotenoid-derived
volatile content of ripening fruits. Furthermore, the overex-
pressed plastoglobulin appears to delay thylakoid disintegra-

tion during chloroplast to chromoplast transition, leading to
the formation of transient plastids with two co-existing zones:
one with chloroplast characteristics (i.e. well-developed thyla-
koid membranes) and the other with chromoplast ones (i.e.

carotenoid crystals and enlarged plastoglobules), suggesting a
preventive role of this plastoglobulin in thylakoid dismantle-
ment during chromoplastogenesis.

Such an intermediate plastid has also been described in a
Capsicum annuum stay-green mutant (62). In stay-green
mutants, senescence is delayed and chlorophyll is retained. In

carotenogenic stay-green mutant fruits, the maintenance of
chlorophyll and thylakoid membranes coexists with the de
novo biosynthesis of carotenoids. These carotenoids accumu-

late in plastoglobules, inducing an increase in size and number
of plastoglobules while the thylakoids remain.

In the plastoglobule proteome, AtCCD4, one of the nine
members of the Arabidopsis carotenoid cleavage dioxygenase
(CCD) family has been identified (14,15). CCDs cleave specific

double bonds of diverse carotenoid substrates and are involved
either in ABA biosynthesis or in carotenoid catabolism (63,64).
Such a role for AtCCD4 would be in accordance with the

implication of plastoglobules in stress response and in carot-
enoid sequestration. The enzymatic activity of AtCCD4 has
not been characterized until now. However, CmCCD4a, a

Chrysanthemum homolog of AtCCD4, has been shown to be
responsible for the white color of petals (65). The authors
propose that CmCCD4a catalyzes carotenoid degradation
which causes the disappearance of yellow and the emergence of

white color. Recently a saffron (Crocus sativus) carotenoid
dioxygenase, CsCCD4a, was localized to plastoglobules and
implicated in the formation and release of b-ionone from

stigma tissue (66). The divergent functions of CmCCD4a and
CsCCD4a suggest that the CCD4 homologs have varying
physiological roles depending on species and tissue.

In plastoglobules from red pepper chromoplasts, Ytterberg
et al. (15) identified f-carotene desaturase (ZDS), lycopene
b-cyclase (LYC-b or CYC-b) and two b-carotene b-hydroxy-
lases (CrtR-b). These enzymes sequentially function in the

synthesis of carotene and its xanthophylls derivatives (60),
notably lycopene and b-carotene, the two carotenoids that
significantly accumulate in tomato plants overexpressing a

pepper plastoglobulin (61). Interestingly, it has been described
that ZDS requires plastoquinone as a cofactor (67,68), some of
which is also located in plastoglobules (see above). Thus, these

results suggest that plastoglobules are not only involved in
carotenoid storage but actively participate in carotenoid
metabolism in chromoplasts.

CONCLUDING REMARKS

In the last few years plastoglobules have started to emerge

from obscurity and to become a charted and exciting new site
on the chloroplast map (69). Apparently, plastoglobules are
not simply lipid storage droplets but complex assemblies with

roles in prenylquinone and carotenoid metabolism now
outlined. Many of the proteins in the plastoglobule proteome,
often predicted to be enzymes somehow involved in lipid
metabolism, still remain functionally unassigned. While some

of the plastoglobule lipid components are now known
(Table 1), more certainly remain to be discovered. It will be
exciting to explore the functional links between the plasto-

globule lipids and the yet unassigned plastoglobule enzymes

Table 1. Lipids reported to localize to plastoglobules.

Lipids References

Prenylquinones
Tocopherol (14)
DMPQ (14)
Phylloquinone (vitamin K1) (43)

Carotenoids (6,7,9)
Fatty acid phythyl esters (28)
Plastoquinone (44,49,50)
Triacylglycerol (28,50,52)

DMPQ = 2,3-dimethyl-5-phytyl-1,4-hydroquinol.
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and to define their roles in thylakoid formation and disassem-
bly. What biochemical tricks will the plastoglobules still pull
out of the hat for us?
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